기관회원 로그인 | 개인회원 로그인 | 개인회원 가입 | 고객센터 | 오류신고 | English 이전 | 다음 주제분류 간행물 발행기관 저자 목록 인기자료 장바구니 마이페이지 홈 > 한국원예학회 > HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY > HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY Vol.51 No.3 전자저널 권 · 호 이 전자저널 내 검색 전체 전체 전석 HORTICULTURE ENVIR ONMENT and BIOTECH NOLOGY | ONMENT and BIOTECH NOLOGY | |---------------------------| | | | 2010 | | 제51권 제6호
제51권 제5호 | | 제51권 제4호 | | 제51권 제3호 | | 제51권 제2호 | | 제51권 제1호 | | 2009 | | 2008 | | 2007 | | 2006 | | 2005 | | 2004 | | 2003 | | 2002 | | 2001 | | 2000 | | 1999 | | 1998 | | 1997 | | 1996 | | 1995 | | 1994 | | 1993 | | 1992 | | 1991 | | 1990 | | 1989 | | 1988 | | 1987 | | 1986 | | 1985 | | 1984 | | 1983 | | 1982 | | 1981 | | 1980 | | 1979 | HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY Vol.51 No.3, 2010.6 발행기관: 한국원예학회 자료유형: 전자저널 권호 발행주기: 격월간 등재정보: SCIE, KCI등재 URL: http://www.dbpia.co.kr/Issue/VOIS00072834 복사 즐겨찾기 Effects of Postharvest Ethylene Treatment on Minimal Processing Suitability of 'Kyoho' #### 16/4/2016 ### HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY Vol 51 No 3 - 하구워예하히 : 저자저널 권·ㅎ - DBnia | 6/4/2016 | HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY Vol.51 No.3 - 한국원예학회 : 전자저널 권·호 - DBpia | |----------|--| | 1978 | ★ Grape [SCIE, KCI등재] | | 1977 | Se Ra Hong , Yong-Joon Yang , Youn-Moon Park
한국원예학회, HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY 51(3), 2010.6, 178-183 (6 pages) | | 1976 | 이용하기 QuickView 상세보기 | | 1975 | | | 1974 | ■ P Effects of Mixed Gas in Active MA Packaging on Marketability Maintenance at 장 Simulated Tomato Fruits Marketing [SCIE, KCI등재] | | 1973 | Cheon Soon Jeong | | 1972 | 한국원예학회, HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY 51(3), 2010.6 , 184-188 (5 pages)
이용하기 QuickView 상세보기 | | 1971 | —————————————————————————————————————— | | 1970 | Research Reports : Genetics and Breeding | | 1969 | Phylogenetic Relationships among Seven Old Rose Species Grown in Iran Revealed by | | 1968 | ──────────────────────────────────── | | 1966 | 한국원예학회, HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY 51(3), 2010.6, 189-192 (4 pages) | | 1965 | 이용하기 QuickView 상세보기 | | | ■ Comparative Mapping of Consensus SSR Markers in an Intraspecific Fs Recombinant Inbred Line Population in Capsicum [SCIE, KCI등재] Hai Thi Hong Truong 》, Ki-Taek Kim 》, Su Kim 》, Young Chae 》, Jeong-Hyun Park 》, Dae-Geun Oh 》, Myoung-Cheol Cho | | | 한국원예학회, HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY 51(3), 2010.6, 193-206 (14 pages)
이용하기 QuickView 상세보기 | | | 이용하기 Quickview 성세포기 | | | Research Reports: Tissue Culture/Biotechnology | | | □ P Differential Expression of Genes Associated with Endomembrane Transport and Cell Wall Metabolism during Ripening of 'Chimarrita' and 'Granada' Peach [SCIE, KCI등재] Camila Pegoraro, Roberta Manica-Berto, Fábio Clasen Chaves, Carolina Terra Borges, Jader Job Franco, Cesar Valmor Rombaldi ≫, Jorge Adolfo Silva 한국원예학회, HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY 51(3), 2010.6, 207-211 (5 pages) | | | 이용하기 QuickView 상세보기 | | | ■ Eradication of Banana Bunchy Top Virus (BBTV) Through Meristem Culture of Infected Plant Banana cv. Sabri [SCIE, KCI등재] Md. Humayun Kabir Shiragi, Md. Abdullahil Baque, Khandokar Md. Nasiruddin | | | 한국원예학회, HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY 51(3), 2010.6, 212-221 (10 pages) | 🔲 🖹 A Simple and Reproducible Regeneration Protocol for Zoysia japonica Based on Callus ▶ Cultures [SCIE, KCI등재] In-Ja Song 🧈, Markkandan Ganesan, Eun Jeong Kang, Hyeon-Jin Sun 🏖, Tae-Woong Bae 🕹, Pyung-Ok Lim 🕹, Pill- Soon Song , Hyo-Yeon Lee 한국원예학회, HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY 51(3), 2010.6, 222-225 (4 pages) 이용하기 상세보기 QuickView ### Research Reports : Others 이용하기 Amino Acid Composition of Major Table and Wine Grape Cultivars Growing under 상세보기 ♪ Semiarid Climate in India [SCIE, KCI등재] Satisha Jogaiah 🦭, Dasharat P. Oulkar, Kaushik Banerjee, Poornima Raveendran, Narendra D. Rokade 한국원예학회, HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY 51(3), 2010.6, 226-234 (9 pages) 이용하기 QuickView 상세보기 « 4 **1** 2 » » 회사소개 DBpia소개 이용약관 개인정보취급방침 제휴문의 저자회원안내 Q&A 사이트맵 상호: ㈜누리미디어 대표이사: 최순일 사업자등록번호: 116-81-67057 통신판매업신고번호: 제2011-서울영등포-0376호 대표전화: 02-707-0496 팩스: 02-717-4305 전자우편: dbpia@nurimedia.co.kr 주소: (150-096) 서울특별시 영등포구 선유로 63, 4층 (문래동 6가) Copyright(C)1997-2016 NURIMEDIA. ALL RIGHTS RESERVED. # Comparative Mapping of Consensus SSR Markers in an Intraspecific F_8 Recombinant Inbred Line Population in *Capsicum* Hai Thi Hong Truong 1,2 , Ki-Taek Kim 1* , Su Kim 1 , Young Chae 1 , Jeong-Hyun Park 1 , Dae-Geun Oh 1 , and Myoung-Cheol Cho 1 ¹Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon 441-440, Korea ²Horticulture Science Department, Agronomy Faculty, Hue University of Agriculture and Forestry, 102 Phung Hung, Hue, Vietnam **Abstract.** A saturated intraspecific genetic map is critical for studying QTLs associated with *Phytophthora* root rot resistance in pepper. The map was constructed using a population of 126 F₈ recombinant inbred lines derived from a cross between YCM334 (resistant to *Phytophthora* root rot) and the susceptible local variety, Tean. To identify a set of consensus markers for mapping, 67 anchor SSR markers were selected from the reference map Pepper-FAO3 and 130 from SNU3. Polymorphic rates were low: 43 out of 197 were polymorphic. In addition, 1,667 EST-SSR primers were used. Given 11% of polymorphism rate was enough to frame, but not to saturate the map. To saturate the map, 66 AFLP primer combinations were also used. Among the 454 markers used, 281 AFLPs, 101 EST-SSRs, 37 consensus SSRs and 1 CAPS marker were mapped and distributed in 19 linkage groups (LGs). Based on distribution of the consensus markers, 14 linkage groups were assigned into 12 chromosomes of pepper. The map covered 2177.5 cM with an average of 5.2 cM. Distribution and order of consensus markers in the present linkage map were consistent with the previously developed maps. The map will become a useful tool for analyzing QTLs of the mapping population. Additional key words: Capsicum annuum, genetic mapping, linkage analysis, recombinant inbred line, RIL # Introduction Pepper is a member of the family *Solanaceae*, which is one of the largest families in the plant kingdom and includes more than 3,000 species (Knapp, 2002). The Solanaceae family includes important crops, such as pepper, tomato, tobacco, potato, and eggplant and has been highly cultivated over the years for human nutrition and health. Capsicum species are valued and consumed worldwide because of their unique color, pungency, and aroma. Capsicum peppers include C. annuum, C. chinense, C. baccatum, C. frutescens, and C. pubescens are cultivated in different parts of the world. Of these, the varieties of the chili pepper plant species C. annuum are the most heavily consumed due to their nutritional value and spicy taste (Govindarajan and Sathyanarayana, 1991), while the other four spices are used to produce spice or used as genetic resources for disease resistance genes (Caranta et al., 2002; Pickersgill, 1997). The development of a detailed genetic map, on which markers associated with desirable traits are identified, is a valuable tool to improve breeding efficiency. Genetic maps have been developed in almost all the agricultural crops (O'Brien, 1993). In order to maximize the polymorphism for map construction, interspecific mapping populations have previously been constructed in pepper (Kang et al., 2001; Lee et al., 2004; Lee et al., 2009; Paran et al., 2004; Wu et al., 2009; Yi et al., 2006). However, maps based on interspecific populations may not represent the true recombination distances of the cultivated species (Causse et al., 1994; Lefebvre et al., 1995). Also, reduced recombination or chromosomal rearrangements between species within an interspecific cross may lead to segregation distortion (Tadmor et al., 1987). Molecular maps developed from crosses between cultivars are the most useful for breeding applications as they identify polymorphic markers within the cultivated gene pool and are therefore more likely to be present in crosses involving other cultivated genotypes (Menéndez et al., 1997). Crossing within the cultivated species may also negate the problem of linkage drag often encountered in crosses derived from wild species (Saliba-Colombani et al., 2000). Genetic maps based on intraspecific crosses have also been recommended for the mapping of quantitative trait loci due to less segregation distortion (Havey and Muehlbauer, 1989). Till date, several linkage maps of pepper based on intraspecific mapping populations have been reported. However, those maps have traditionally been performed using F₂ populations (Barchi et al., 2007; Kim et al., 2008; Minamiyama et al., 2006; Ogundiwin et al., 2005; Sugita et al., 2005). In those crossprogeny types, linkage disequilibrium (caused by physical linkage between loci) is used to detect (Tanksley, 1993). Additionally, it is not fully used for practical purposes by breeders or geneticist. In species where inbreeding is possible, mapping populations can be derived by self-pollinating F₂ progeny to yield lines that are essentially homozygous at all loci (i.e., recombinant inbred line or RIL). RIL has many advantages over the other population that are used for genetic mapping and quantitative trait locus (QTL) analysis. RIL can serve as a permanent mapping resource that will permit replicated trials in multiple environments or evaluating with different strains of the pathogen. Using RIL is especially powerful for analyzing quantitative traits because replicated
trials can be analyzed using identical genetic materials (Burr and Burr, 1991). Although codominant markers are preferred over dominant markers for genetic mapping using F₂ plants, dominant and codominant marker systems provide equivalent information in RIL analysis (Reiter et al., 1992; Staub et al., 1996). Comparative mapping using consensus markers can be used to combine genetic information from related species. One of the prerequisites for comparative mapping is a genetic linkage map for each species. Another requirement for comparative mapping is a set of markers that can be used to evaluate homoeology and conservation of linkage groups. Comparative mappings using RFLP and SSR markers as anchor markers has been conducted in interspecific cross (Kang et al., 2001; Lee et al., 2004; Lee et al., 2009; Rao et al., 2003). However, no comparative mappings between intraspecific and interspecific crosses have been conducted so far. The main objectives of this study were to (i) identify and characterize a set of SSR markers that would be useful for comparative mapping among Capsicum spp., (ii) develop an intraspecific genetic map of the pepper genome using recombinant inbred line population derived from a cross between a C. annuum line YCM334 and a local variety 'Tean', and (iii) complete delineation of the linkage groups to compare with pepper chromosomes that the map can be used to elucidate the loci governing desirable traits that segregate in the population and gene discovery. ### Materials and methods ### Plant materials and DNA extraction A cross of *C. annuum* line YCM334 (resistance to *Phytophthora capsici*), an F₆ line derived from a cross between Yolo Wonder and CM334 in 1992 at AVRDC-The World Vegetable Center, Taiwan, and local variety 'Tean' (highly susceptible to *Phytophthora capsici*) was made in 2000 at National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Korea. A mapping population of 200 F₈ recombinant inbred lines (RILs) obtained by single seed descent method was advanced in 2008. A collection of 126 from the 200 RILs and the 2 parents was selected as a mapping population. Genomic DNA of the 126 individuals and parents was extracted from young leaves of greenhouse-grown plants following the protocol described by Raz and Ecker (1997). # **AFLP** analysis The AFLP assay was performed as described by Vos et al. (1995) with minor modifications. Genomic DNA (250 ng) was digested with 8 U of EcoRI and 6 U of MseI (New England Biolabs, UK) and incubated at 37°C for 4 hours. Digestion solution was ligated to the two adaptors for EcoRI and MseI cutting sites and then preamplified with EcoRI (E) and MseI (M) primers with single nucleotides (E +A or C or G, M + T or C). Selective amplification was done using various combinations of E primers with 2, 3 and 4 selective nucleotides and M primers with 3 selective nucleotides (Table 1). The amplification products were analyzed in parallel in a 5% denaturing polyacrylamide gel (19:1 acrylamide-bisacrylamide, 7.5 M urea) in 0.5 X TBE buffer (25 mM Tris, 25 M boric acid, 0.5 mM EDTA, pH 8.0) using a S3S T-RexTM Aluminum Backed Sequencer and visualized by silver staining. Silver staining and developing was done according to Promega's DNA Silver Staining System. # SSR and CAPS analysis PCR was performed in a 15- μ l volume containing 10-25 ng of genomic DNA as templates, miscosatellite primers, 0.8 U of *Taq* DNA polymerase (Genet Bio, Korea) and 10 X buffer solution. All amplifications were performed on an Eppendorf Mastercycler Gradient. After 5 min at 95 °C, 35 cycles were performed for 1 min at 94 °C, 1 min at 55 °C, 1 min at 72 °C and a final extension step for 5 min at 72 °C. All primers were from previously published literature or database and were synthesized from Bioneer, Korea. PCR products amplified by SSR primer were analyzed on 6% denaturing sequencing gel using a S3S T-RexTM Aluminum Backed Sequencer and visualized by silver staining according to Promega's DNA Silver Staining System. Amplicon product amplified by CAPS primers were resolved on 2% agarose gel in 0.5 X TBE buffer and stained with ethidium bromide. # Screening of polymorphism, marker scoring, and nomenclature For each marker type, polymorphisms were surveyed using parental lines and 6 RILs which were selected randomly among 126 RILs. Polymorphic markers were visually scored. AFLPs were scored as dominant markers and SSRs and CAPS were scored as codominant markers. Band presence or absence associated with the YCM334 allele was coded as 1; band presence or absence associated with the 'Tean' allele was coded as 2, and those bands with both parents were Table 1. List of selected AFLP primer combinations used for genotyping. | Code of primer combination | Primer combination | Code of primer combination | Primer combination | |----------------------------|---------------------|----------------------------|---------------------| | 2 | EcoRI+AAC/MseI+TGC | 83 | EcoRI+AGG/MseI+CAC | | 4 | EcoRI+ACT/MseI+TGC | 86 | EcoRI+AGC/MseI+CAC | | 5 | EcoRI+ACG/MseI+TGC | 94 | EcoRI+GTGA/MseI+CAC | | 7 | EcoRI+AGG/MseI+TGC | 96 | EcoRI+AAG/MseI+CTA | | 10 | EcoRI+AGC/MseI+TGC | 97 | EcoRI+AAC/MseI+CTA | | 11 | EcoRI+AG/MseI+TGC | 99 | EcoRI+ACT/MseI+CTA | | 15 | EcoRI+GT/MseI+TGC | 100 | EcoRI+ACG/MseI+CTA | | 16 | EcoRI+GG/MseI+TGC | 101 | EcoRI+ACC/MseI+CTA | | 17 | EcoRI+GGAT/MseI+TGC | 102 | EcoRI+AGG/MseI+CTA | | 18 | EcoRI+GTGA/MseI+TGC | 105 | EcoRI+AGC/MseI+CTA | | 29 | EcoRI+AGC/MseI+CAA | 111 | EcoRI+GG/MseI+CTA | | 31 | EcoRI+AC/MseI+CAA | 112 | EcoRI+GGAT/MseI+CTA | | 35 | EcoRI+GG/MseI+CAA | 113 | EcoRI+GTGA/MseI+CTA | | 36 | EcoRI+GGAT/MseI+CAA | 114 | EcoRI+CAG/MseI+CTA | | 37 | EcoRI+GTGA/MseI+CAA | 119 | EcoRI+ACG/MseI+CTT | | 38 | EcoRI+CAG/MseI+CAA | 124 | EcoRI+AGC/MseI+CTT | | 42 | EcoRI+ACT/MseI+CAT | 130 | EcoRI+GG/MseI+CTT | | 43 | EcoRI+ACG/MseI+CAT | 131 | EcoRI+GGAT/MseI+CTT | | 48 | EcoRI+AGC/MseI+CAT | 132 | EcoRI+GTGA/MseI+CTT | | 53 | EcoRI+GT/MseI+CAT | 133 | EcoRI+CAG/MseI+CTT | | 54 | EcoRI+GG/MseI+CAT | 134 | EcoRI+AAG/MseI+CTG | | 55 | EcoRI+GGAT/MseI+CAT | 137 | EcoRI+ACT/MseI+CTG | | 56 | EcoRI+GTGA/MseI+CAT | 149 | EcoRI+GG/MseI+CTG | | 57 | EcoRI+CAG/MseI+CAT | 150 | EcoRI+GGAT/MseI+CTG | | 59 | EcoRI+AAC/MseI+CAG | 151 | EcoRI+GTGA/MseI+CTG | | 63 | EcoRI+ACC/MseI+CAG | 152 | EcoRI+CAG/MseI+CTG | | 65 | EcoRI+AGC/MseI+CAG | 154 | EcoRI+AAC/MseI+CTC | | 68 | EcoRI+AG/MseI+CAG | 157 | EcoRI+ACG/MseI+CTC | | 71 | EcoRI+AA/MseI+CAG | 158 | EcoRI+ACC/MseI+CTC | | 72 | EcoRI+GT/MseI+CAG | 159 | EcoRI+AGG/MseI+CTC | | 73 | EcoRI+GG/MseI+CAG | 169 | EcoRI+GGAT/MseI+CTC | | 78 | EcoRI+AAC/MseI+CAC | 170 | EcoRI+GTGA/MseI+CTC | | 82 | EcoRI+ACC/MseI+CAC | 171 | EcoRI+CAG/MseI+CTC | coded as 3 for heterozygote. Ambiguous bands were considered as missing data for map construction purposes. Each AFLP markers was assigned a name consisting of 1 letter as "a" and following was primer combination code and number of polymorphic bands generated by its primer combination. SSR markers originated from Korea Research Institute of Bioscience and Biotechnology (KRIBB) were named consisting of 2 letters as "ca" or "cs" and serial numbers followed by the letters. SSR markers selected from Sol Genomics Network (SGN) (Mueller et al., 2005), which was so-called Pepper-FAO3 map, and the map with expressed sequence tags (EST) (Yi et al., 2006), which was so-called SNU3 map, were named as their origin names. # Map construction and comparison of linkage groups Linkage analysis was performed with MAPMAKER/EXP 3.0 (Lander et al., 1987). The "tripple error detection" feature was used to recognize the circumstance when an event was more probably the result of error than recombination. This feature avoids map expansion (Cervera et al., 2001). Linkage groups were established at a LOD score of 7.0 and a recombination fraction of 0.30 by two-point analysis using the "group" command. The best marker order of the linkage group having eight or fewer markers was identified using the "compare" command, whereas the order of the groups with more than eight markers was identified using the "order" and | Marker type | No. of primers/primer pairs screened | No. of polymorphic primers/primer pairs | No. of polymorphic primers/primer pairs used | No. of polymorphic markers | No. of mapped markers | |---------------------|--------------------------------------|---|--|----------------------------|-----------------------| | AFLP | 171 | 130 | 66 | 302 | 281 | | EST-SSR | 1667 | 183 | 109 | 111 | 104 | | SSR-SNU3 map | 135 | 18 | 15 | 15 | 12 | | SSR-Pepper-FAO3 map | 67 | 25 | 25 | 25 | 22 | | CAPS | 4 | 1 | 1 | 1 | 1 | | Total | 2044 | 357 | 216 | 454 | 420 | Table 2. Molecular markers used for construction of the genetic linkage map. "try" commands. The marker order of each linkage group was verified using the "ripple" command. The Kosambi mapping function (Kosambi, 1944) was used to convert the recombination fractions into additive genetic distance (centiMorgans or cM). Linkage groups were drawn with the MAPCHART 2.2 program (Voorrips, 2002). The map can be compared if consensus markers exist. The term "consensus markers" stands for the markers, placed on the map, published by SGN (Mueller et al., 2005) and the map with expressed sequence tags (EST) (Yi et al., 2006). The marker order can be changed using option "fixed orders". However, if the order is significantly inconsistent, the marker introduction into specific group doesn't proceed. #### Results A mapping population of $126 F_8$ recombinant inbred lines (RILs) was derived from the *C. annuum* line YCM334 (resistance to *Phytophthora capsici*), an F_6 line derived from a cross between Yolo Wonder, and CM334 and local variety 'Tean' (highly susceptible to *Phytophthora capsici*). A genetic map was constructed for this
population, with AFLP, SSR, EST-SSR and CAPS markers. ### Polymorphic markers for mapping In total, 171 AFLP primer pairs were tested on parents (YCM334 and Tean), and 6 RILs (YT4, YT11, YT40, YT64, YT66, YT91). Of these, 130 primer combinations (76%) showed polymorphism; however, 66 combinations were selected to genotype the RIL population (Table 1). These produced 346 scorable and segregating markers. Fourty-four of these were nearly monomorphic in the F₈ RIL population and were excluded from further analysis. Thus, calculations of the presented frame work maps of C. annuum started with 302 AFLP markers. On average, 4.6 segregating markers were produced per primer pair, with a range of 1-15. A total of 1,667 SSR primers derived from EST were selected from a database of KRIBB and screened on the two parents. Of these, 183 primers showed polymorphism. These polymorphic primers were confirmed by screening with six RILs and the parents and 109 were selected to genotype the whole RIL population. Of the 135 SSR primers selected from SNU3 map (Yi et al., 2006) and 67 from the Pepper-FAO3 map (Mueller et al., 2005), 18 and 25 primers, respectively, showed polymorphism between YCM334 and 'Tean'. Of the 18 polymorphic primers from SNU3 map, 15 were used to genotype. Thus, 149 SSR primers were used (Table 2), which collectively produced 151 clear and reproducible markers for mapping. Sequences of the SSR primers are listed in Table 3. Due to published anchor SSR markers were not available for chromosome 9 in the Pepper-FAO3 map, 5 RFLP markers were selected and converted into PCR-based markers using high-resolution melting (HRM) analysis, but none were polymorphic and similar with SCAR markers (data not shown). Out of the four CAPS markers screened, only one marker showed polymorphism. The size of the markers varied from approximately 50 bp to 1000 bp. ### Construction of the linkage map A total of 454 markers (302 AFLPs, 151 SSRs and 1 CAPS) were used for linkage map construction (Table 2). Of these, 420 markers which included 281 AFLPs, 138 SSRs and 1 CAPS were mapped and split into 19 linkage groups (LGs) using LOD scores of 7.0 and maximum recombination value of 0.30. The analysis revealed 19 linkage groups varying in length from 11.1 cM to 202.8 cM (Fig. 1). The number of loci per linkage group ranged from 4 to 48 (Table 4). The map spanned a total length of 2177.5 cM with an average marker density of 5.2 cM between adjacent markers. AFLP and SSR markers were well distributed throughout all linkage groups of the genome. However, SSR markers were not mapped on LGa and LGc. AFLP markers were only clustered in two regions of LG9 and the clusters were 0.4 cM apart. Seven of the linkage groups (LG2, LG4, LG5, LG6, LG8, LG8a, and LG11) contained gaps between adjacent markers of more than 20 cM, the maximum distance being 31.3 cM. LG9 was the densest with 48 markers and an average marker density of 4.0 cM. The sparsest linkage group (LGa) comprised 14 markers, with an average density of 8.5 cM. Segregation of the markers was observed in analyzed mapping population. Chi-square analysis (P<0.05) revealed 68 markers (43 AFLPs and 25 SSRs), which did not segregate according to expected Mendelian ratio of 1:1. Large number Table 3. List of SSR markers mapped in the genetic linkage map of pepper. | Marker | Chromosome/
Linkage group | Forward primer | Reverse primer | Position | Reference | |----------|------------------------------|--------------------------|-------------------------|----------|----------------------| | ca07096 | 1 | TCACAAAGATGGAGAAGGGAA | TCCAAAGGAGCACATTCACA | 0.0 | | | ca15581 | 1 | TCTAATAAAGCTAGTTCTTCAGCG | TTGACAAATTCTTCCGAGGG | 18.0 | | | ca14771 | 1 | CGAGCTAGGTACGTGCTTTGA | CACACTCAACGCTTTCCTCA | 19.7 | | | ca15910a | 1 | CACACTGTTTCTTGCCTT | TTCTTCGTCTTGGTCATCCC | 43.7 | | | cs170141 | 1 | GGTCCTTTCATGCTGGGTAA | AGAACTTTCCTGCCCATCCT | 44.5 | | | cs20006 | 1 | TCCAGATTTTGCACTCGCTA | TGCTTCCACAACAAAATCCA | 50.1 | | | ca11565 | 1 | AACAAAACGCGCTAAAATGG | ACAAGTCATGGGAGAATGGC | 55.7 | | | cs13023 | 1 | AAAGAGGGGAGTTATGGCGT | GGTCAGAAGCAAAAGGGTCA | 63.6 | | | AF39662 | 1 | CCCCCTCGTCTCTCTTTATTT | TTGCAAATCTTTTGTCAATTTTT | 67.9 | Mueller et al., 2005 | | HpmsE004 | 1 | TGGGAAGAGAAATTGTGAAAGCA | CAATGCCAACAATGGCATCCTA | 69.6 | Yi et al., 2006 | | ca18386 | 1 | GCTCCTCATTAGTAGCCCCC | TGGACTTGGACAACCAATCA | 69.6 | | | ca12144 | 1 | ATTTTGATGCGTTGCTTTCC | CCACAAAAAGGGTGTTTGCT | 72.6 | | | CP10061 | 1 | ATCCCAAAAGGCAAAATC | CCCTTCCACATTCAGTCA | 78.2 | Mueller et al., 2005 | | ca12352 | 1 | TTGTTCGGGAGTTCTCTTGG | ACAGCGAAAGTTGCTTCGAT | 92.4 | | | ca14164 | 2 | GACACGAAAAGCCGAAAGAG | TTTGGCTCGAGCTTTCACTT | 0.4 | | | cs26050 | 2 | ACCCTTCACTTGTGCCAATC | GTAAATTTCCTGCATGGCGT | 7.9 | | | ca17182 | 2 | CTCCGTTTCCGCCTTAAAAT | GGGAAAGATGGGCCATAAAT | 35.6 | | | ca14289 | 2 | GTCTTCTTCCATCGCTTTGC | TTCGAGGAAGTTTTCGCTGT | 38.0 | | | ca00220 | 2 | TCCAAAGGCAATTTCTGGAC | CTTTGGCAGTGTATCAGCGA | 39.2 | | | ca02455 | 2 | CAAGGCTCACACAGCATTCA | TAAATCTCCCATGGCTCCTG | 40.9 | | | ca13319 | 2 | ттесестесетететете | ACCCAGAACCCACAAAACAA | 48.7 | | | ca12098a | 2 | TATGGCCTCATCTTCTCCCA | TTTGCAATTAAATCCTCGGC | 68.4 | | | CA515055 | 2 | TAATCGAGCGGTAGATTCGG | TAAGTGGAGGTGCCCTTCTG | 77.8 | Mueller et al., 2005 | | cs24043 | 2 | ACCACTTTGGAGGAGGGAGT | CATCTGCTGTTGCTGCATTT | 90.3 | | | GP20031 | 2 | TGATCAGCGGACAAATCT | GGTGACACTGACCCCATA | 92.2 | Mueller et al., 2005 | | ca04782 | 2 | ATCCCACAACAGTAGCCCAC | CCAGGGGTCTATCGAAAACA | 106.9 | | | ca12891 | 2 | ATTTCAAACCACCCGTTGAG | AAATCCGGAGAGGAAGGCTA | 110.4 | | | cs24012 | 3 | GAAGCACAACCTTCAGCCAT | GATAATTACCCGCCTGCTGA | 49.7 | | | ca03461 | 3 | CAAACGACCCTTCAGGGATA | CAAGAAAGTGTGCCCCAAAT | 68.8 | | | cs26051 | 3 | TTTGCAATGTCTTTGTTGCC | AGAATGCAACTCTTCAACTTTTT | 87.8 | | | HpmsE005 | 3 | TGCCTCAGTTTCCCAACCCT | ACCAACACCGTAACGCACCC | 89.1 | Yi et al., 2006 | | HpmsE053 | 3 | TTCAAAGAATCCAGAGACTTCACA | TTCATGCAATTCCAAAGTCTCCA | 99.4 | Yi et al., 2006 | | ca07820 | 3 | ACTGGCTGCAACTCACTCCT | TTTGACAAATAATGGTGCATGA | 99.4 | | | cs09103 | 3 | CTATTTGCTGCAGCCCTAGC | CCAGCTGAAGTAGTCCTCGG | 100.2 | | | cs07014 | 3 | TCTTGGTGGCACAAGTGAAG | TCAGCTTACGTTCACCTCCC | 123.4 | | | BM61910 | 3 | ATTGTGATAGCAACCCCTGG | CACAGATGAGGGCACAAATG | 127.4 | Mueller et al., 2005 | | ca07740 | 3 | TCAGCATACGTGAAAGTCGG | CTCTCGTCCTCATCCTCGTC | 128.2 | | | cs09087 | 3 | ACGCCAAGAAAATCATCTCC | AGAGATGGAGACCTGAGCCA | 140.1 | | | ca07449 | 3 | TATGCCTACAGCGACAACCA | CCCTCAAGAATTCCCTCCAT | 148.8 | | | ca11002 | 3 | CTTGTTCCTTTTGTTTCGGG | AAGTCCCACACATAGCACACC | 152.3 | | | ca14976 | 3 | ATCTTCCACCCAATCACTCG | ACTGGGCTTGATGCTCTTGT | 158.6 | | | ca00377 | 3 | CAAAGTGCATCGACTTTCCA | GCTCTGTCATCTCCTGCTCC | 166.6 | | | ca18075 | 3 | GCCTTCTTTTTCATCTTTCCC | CTGGCAACCCAAGTCTTAGC | 166.6 | | | ca18179 | 3 | GTGTTTTGCTCCAATTCCGT | CCAGAGAAAACCCACAAAGC | 168.8 | | | ca13889 | 3 | AATGCAAAGTGGATCTTCGG | CATCCATTTACCAAAAACCAAAA | 170.1 | | | BM62655 | 3 | AGGAACGCAGTCTTGCTAG | GATGCTAGGTCTGGATTCCTG | 171.4 | Mueller et al., 2005 | | HpmsE010 | 3 | CTGTTTGCCAATCACCATCAGG | GCTATTTTCCGGCGTGTGAGAG | 171.4 | Yi et al., 2006 | Table 3. Continued. | Marker | Chromosome/
Linkage group | Forward primer | Reverse primer | Position | Reference | |----------|------------------------------|----------------------------------|------------------------------|----------|---| | HpmsE016 | 3 | CCAAGTTCAGGCCCAGGAGTAA | TGCAGAGAAGACTCACCAGTCC | 172.2 | Yi et al., 2006 | | ca11558 | 3 | CCTAACTAAGAGTGCGGGGG | CGACAGCCATACTCACGCTA | 173.4 | | | ca06544 | 3a | GATATTATGGTCGTGGCGCT | TGACGTATCCGTCCAAAACA | 0.0 | | | cs15031 | 3a | CACCTTTCAAAAGGGCATGT | TCAAATAGGCGGATTCTTCG | 19.2 | | | ca00040 | 3a | GGGTGGTTGTGCTTGAAGAT | CGGTTCCACAATAATGGTAAA | 26.3 | | | ca15286 | 3a | AGCAAGAGGATTGGGATGTG | TCAAAGAACCCAAAGGTGAAA | 63.4 | | | ca14551 | 3a | CCTTCTGATTCCACCACTGC | AACAGCAACACCACCATTGA | 77.5 | | | ca17713 | 3a | TGGTTGGTCAAACAACAGG | CATGAGGAATCGCTGATTGA | 81.5 | | | ca17316 | 3a | GACTCACACACAACAAGAAATCA | GGGAATATACACTGGGCACG | 82.5 | | | cs23047 | 3a | AGGAGGCAAATTTTGGGACT | CCGCTTCCTCCTCTTCTCTT | 84.0 | | | ca05048 | 3a | AGGAGGCGAACCAAAATACA | GCGTGCAGTGATTTCTTCAA | 86.6 | | | BM59622 | 3a | CGTCTTTCACTTGTCTTTTGTTC | AGTGGGTTCACTGACTTGGG | 93.3 | Mueller et al., 2005 | | ca13527 | 4 | CCCAAACCTCACTTTCTTGC | CATGTGACAAACAGTAGCAGCA | 15.0 | | | CAN13082 | 4 | GCTAATTACTTGCTCCGTTTTG | AATGGGGGAGTTTGTTTTGG | 25.6 | Mueller et al., 2005 | | cs21036 | 4 | TCCATCTCCCTCTTTCCT | GGGCCTTGATTAGCTTCCTC | 48.0 | | | asu2 | 4 | GGGTCTATCGGAAACAACCTTTCTAC | CTCTATGAATGGTGGGCCAGTAGTACCC | 71.4 | Mueller et al., 2005 | | ca04602 | 4 | GCTTGTGGCCAAGGTTAAAA | AATTTTCCGAGTTTGGCCT | 89.8 | | | ca00635 | 4 | TCATTTGTTGGCAGCTGTTT | CACCCCTTTAGATTCTCCTCC | 212.7 | | | cs13070 | 4 | GTTTAACAGAGGCGACGGAG | GAGCGAAATCAGAGAAACCG | 214.0 | | | CB164897 | 5 | GGGACGTATTTTCGAAGAGG | CTTCGCCTTGTTGACTAGGG | 0.0 | Mueller et al., 2005 | | HpmsE015 | 5 | TTGTGAGGGTTTGACACTGGGA | CCGAGCTCGATGAGGATGAACT | 69.2 | Yi et al., 2006 | | ca07831 | 5 | GTGTGGGATGTGCTTGATTG | TTTTAGACAAGCCCCCAAAA | 132.2 | , | | cs10113 | 5 | AATTTGCAATACCAGCTCCG | AGGCTCGAGAGACTTACCGA | 133.0 | | | ca16279 | 5 | TCTCGATTTTGCGATCTTCA | TTCGTCCTTCCTGTTTCCAC | 138.0 | | | CA524065 | 5 | TCTCTCTACATCTCTCCGTTG | TGTCGTTCGTCGACGTACTC | 185.1 | Mueller et al., 2005 | | ca02059 | 5 | CATTGGATCTTTTGGGTTGG | ACTGCTAATGGACATACACA | 215.9 | • | | ca00807 | 6 | CGTCATCCATTTTTCTCAACAA | TGCTCAAATCCACTGTCTGC | 0.0 | | | ca12797b | 6 | GGGAGATATGGTGGTGATGG | TACCCTCTTCAACGATTGCC | 8.6 | | | ca05311 | 6 | GGAATTCTGCAGGGAAATGA | CCTACGGCCCACAATAAGAA | 25.3 | | | ca16272 | 6 | CGAACGAATCCTTATCCACG | CGCGCTTGATGAATCTTGTA | 60.0 | | | cs10008 | 6 | GAATGAGTCTTCTGGTGCTGG | AGCAAGCAGGGTATGATCCA | 76.8 | | | CA523558 | 6 | AATCCTCCAAATCCACCCTC | ATTCGATTGCTTGCTCCTTG | 86.4 | Mueller et al., 2005 | | CA516044 | 6 | ATCTTCTTCTCATTTCTCCCTTC | TGCTCAGCATTAACGACGTC | 97.6 | Mueller et
al., 2005 | | ca01483 | 6 | TGCACAGGACTTTTCTTCCC | CGTTAAAGCACCATTTCCGT | 97.6 | , | | cs15052 | 6 | TTTTTGGAGCAGGATGTTCA | ATTTTGCGATCCAAACTTGC | 103.2 | | | ca12368 | 6 | ATATAAAAGGGCCCCACAGG | ATCCCATCCATGTGTGTG | 107.7 | | | GP1102 | 7 | GAACCCTTCATTCCTGTATGT | TTTGCCCGCATTATGTAAATC | 4.5 | Mueller et al., 2005 | | ca15531 | 7 | GCTGGACCAAAATGGAAGAA | CAACCCATCATTTCTCTGTGG | 19.1 | | | ca15597 | 7 | TCATATGGGCATTTTCAATGTT | TCGAGATCTGTTTGGTGCTG | 28.2 | | | ca12098b | 7 | TATGGCCTCATCTTCTCCCA | TTTGCAATTAAATCCTCGGC | 85.5 | | | ca01678 | 7 | ATTCCACTCAATTCAAAACT | ACTCTTCGCCGCTATTTTCA | 93.2 | | | ca13839 | 7 | GGAGATTTATCTTCGAACTTTCTTC | AAACTTGCGTTGTCCGATTC | 110.1 | | | ca17522 | 7 | TGTGCAGATGGAATTACCCA | TGCTATTCCGGCTTGAAATC | 117.4 | | | ca13629 | 7 | AGGGTTTTGATTTTGCATCG | ATCGGAGTGCGTTCCATTAG | 122.4 | | | cs24046 | 7 | AGGTGGGTACGCACGATAAG | CTCGCTTCCTGATGAAGACC | 123.6 | | | ca04384 | 8 | GACTITACTITCACCTCCCTTG | TTGATTGCCCTTTTCTCACC | 7.7 | | | JUU 1007 | 5 | 3, 137 17 10 11 10, 100 1000 110 | 3, 11 1000011710107100 | | | Table 3. Continued. | Marker | Chromosome/
Linkage group | Forward primer | Reverse primer | Position | Reference | |----------|------------------------------|----------------------------|-------------------------|----------|----------------------| | ca12261 | 8 | AGGGAGAAGCCAACACACA | TCTTCCTCTTTTTGGAGGCA | 134.5 | | | cs170520 | 8a | CTCCAGATTGTAACGCACT | CGCTCATTCTCAATGATCCTG | 0.0 | | | CP10020 | 8a | GGGAAGGCCATTAGATGT | TATCGGCTACTGGGAATG | 1.7 | Mueller et al., 2005 | | ca04813 | 8a | AACACCCTTACACCCGAACC | GGAAAACGATCACGGAGAAA | 38.7 | | | ca10396 | 9 | CACTTTGCCCTTTCCACATT | CAACCCAAGAAAACCCATTG | 12.9 | | | HpmsE082 | 9 | TTTTTCCCACTTTGCCCTTTCC | CAACCCAAGAAAACCCATTGGA | 13.3 | Yi et al., 2006 | | ca16205 | 9 | GCCCCAAAACAAACACTTC | ATGGGTTATGGGGTTGTTGA | 21.0 | | | HpmsE007 | 9 | CCCCATTTCCCCTTCCCATA | GAGGGGTCATGTTGAAGGCAA | 22.2 | Yi et al., 2006 | | ca02136 | 9 | ATGTAGGAGCCTTGGTGGTG | GAGGTAGCGCTATGGACTGC | 140.4 | | | HpmsE025 | 9 | TGAGCATCCCGTTATCTCAAATCA | CCCAATTCTTCAGGCAATCTCC | 152.7 | Yi et al., 2006 | | cs17037 | 10 | AGACTTGAACCCGTGACCAG | TTGTTGTTTGAAAGGGAGCC | 0.0 | | | ca12800 | 10 | CACAAAACGAAAACCTAGTG | ACATGATGATCCAGATGCCA | 19.1 | | | GP20068 | 10 | TTCCCTGTGAAAACACTG | TGTTCAACTGCTCTGAGAC | 40.1 | Mueller et al., 2005 | | ca12797a | 10 | GGGAGATATGGTGGTGATGG | TACCCTCTTCAACGATTGCC | 50.0 | | | ca03308 | 10 | ATCGATGGAGAATGGAGTGC | GCCTCTGTATAACAATTCAACGG | 80.4 | | | ca11895 | 10 | TCTGCACATATCGGAGCAAG | CCCGGTATTTTTACTATGTTTGC | 117.7 | | | ca16293 | 10 | CGATGAAATCCCACAAGTGA | GTGCCATCTGAATCGACCTT | 162.6 | | | CA516439 | 10 | GACAGTCTTTCAAGAACTAGAGAGAG | TGGAGCAAACACAGCAGAAC | 164.3 | Mueller et al., 2005 | | ca15660 | 10 | TTCAAGAACTAGAGAGAGAAAACT | TGGAGCAAACACAGCAGAAC | 164.3 | | | cs19002 | 10 | AAAAAGAAACCTCCCTTCACG | TCTCCCTCCTCCTGTTT | 164.7 | | | HpmsE031 | 10 | CCCTAAATCAACCCCAAATTCAA | CCCCATTACCTGACTGCAAAA | 187.2 | Yi et al., 2006 | | ca07185 | 11 | TCTCCTGTTTTCCGATGCTT | CGCAAAATGATTTAGGTGTGG | 51.1 | | | CA525390 | 11 | GGAAACTAAACACACTTTCTCTCTC | ACTGGACGCCAGTTTGATTC | 95.1 | Mueller et al., 2005 | | cs23011 | 11 | CTATGGCCTCCAACCAGAAA | TGAAACCCACTCCCATCATT | 95.1 | | | GP20087 | 11 | CCCTCTCCTCAATTCACA | CCTTTACCCCTAAATTTGAT | 130.2 | Mueller et al., 2005 | | HpmsE023 | 11 | TTTAACACCTCTCTAACCGTCACC | GCGATTTCAGCCCATCAACAAT | 162.5 | Yi et al., 2006 | | ca03079 | 11 | AAAAACCAGGAGCAGATGGA | ACAATGGGACATCCCACATA | 179.0 | | | ca11483a | 12 | TGGGGAACAGAGGAAGA | TCCACTTGCATGAACTTGCT | 3.0 | | | ca11483a | 12 | AGGCTTGATGAACTGTTGCC | GCATCGTAGCGCCTTTCTAC | 3.0 | | | cs21031 | 12 | AATGATGGCAACAACAGCAA | TATTGCAGCATTTGGACTGC | 23.0 | | | GP1127 | 12 | CACCACCAGTCACAAAGTTAC | CCCTTCAAATACATCCCATGC | 40.3 | Mueller et al., 2005 | | cs10102 | 12 | TCACTGCAACCAACAATTTCA | ACCCCTTTGTGTCTGCTTTG | 79.0 | | | GP1017 | 12 | TTTTGATCCCTCGATAAGTCTTT | TCACACCAGACTCAGCCAATTTA | 135.5 | Mueller et al., 2005 | | ca08223 | 12 | ATGGAGATCGCAACCTCATC | GCGGCAAGAAGATGAAAGTC | 163.1 | | | cs16031 | 12 | ATCTTTCATCCCTTTGTGGC | TTCGCCTCTGTTTCGATTCT | 163.9 | | | ca14517 | 12 | TGCTTCTTTTCTACGCCCAT | CTTTGAAAGGCAATTTGGGA | 165.6 | | | cs240430 | 12 | TTCATATATGCAACCGCCAA | AAACCAGGACCAAAAACACG | 167.3 | | | ca16392 | 12 | CATGGTTTCTGCTGACGTGT | TCCAAGAAATACCACACCCA | 175.1 | | | ca05802 | 12 | CTACCCAGATTCCACTGCGT | GGTTTGATCTCCCTTGTGCT | 176.9 | | | HpmsE064 | 12 | CCCTCCTTTTACCTCGTCAAAAA | ATGCCAAGGAGCAATGAGAACC | 180.4 | Yi et al., 2006 | | ca11907 | 12 | TGCGGTGTGCTAAATAGTGC | GCTGTTGCTACTCGCAATGA | 191.6 | , | | ca04827 | LGb | AAATTGGAATTGAAAGGGGG | TGTTGGAGCCATGTCAGAAG | 16.1 | | | ca16104 | LGc | GCTGTAGTCTTCGGTTTGCC | TTCAGACGGTATACGCACCA | 20.6 | | | ca16955 | LGd | GGAGTTGGATATTCGCGTGT | AGTGCTGCAGTTCCCAGAAT | 0.0 | | of markers that exhibited segregation distortion in this study could be because mapping population was selected from 200 F_8 recombinant inbred lines. Markers deviating from expected segregation ratio are generally believed to be linked to genes | Table 4. Characteristics | of th | ne | intraspecific | genetic | linkage | map | of | |--------------------------|-------|----|---------------|---------|---------|-----|----| | pepper. | | | | | | | | | Linkage
group | Length
(cM) | Number of markers | Average distance
between markers
(cM) | |------------------|----------------|-------------------|---| | LG1 | 84.5 | 17 | 5.0 | | LG2 | 127.5 | 25 | 5.1 | | LG3 | 102.3 | 22 | 4.7 | | LG3a | 158.7 | 39 | 4.1 | | LG4 | 202.8 | 40 | 5.1 | | LG5 | 200.2 | 25 | 8.0 | | LG6 | 94.2 | 13 | 7.2 | | LG7 | 113.1 | 20 | 5.7 | | LG8 | 117.1 | 20 | 5.9 | | LG8a | 33.1 | 6 | 5.5 | | LG9 | 193.9 | 48 | 4.0 | | LG10 | 193.9 | 36 | 5.4 | | LG11 | 202.5 | 39 | 5.2 | | LG12 | 167.8 | 39 | 4.3 | | Lga | 119 | 14 | 8.5 | | LGb | 18.3 | 5 | 3.7 | | LGc | 18.7 | 4 | 4.7 | | LGd | 18.8 | 4 | 4.7 | | LGe | 11.1 | 4 | 2.8 | | Total | 2177.5 | 420 | 5.2 | | | | | | that are subjected to direct selection; for example: a lethal allele in *Populus* spp. affecting embryo development was the cause of segregation distortion of markers (Bradshaw and Stettler, 1994); markers cosegregating with the *Melampsora* resistance gene also showed a significant deviation (Cervera et al., 2001). Therefore, all distorted markers in this study should be used in the mapping process to avoid missing of parts of linkage groups. The distorted markers were not more specific to either of the parents. ### Consensus SSR makers and linkage groups A total of 37 consensus markers were placed in the linkage map. Of these, 22 anchor SSR markers from the Pepper-FAO3 map (Mueller et al., 2005) were distributed into 13 linkage groups except LG9, LGa, LGb, LGc, LGd, and LGe. The order and distribution of the most anchor markers were consistent with the reference map (Fig. 2). Thus, these linkage groups were assigned into 11 chromosomes of pepper except chromosome 9. The alignment was successful for all chromosomes; however, grouping of more than one LG of the intraspecific map with single LG of the interspecific map was still observed (Fig. 2). The linkage groups LG3 and LG8 in the present map were split into 2 LGs each. Linkage group LG3 was grouped along with LG3a, and LG8 along with LG8a. This might be due to subsequent resolution of the sequences that joined the linkage groups in the interspecific mapping populations. By developing intraspecific maps for C. annum using consensus SSR markers and comparing them might provide the molecular insight of the likely chromosomal rearrangements that led to the evolution of C. annuum. Thirteen consensus SSR markers from the SNU3 map were distributed into 8 linkage groups (LG1, LG3, LG5, LG7, LG9, LG10, LG11, and LG12). The dispersion of the markers in the linkage groups was consistent with 8 chromosomes (1, 3, 5, 7, 9, 10, 11 and 12) in the reference map. Though there was no anchor SSR marker on chromosome 9, 3 consensus SSR markers, which belonged to chromosome 9 in the SNU3 map, were placed on LG9 in the present linkage map. This could demonstrate that LG9 belongs to chromosome 9 of pepper. The orders of these SSR markers on each linkage group were the same as those in the Pepper-FAO3 and the SNU3 maps except for some minor differences for some markers. Thus, 12 chromosomes of pepper were assigned. Because there were no consensus markers in the other 5 linkage groups, they were named LGa, LGb, LGc, LGd, and LGe. We expect that the small linkage groups will merge into larger linkage groups when more markers are assigned. ### **Discussion** Recombinant inbred line population is particularly useful in genetic mapping studies and quantitative trait locus analysis. It is the basis for Mendel's first genetic experiments and continues to be the key to the study of genes, heredity, and genetic variation today. Improving of precision linkage mapping using such population for further QTL analysis of interested traits is needed. # Polymorphism between *C. annuum* YCM334 and 'Tean' Low levels of DNA marker polymorphism in crops is an obstacle to apply molecular marker technology in breeding programs. In Solanaceae crops, levels of polymorphic loci are generally low within each species (Minamiyama et al., 2006; Nunome et al., 2001; Terzopoulos et al., 2008). Therefore, degree of marker polymorphism in an intraspecific population is lower than in an interspecific population. In the present study, 67 SSR markers selected from the Pepper-FA03 map (Mueller et al., 2005) was used for screening polymorphism between C. annuum YCM334 and 'Tean', but only 37.3% were polymorphic. A lower polymorphism rate (11%) was also observed in a set of 135 SSR primers from the SNU3 map (Yi et al., 2006), and 1667 EST-derived SSR primers from KRIBB. Minamiyama et al. (2006) have observed the low levels of polymorphism within C. annuum. To overcome this low polymorphism, 171 AFLP primer
combinations were used. Level of polymorphism (76%) in this study was higher cs 09087 a015_8 ca07449 ca11002 - ca13889 HpmsE016 ca11558 ca18075 ca00377 ca18179 HpmsE010 BM62655 128.2 136.4 145.6 - 154.3 155.5 156.7 157.5 158.7 - ĘĢ score of 7. Loci names are indicated on the right side of the vertical bars and genetic distance in centiMorgans (Kosambi function) are on the left side of the vertical bars. AFLP markers were named consisting of 1 letter as "a" and following was primer combination code and number of polymorphic bands generated by its primer combination. EST-SSR markers were named consisting of 2 letters as "ca" or "cs" and serial numbers followed by the letters. SSRs-Pepper-FAO3 map (Mueller et al., 2005) and SSRs-SNU3 map (Yi et al., 2006) were named as their origin names. 1. A genetic linkage map of pepper on an intraspecific RIL population derived from a cross between YCM334 and 'Tean' at a LOD Cho Fig. 1. Continued. 2. Comparisons of distribution and order of the consensus markers pepper from Pepper-FAO3 map (Chr.) (Mueller et al., 2005) and of the 12 linkage groups (LG1-LG12) SNU3 map (LG(Y)) (Yi et al., 2006). vith those 9 chromosomes **Fig.** than previous study using an interspecific cross (Kang et al., 2001), indicating the diversity of restriction sites in YCM334 and 'Tean'. One explanation is that YCM334 were derived from a cross between non-pungent and pungent pepper; during evolution and plant breeding process, genetic recombination occurrence resulted more diversity. In addition, YCM334 is a western-style pepper with bell-shape fruit, whereas 'Tean' is a Korean local variety with long fruit shape and a very spicy flavor. Thus, genetic background of these two parents is a major factor of the polymorphism observed. Therefore, this should be a good source for breeding towards improving resistance to *Phytophthora* root rot and other horticulture traits in pepper. ### Comparative mappings in pepper In this study, we mainly compared the present map with two published maps: SNU3 (Yi et al., 2006) and Pepper-FAO3 (Mueller et al., 2005), which conducted using interspecific mapping populations. The composite map developed in this study consisted of 420 markers distributed over 19 LGs and covered a total genetic distance of 2177.5 cM. Comparison of the present intraspecific map with the interspecific maps developed by Yi et al. (2006) and Mueller et al. (2005) revealed high linkage conservation in at least four linkage groups. While 11 of the 14 LGs in the SNU3 map were determined 11 chromosomes and chromosome 8 was not assigned (Yi et al., 2006), 14 LGs of the present linkage map were assigned into 12 chromosomes of pepper. However, the map distances differed. While the lengths of LG1 and LG7 were very close to the lengths of chromosomes 1 and 7, respectively, in the SNU3 map, they were about of 60 cM and 210 cM shorter, respectively, in the Pepper-FA03 map (Fig. 2). In the contrary, the lengths of LG5, LG9, LG11 and LG12 were similar to the length of chromosomes 5, 9, 11, and 12 in the SNU3 map respectively; but they were more or less 100 cM longer than in the Pepper-FA03 map. These differences could be possibly due to the intraspecific nature of our mapping population. Within C. annuum genome, the present linkage map was slightly longer than those previous maps (Barchi et al., 2007; Kim et al., 2008; Lefebvre et al., 1995; Minamiyama et al., 2006; Ogundiwin et al., 2005). This can be explained by the dramatic increase of marker numbers in the present mapping population. The larger number of markers within one linkage group may enlarge the genetic intercrossing value between markers. Additionally, the small size of the F₈ population (126 individuals) compared with 176 DH individuals in Sugita et al. (2005) may not be enough for allele segregation and cause allele partial distribution. The five linkage groups such LGa, LGb, LGc, LGd, and LGe could be merged into chromosomes when more markers are assigned. The distances between 2 anchor SSR markers on chromosomes 1, 2, 3, 4, and 6 in the Pepper-FAO3 map were similar with those in LG1, LG2, LG3a, LG4, and LG6, respectively (Fig. 2), indicating those markers are highly conserved across *Capsicum* species. However, distances between anchor markers in the LG10, LG11 and LG12 were greater than of those on chromosomes 10, 11, and 12, respectively. Two anchor markers, which were 20 cM apart, on chromosome 8 in the Pepper-FAO3 map were mapped into 2 linkage groups, one was on the distal end and one was on the top. Three markers on chromosome 3 were mapped to 2 linkage groups (LG3 and LG3a). More comprehensive coordination among the *Capsicum* maps would be helpful for pepper genetics and breeding. The order and distribution of the consensus SSR markers in the present linkage map was consistent with those in the SNU3 map except some minor differences. In pepper, total genome length was estimated to be between 1,498 cM and 2,268 cM (Lefebvre et al., 1995). Thus, the present map was deeply covered the genome of pepper and will be useful as a reference map in *Capsicum annuum* and should facilitate quantitative trait locus analysis and the use of molecular marker in pepper breeding. # Potential applications of comparative mapping results Comparative mapping is an important tool for integrating genetic data among related taxa. It helps to consolidate genetic maps and bridge linkage gaps. For instance, comparative mapping has helped to assign several small-unlinked groups to the larger homologous linkage groups in pepper (Barchi et al., 2007; Lee et al., 2004; Lee et al., 2008; Wu et al., 2009; Yi et al., 2006). Mapped consensus markers that consistently associated with the same QTL can be used to confirm and verify QTL, and to identify candidate genes for quantitative traits. For example: QTLs mapped on *C. annuum* (Kim et al., 2008; Ogundiwin et al., 2004) can be now compared across different populations if those consensus SSR markers were placed on different genetic maps. ### **Literature Cited** Barchi, L., J. Bonnet, C. Boudet, P. Signoret, I. Nagy, S. Lanteri, A. Palloix, and V. Lefebvre. 2007. A high-resolution, intraspecific linkage map of pepper (*Capsicum annuum* L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 50:51-60. Bradshaw, H.D.JR. and R.F. Stettler. 1995. Molecular genetics of growth and development in *Populus*. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963-973. Burr, B. and F.A. Burr. 1991. Recombinant inbreds for molecular mapping in maize: theoretical and practice considerations. Trends in Genetics 7:55-60. Caranta, C, S. Pflieger, V. Lefebvre, A.M. Daubeze, A. Thabuis, and A.Palloix. 2002. QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper. Theor. Appl. Genet. 104:586-591. - Causse, M.A., T.M. Fulton, Y.G. Cho, S.N. Ahn, J. Chunwongse, K. Wu, J. Xiao, Z. Yu, P.C. Ronald, S.E. Harrington, G. Second, S.R. McCouch, and S.D.Tanksley. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251- 1274. - Cervera, M.T., V. Storme, B. Ivens, J. Gusman, B.H. Lui, V. Hostyn, J.V. Slycken, M. Van Momagu, and W. Boerjan. 2001. Dense genetic linkage maps of three populus species (*Populus deltoides*, *P. nigra* and *P. trichocarpa*) based on AFLP and microsatellite markers. Genetics 158:787-809. - Govindarajan, V.S. and M.N. Sathyanarayana. 1991. Capsicum-production, technology, chemistry and quality. Part. V. Impact on physiology, pharmacology, nutrition and metabolism, structure, pungency, pain, and desensitization sequences. Crit. Rev. Food. Sci. Nutr. 29:435-474. - Havey, M.J. and F.J. Muehlbauer. 1989. Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor. Appl. Genet. 77:395-401. - Kang, B.C., S.H. Nahm, J.H. Huh, H.S. Yoo, J.W. Yu, M.H. Lee, and B.D. Kim. 2001. An interspecific (*Capsicum annuum x C. chinese*) F₂ linkage map in pepper using RFLP and AFLP markers. Theor. and Appl. Genet. 102:531-539. - Kim, H.J., S.H. Nahm, H.R. Lee, G.B. Yoon, K.T. Kim, B.C. Kang, D. Choi, O. Kweon, M.C. Cho, J.K. Kwon, J.H. Han, J.H. Kim, M. Park, J. Ahn, S. Choi, N. Her, J.H. Sung, and B.D. Kim. 2008. BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (*Capsicum annuum* L.). Theor. Appl. Genet. 118:15-27. - Knapp, S. 2002. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the *Solanaceae*. J. Exp. Bot. 377:2001-2022. - Kosambi, D.D. 1944. The estimation of the map distance from recombination values. Ann. Eugen. 12:172-175. - Lander, E.S, P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln, and L. Newburg. 1987. MapMaker: an interactive computer package for constructing primarily genetic linkage maps of experimental and natural populations. Genomics 1:174-181. - Lefebvre, V., A. Palloix, C. Caranta, and E. Pochard. 1995. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112-121. - Lee, H.R., I.H. Bae, S.W. Park, H.J. Kim, W.K. Min, J.H. Han, K.T. Kim, and B.D. Kim. 2009. Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences. Molecules and Cells 27:21-37. - Lee, J.M., S.H. Nahm, Y.M. Kim, and B.D. Kim. 2004. Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor. and Appl. Genet. 108:619-627. - Menéndez, C.M., A.E. Hall, and P. Gepts. 1997. A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor. Appl. Genet. 95:1210-1217. - Minamiyama, Y., M. Tsuro, and M. Hirai. 2006. An SSR-based linkage map of Capsicum annuum. Molecular Breeding 18:157-169. - Mueller, L.A., T.H. Solow, N. Taylor, B. Skwarecki, R. Buels, J. Binns, C. Lin,
M.H. Wright, R. Ahrens, Y. Wang, E.V. Herbst, E.R. Keyder, N. Menda, D. Zamir, and S.D. Tanksley. 2005. The SOL Genomics Network. A Comparative Resource for *Solanaceae* Biology and Beyond. Plant Physiol. 138:1310-1317. - Nunome, T., K. Suwabe, H. Iketani, and M. Hirai. 2003. Identification - and characterization of microsatellites in eggplant. Plant Breed. 122:256-262. - O'Brien, S.J. 1993. Genetic maps: locus maps of complex genomes, 6th edn. Cold Spring Harbor, New York. - Ogundiwin, E.A., T.F. Berke, M. Massoudi, L.L. Black, G. Huestis, D. Choi, S. Lee, and J.P. Prince. 2005. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for *Phytophthora* capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:698-711. - Rao, G.U., A. Ben Chaim, Y. Borovsky, and I. Paran. 2003. Mapping of yield-related QTLs in pepper in an interspecific cross of *Capsicum annuum* and *C. frutescens*. Theor. Appl. Genet. 106:1457-1466. - Raz, V. and J. Ecker. 1997. Analyzing DNA: A Laboratory Manual. Cold Spring Harbor, New York. - Reiter, R.S., J.K.G. Williams, K.A. Feldman, A. Rafalski, S.V. Tingey, P.A. Scolnik. 1992. Global and local genome mapping in *Arabidopsis thaliana* by using recombinant inbred lines and random amplified polymorphic DNAs. Proc. Natl. Acad. Sci. 89:1477-1481. - Paran, I., J.R. van der Voort, V. Lefebvre, M. Jahn, L. Landry, M.van Schriek, B. Tanyolac, C. Caranta, A.Ben Chaim, K. Livingstone, A. Palloix, and J. Peleman. 2004. An integrated genetic linkage map of pepper (*Capsicum* spp.). Molecular Breeding 13:251-261. - Pickersgill, B. 1997. Genetic resources and breeding of *Capsicum* spp. Euphytica 96:129-133. - Saliba-Colombani, V., M. Causse, L. Gervais, and J. Philouze. 2000. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29-40. - Staub, J.E, F.C. Serquen, and M. Gupta. 1996. Genetic markers, map construction, and their application in plant breeding. HortScience 31:729-741. - Sugita, T., T. Kinoshita, T. Kawano, K. Yuji, K. Yamaguchi, R. Nagata, A.Shimizu, L.Z. Chen, S. Kawasaki, and A. Todoroki. 2005. Rapid construction of a linkage map using high-efficiency genome scanning/ AFLP and RAPD, based on an intraspecific, doubled-haploid population of *Capsicum annuum*. Breeding Science 55:287-295. - Tadmor, Y., D. Zamir, and G. Ladizinsky. 1987. Genetic mapping of an ancient translocation in the genus Lens. Theor. Appl. Genet. 73: 883-892. - Tanksley, S.D. 1993. Mapping polygenes. Annu. Rev. Genet. 27:205-233. - Terzopoulos, P.J. and P.J. Bebeli. 2008. DNA and morpholygical diversity of selected Greek tomato (*Solanum lycopersium* L.) landraces. Scientia Horticulture 116:354-361. - Voorrips, R.E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity 93:77-78. - Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407-4414. - Wu, F., N.T. Eannetta, Y. Xu, R. Durrett, M. Mazourek, M.M. Jahn, and S.D. Tanksley. 2009. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus *Capsicum*. Theor. and Appl. Genet. 118:1279-1293. - Yi, G.B., J.M. Lee, S. Lee, D. Choi, and B.D. Kim. 2006. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theoret. and Appl. Genet. 114:113-130.