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The dynamical susceptibility and finite temperature collective excitations in monolayer spin film are calculated using the anisotropic
exchange XZ-Heisenberg model for different spin magnitude and the functional integral method. Combining mean field and Gaussian
approximation, it is shown that the internal transverse field induced by internal transverse exchange interaction, leads to a decrease (increase) of
the spin wave energy in the temperature region below (above) the spin reorientation temperature. This temperature is of the same nature as the
critical temperature of the transverse Ising model studied previously. Reduction of the external spin reorientation transverse field (the critical
tuning parameter) by intrinsic transverse exchange is demonstrated. [doi:10.2320/matertrans.MD201714]
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1. Introduction

Ferroelectric (FE) nanostructures including ultrathin films
(UTF) is one of most intriguing topics due to its potential
applications in modern electronic nanoscale devices.1) A
fundamental problem is that FE properties of nanostructures
are not only declined with reducing size but also are strongly
affected by other factors like the external pressure, atomic
substitution or transverse field (TrF), which are generally
called tuning parameters. Tuning parameters may be external
or internal factors. The dependence of the phase diagram of
FEs on the tuning parameter is given in the Scott et al.
paper.2) The transverse Ising spin model (TIM) is the simplest
microscopic model, which can be used for studying the
influence of the tuning parameter on FE properties. Since
the time De Gennes firstly used the transverse spin 1/2 Ising
model to explain the ferroelectric phase of KDP3) up to now,
the TIM has been applied successfully for solving important
problems, such as: order-disorder phase transitions in FE
materials, spin glass phenomenon, quantum phase transition,4)

thin films.5­7) In the previous work,8) the role of the
external TrF in damping of order-disorder phase transition
temperature of UTF was investigated and offered an
explanation of the thickness dependence of the Curie
temperature of PbTiO3 thin films. Reduction of the critical
TrF with reducing the film thickness was also pointed out.

This paper is aimed to show that the intrinsic transverse
exchange interactions between FE dipoles can further
reduction of the external critical TrF. It is also shown that
the TrF in the TIM for films, which has been studied for a
long time,5­7) is corresponding to the spin reorientation (SR)
problem of magnetic film (see Ref. 9). Without any long-
range orders at finite temperature in spin systems described
by two dimensional isotropic exchanges Heisenberg spin
model,10) and with the TIM corresponding to an anisotropic
non-diagonal Heisenberg exchange model, it is necessary to
use the simplest anisotropic exchange model, such as XZ-
Heisenberg (XZ-H) model. In this paper, the XZ-H model

with different spin-S values is used to calculate the dynamical
susceptibility, elementary excitations of monolayer spin film
(MLSF) at finite temperature. Unlike previous researches,5­8)

we use functional integral method11) to calculate the
Green functions (GFs) and dynamical susceptibilities with
the Gaussian approximation. The transverse exchange
interactions in the XZ-H model can be an origin of the
decrease of magnitude of collective elementary excitations
compared with that for the TIM.

The paper is organized as follows: Part 1 is for
introduction. In Part 2, we introduce the model and
calculation method. In Part 3, we obtain the dynamical
susceptibility, the temperature- and field-dependence of
collective excitation (spin wave), and discuss our results in
detail. The conclusion is given in Part 4.

2. XZ Heisenberg Model and Green Functions

2.1 Hamiltonian of the XZ Heisenberg model for
monolayer spin films

We consider a monolayer square spin film lattice8)

containing N spins (N º 1). A spin position is defined
by Rj® a two dimensional vector in the film plane and
distance between j-th and jA-th spins is RjjA = «Rj ¹ RjA«. The
Hamiltonian of the XZ anisotropic exchange Heisenberg
model for spin system is given by

H ¼ �h0
X
j

szj ��0

X
j

sxj

� 1

2

X
j;j0

½Jjj0szjszj0 þ Ljj0s
x
js

x
j0 �: ð1Þ

Here h0, +0 are the external longitudinal and transverse fields
given in energy unit (the effective dipole moment ® is
included in the field h0). The s

z
j; s

x
j are components of the spin

operator at site j in the crystallographic xyz frame, which has
z-axis (x-axis) perpendicular (in-plane) to the square spin
lattice. JjjA = J(RjjA), LjjA = L(RjjA) are exchange parameters
between spin components along the z and x directions. We
propose anisotropic exchange interactions JjjA º LjjA and use
the mean field approximation (MFA) as the zero-order+Corresponding author, E-mail: congbt@vnu.edu.vn
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approximation with the Hamiltonian Ho. Under the influence
of the total field £, spins rotate and orient along the direction
of this field in equilibrium state (see Fig. 1). Choosing a new
coordinate XYZ system, which has Z-axis parallel to the
direction of total field, £, using the unitary transformation to
transform the spin operator in the xyz system to the spin
operator in the XYZ coordinate system (components of the
spin operator in the XYZ system are denoted by capital
letters) sxj ¼ h

£
SX
j þ �

£
SZ
j , szj ¼ � �

£
SX
j þ h

£
SZ
j , we rewrite

Hamiltonian (1) in new form

H ¼ H0 þHint: ð2Þ
MF and interacting parts of Hamiltonian are

H0 ¼
N

2
fJð0Þm2

z þ Lð0Þm2
xg � £

X
j

SZ
j ; ð3Þ

Hint ¼ � 1

2

X
¡¡0

X
j;j0

I¡¡
0

jj0 ¤S
¡
j ¤S

¡0
j0 : ð4Þ

The total field consists of longitudinal and transverse
components

£ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ�2

p
; h ¼ h0 þ Jð0Þmz;

� ¼ �0 þ Lð0Þmx; ð5Þ
where mz,mx are statistical averages of spin projections
per site hsz;xj i ¼ Trðe�¢Hsz;xj Þ ¼ mz;x. J(0),L(0) appeared in
eq. (5) are the zero wave vector Fourier inversion of exchange
parameters (see eq. (30)). Hint describes the interaction
between the spin fluctuation components ¤S¡

j (¡ = X,Z ),
and ¤SZ

j ¼ SZ
j � hSZi, ¤SX

j ¼ SX
j . Figure 1 shows relative

orientation between the xyz and XYZ coordinates. Hamiltonian
Hint has a quadratic form in the XYZ coordinate system.

Implementing Fourier transformation for the spin
fluctuation operators, we obtain Hint in the wave vector
representation

Hint ¼ � 1

2

X
k;¡¡0

I¡¡
0 ðkÞ¤S¡ðkÞ¤S¡0 ð�kÞ; ð6Þ

where anisotropic exchange interactions are represented by
the following 2 © 2 matrix

ÎðkÞ ¼ IXXðkÞ IXZðkÞ
IZXðkÞ IZZðkÞ

 !

¼ 1

£2

�2JðkÞ þ h2LðkÞ �h½LðkÞ � JðkÞ�
�h½LðkÞ � JðkÞ� h2JðkÞ þ�2LðkÞ

 !
: ð7Þ

J(k),L(k) are Fourier inversions of the exchange interactions
given in eq. (1). The symmetric matrix ÎðkÞ means invariant
not only under the sign change of the wave vector but also
under the permutation of alpha index, i.e. I¡¡A(k) = I¡A¡(k).
The free energy and the longitudinal, transverse static
susceptibilities are given by (kBT = ¢¹1)

F ¼ �¢�1 ln Trðe�¢HÞ; ð8Þ

»zz
st ¼ ¢®2 @

2F

@h20
; »xx

st ¼ ¢®2 @
2F

@�2
0

: ð9Þ

The MFA solution for thermodynamic quantities of the
MLSF is given in Ref. 8.

2.2 Functional integral representation for Green
functions, Gaussian fluctuation approximation

The longitudinal and transverse susceptibilities of the
MLSF are calculated via the free energy or spin-spin
correlation functions

» zz ¼ ¢®2
X
j;j0

h¤szj¤szj0 i; »xx ¼ ¢®2
X
j;j0

h¤sxj¤sxj0 i: ð10Þ

The spin­spin correlation functions appeared in eq. (10)
can be calculated using imaginary time (Matsubara)
Green function (GF) constructed from components of
spin fluctuation operators ¤s¡j (¡ = x, z) in the spin lattice
xyz coordinates within the Heisenberg representation,
which is

G¡¡0 ðRjj0 ; ¸1 � ¸2Þ ¼ hT̂ ¤~s¡jð¸1Þ¤~s¡
0

j0 ð¸2Þi;
¤~s¡jð¸Þ ¼ e¸H¤s¡je

�¸H: ð11Þ
Making Fourier transformation, we have

G¡¡0 ðRjj0 ; ¸Þ ¼
1

N

X
k;½

G¡¡0 ðk;½Þe�ikR�i½¸ ;

½ ¼ 2³n=¢; n is an integer number: ð12Þ
Denoting (k,½) by a three-component wave vector q, we
obtain

G¡¡0 ðqÞ ¼ hT̂ ¤~s¡ðqÞ¤~s¡ð�qÞi

¼ 1

¢

X
R

Z¢
0

d¸G¡¡0 ðR; ¸ÞeþikRþi½¸ ; ð13Þ

¤~s¡ðqÞ ¼ 1

¢
ffiffiffiffi
N

p
X
j

Z¢
0

¤~s¡jð¸ÞeþikRjþi½¸d¸;

¤~s¡jð¸Þ ¼
1ffiffiffiffi
N

p
X
k;½

¤~s¡jðk;½Þe�ikRj�i½¸ : ð14Þ

Fourier inversion of the dynamical susceptibility is then
defined as

»¡¡ðqÞ ¼ ¢®2G¡¡ðqÞ: ð15Þ
The static susceptibilities in the long wavelength limit are
readily derived from eq. (15)

»¡¡st ¼ ¢®2G¡¡ð0Þ: ð16Þ
Defining Fourier inversion of GFs in the XYZ coordinate
frame and Heisenberg picture as

Z 

x

y, Y 

X 

θ

γγ

Ω

h

s

SZ
sz

sx
SX

Z

Fig. 1 Relative orientation between the crystallographic coordinates xyz
and rotated XYZ systems. Incline angle of the spin direction above the film
plane is denoted by ª.
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� ¡¡0 ðqÞ ¼ hT̂ ¤ ~S¡ðqÞ¤ ~S¡0 ð�qÞi

¼ hT̂ ¤S¡ðqÞ¤S¡0 ð�qÞ·ð¢Þi0
h·ð¢Þi0

; ð17Þ

we can express GFs in the xyz coordinate G¡¡A(q) via GFs in
the XYZ coordinate as

GzzðqÞ ¼ �2

£2
�XXðqÞ � h�

£2
½�ZXðqÞ þ �XZðqÞ�

þ h2

£2
�ZZðqÞ; ð18Þ

GxxðqÞ ¼ h2

£2
�XXðqÞ þ h�

£2
½�ZXðqÞ þ �XZðqÞ�

þ �2

£2
�ZZðqÞ: ð19Þ

The thermodynamic average given in eq. (17) is h� � �i0 ¼
Trðe�¢H0 . . .Þ=Trðe�¢H0Þ. ·(¢) is the scattering matrix, which
can be presented in the functional integral of auxiliary fields
(see Ref. 11 and references therein) as

·ð¢Þ ¼
Z

D¼ exp � 1

2¢

X
q¡¡0

I�1
¡¡0 ðkÞ¼¡ðqÞ¼¡0 ð�qÞ

( )

� T̂ exp
X
q¡

¼¡ðqÞ¤S¡ðqÞ
( )

: ð20Þ

I�1
¡¡0 ðkÞ is matrix element of the inverse matrix Î�1ðkÞ.
A measure of the functional integration is given byZ
D¼ . . . ¼

Y
¡

Zþ1

�1

d¼¡ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2³ det½¢Îð0Þ�

p Y
q 6¼0

0
Zþ1

�1

d¼c
¡ðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

³ det½¢ÎðkÞ�
p

�
Zþ1

�1

d¼s
¡ðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

³ det½¢ÎðkÞ�
p . . . ð21Þ

¼c
¡ðqÞ and ¼s

¡ðqÞ are correspondingly the real and imaginary
parts of complex field variable ¼¡(q). The prime in the
eq. (21) implies that q varies in the haft-space. The free
energy of the MLSF is represented in the functional integral
form of the field variables as

F ¼ F0 �
1

¢
ln

Z
D¼ expð��½¼�Þ; ð22Þ

where the functional )[¼] has the following form

�½¼� ¼ 1

2¢

X
q¡¡0

I�1
¡¡0 ðkÞ¼¡ðqÞ¼¡0 ð�qÞ

� ln T̂ exp
X
q¡

¼¡ðqÞ¤S¡ðqÞ
( )* +

0

: ð23Þ

It is ready to obtain the Green functions !¡¡A(q) with the
functional average. We have

� ¡¡0 ðqÞ ¼ �½¢IðkÞ��1
¡¡0

þ
X
¡1¡2

½¢IðkÞ��1
¡¡1

½¢IðkÞ��1
¡0¡2¼¡1

ðqÞ¼¡2
ð�qÞ; ð24Þ

where the upper bar stands for the functional average

f½¼� ¼

Z
D¼ expf��½¼�gf½¼�Z
D¼ expf��½¼�g

: ð25Þ

In Gaussian approximation, the functional )[¼] has quadratic
form

�G ¼ 1

2

X
q¡¡0

A�1
¡¡0 ðqÞ¼¡ðqÞ¼¡0 ð�qÞ: ð26Þ

Here Â�1ðqÞ is an inverse matrix of the symmetric matrix
ÂðqÞ with its elements

A�1
¡¡0 ðqÞ ¼ ½¢ÎðkÞ��1

¡¡0 � ¤¡¡0M¡ð½Þ; ð27Þ

M̂ð½Þ ¼ MXð½Þ 0

0 MZð½Þ

� �

¼ bsð¢£Þ=¢ð£ � i½Þ 0

0 b0sð¢£Þ¤½;0

� �
: ð28Þ

Taking functional integration in eq. (24), one gets

�̂ ¼ M̂ð½Þ½1̂� ¢ÎðkÞM̂ð½Þ��1: ð29Þ
Equation (29) is the solution in the matrix form for the GFs
in the XYZ coordinate system. GFs and susceptibilities of
the MLSF in the crystallographic xyz coordinate system are
derived straightforwardly from eqs. (15)­(29).

3. Susceptibilities, Elementary Excitations and
Discussion

In this part, we apply above theory for calculation of
the susceptibilities and elementary excitations in the MLSF
taking into account only the exchange interactions between
nearest neighbor (NN) spins. Exchange integrals in the
NN approximation and other parameters have explicit forms
as

JðkÞ ¼ 2J½cosðkxaÞ þ cosðkyaÞ�;
LðkÞ ¼ 2L½cosðkxaÞ þ cosðkyaÞ�: ð30Þ

Using eqs. (17)­(30), we obtain the longitudinal and
transverse GFs for the MLSF

GzzðqÞ
GxxðqÞ

(
¼

�2

£2
MXð½Þ þ

h2

£2
MZð½Þ � ¢LðkÞMXð½ÞMZð½Þ

h2

£2
MXð½Þ þ

�2

£2
MZð½Þ � ¢JðkÞMXð½ÞMZð½Þ

8>>><
>>>:

9>>>=
>>>;

� 1

1� ¢½IXXðkÞMXð½Þ þ IZZðkÞMZð½Þ� þ ¢2JðkÞLðkÞMXð½ÞMZð½Þ
: ð31Þ
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We note that, when L(k) = 0, the upper formula in eq. (31) simplifies to the similar result for the longitudinal Green function
of the 3D-TIM case obtained in Ref. 12 except for the wave vector k defined in the 2D reciprocal space. Using eq. (31),
we obtain the expressions for longitudinal and transverse dynamical susceptibilities, which are

»zzðqÞ
®2

»xxðqÞ
®2

8>><
>>:

9>>=
>>; ¼

�2

£2
bsð¢£Þ þ ¢b0sð¢£Þ

h2

£
� LðkÞbsð¢£Þ

� �
¤½;0

h2

£2
bsð¢£Þ þ ¢b0sð¢£Þ

�2

£
� JðkÞbsð¢£Þ

� �
¤½;0

8>>><
>>>:

9>>>=
>>>;

� 1

£ � ½JðkÞ�2 þ LðkÞh2�bsð¢£Þ
£2

� ¢b0sð¢£Þ
�
JðkÞh

2

£
þ LðkÞ

�
�2

£
� JðkÞbsð¢£Þ

��
¤½;0 � i½

; ð32Þ

where b0sðxÞ is the derivative of the Brillouin function bs(x).
The static longitudinal and transverse susceptibilities for
the MLSF are defined at zero frequency and at the long
wavelength limit (q = 0 or k = 0, ½ = 0) of the eq. (32).

Elementary excitation (or spin wave) energies in the free
MLSF are obtained from the poles of the longitudinal and
transverse GFs or those of the dynamical susceptibilities by
the process of analytic continuation, replacing i½ ¼ ½. We
note that the denominators of the transverse and longitudinal
GFs are identical, thus they have the same poles. The
dispersion relation of elementary excitation energies at finite
temperature T is given by

½ðkÞ ¼ £ � bsð¢£Þ
£2

½JðkÞ�2 þ LðkÞh2�: ð33Þ

The total field value £ in the formula (33), total polarization
m per site and its components are found by solving the MFA
equations8)

mz ¼
h

£
bsð¢£Þ; mx ¼

�

£
bsð¢£Þ;

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

z þm2
x

q
¼ bsð¢£Þ: ð34Þ

We also examine the case when the external longitudinal
field is absent (h0 = 0) for simplicity. Here and after, all
energy quantities are measured in unite of the NN exchange
strength J, lengths are measured in unit of the spin lattice
constant a. Dimensionless temperature is ¸ = kBT/J and
the others are marked by upper bar, for example �0=J ¼ ��0.
We note that, there are two kinds of phase transitions in
the present problem: the spin reorientation transition driven
by the transverse field and the order-disorder phase
transition resulted from competition between total field and
temperature. The critical temperature in the TIM widely
used in literature up to now4­8) is in fact the spin reorientation
(SR) temperature ¸Rð ��0Þ, and defined from condition
mzð¸R; ��0Þ ¼ 0 or

��0

1� �L
¼ 4bs

��0

¸Rð1� �LÞ

� �
: ð35Þ

The order-disorder phase transition temperature ¸C should
be defined from condition mð¸C; ��0 ¼ 0Þ ¼ 0. The SR
temperature depends on the TrF and equals to the order-
disorder phase transition temperature, if the transverse field
is zero ¸Rð ��0 ¼ 0Þ ¼ ¸C. Figure 2 shows the MFA results
for the temperature-dependence of the total polarization m,
its components and incline angle ª ¼ arctgðmz=mxÞ. For

��0 6¼ 0, total polarization m tends to zero when temperature
increases and ¸C is defined approximately by the fastest
slope of tangent lines of the mð¸; ��0Þ curve. The specific TrF,
that makes SR temperature be zero, is the critical transverse
field ��0C (or the critical tuning parameter in general case).
��0C depends on the film thickness.8)

In presence of nonzero TrF, temperature dependences of
the collective excitation energy in different temperature
regions (lower and higher ¸R) are given below
i/ for ¸ ¯ ¸R

�½ðkÞ ¼ �£ 1� 1

2
ðcos kx þ cos kyÞ

��2
0

�£2ð1� �LÞ þ
�L

� �� �
;

�£ ¼ 4bs
�£

¸

� �
; ð36Þ

ii/ for ¸ = ¸R

�½ðkÞj¸R ¼
��0

1� �L
1� 1

2
ðcos kx þ cos kyÞ

� �
; ð37Þ

iii/ for ¸R ¯ ¸

�½ðkÞ ¼ �£ 0 1� 1

2 �L
ðcos kx þ cos kyÞ 1�

��0

�£ 0

� �� �
;

�£ 0 ¼ 4 �Lbs
�£ 0

¸

� �
þ ��0: ð38Þ

Figure 3(a) shows the comparison between the energy of the
elementary excitations of the XZ-H model ( �L 6¼ 0) and the
TIM ( �L ¼ 0) when kx = ky = 0.5. We can see that the internal
transverse exchange �L in the XZ-H model leads to a

Fig. 2 Dependences of the total polarization m and its components mz,mx,
incline angle ª on temperature. Here S = 1, h0 = 0, �L ¼ 0:6 for all curves.
Curves mz,mx are plotted for ��0 ¼ 1:0. The m curve is drawn for ��0 ¼ 0.
Values of the spin reorientation temperature ¸R and order-disorder phase
transition temperature ¸C are shown.
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descrease of the SR phase transition temperature compared
with that of the TIM. For �L < 1, the energy of the elementary
excitation of the XZ-H model is quite smaller (a little larger)
than that of the TIM when ¸ < ¸R (¸ > ¸R). All the curves in
the Fig. 3(a) are similar to the temperature dependence of
the soft mode curves in PbTiO3 (see Ref. 13). At the SR
temperature, the long wave length excitation energy is zero
(Fig. 3(b)).

Figure 4 shows reduction tendency of the SR temperature
with increase of the internal transverse exchange magnitude
�L.
We are now interested in the behavior of the elementary

excitation at given temperature below Curie temperature ¸C,
with various TrFs. If we measure the amplitude of the
spin wave in ferroic thin film starting from temperature
¸ ¯ ¸R(0) = ¸C we observe a decrease of the spin wave
magnitude with increase of TrF until ��0 ¼ ��0R. ��0R

is called the SR field and defined by the condition
mzð¸; ��0RÞ ¼ 0, or

��0R

1� �L
¼ 4bs

��0R

ð1� �LÞ¸

� �
: ð39Þ

Obviously, the SR temperature of the MLSF decreases from
value ¸R(0) = ¸C to the value ¸Rð ��0RÞ ¼ ¸. Below and above
the SR field, the dispersion law of the elementary excitation
of the XZ-H model is given by

i/ for ��0 � ��0Rð¸Þ

�½ðkÞ ¼ �£ 1� 1

2
ðcos kx þ cos kyÞ

��2
0

�£2ð1� �LÞ þ
�L

� �� �
;

�£ ¼ 4bs
�£

¸

� �
; ð40Þ

ii/ for ��0 ¼ ��0Rð¸Þ

�½ðkÞ ¼
��0R

1� �L
1� 1

2
ðcos kx þ cos kyÞ

� �
; ð41Þ

iii/ for ��0 � ��0Rð¸Þ

�½ðkÞ ¼ �£ 0 � 2ðcos kx þ cos kyÞbS
�£ 0

¸

� �
;

�£ 0 ¼ 4 �Lbs
�£ 0

¸

� �
þ ��0: ð42Þ

Figure 5 exhibits variation of the intensity of the spin wave
energy in the MLSF with an increase of the transverse field
��0 at temperature ¸ = 1.2.
In the region ��0 > ��0R, the spin excitation is called

tunneling mode in the bulk TIM model.14) According to us,
it is better to call it the same spin wave mode. In this TrF
region, spin vectors of the MLSF are directed in the film
plane. In the Fig. 5, the spin reorientation field ��0R for the
XZ Heisenberg (TIM) model is 3.0634 (3.8293), respectively.

(a) (b)

Fig. 3 Dependence of the intensity of the spin wave of the MLSF on temperature: kx = ky = 0.5 (a/), kx = ky = 0 (b/). The values of the
spin and longitudinal field are S = 1, h0 = 0 and the others are given in insets.

Fig. 4 Influence of the internal transverse exchange �L on the SR
temperature ¸R. Values of the parameters are: ��0 ¼ 1, h0 = 0, S = 1,
kx = ky = 0.

Fig. 5 Dependence of the long wave length spin wave energy (k = 0)
on the transverse field. Solid (dashed) curve corresponds to the XZ
Heisenberg model (TIM). Values of parameters are ¸ = 1.2, S = 1, h0 = 0.
Magnitude of the SR field ( ��0R) for the XZ-H and TIM models is shown.
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We see that, the internal transverse exchange essentially
reduces the SR transverse field.

The SR in the MLSF studied in the present work with
anisotropic the XZ-Heisenberg model, and the field induced
SR in monolayer film with isotropic Heisenberg exchange
interactions and single ion anisotropy,9) have the same
origin® the transverse field or the tuning parameter. In other
competing interaction cases, role of tuning parameter can
be a ratio of competing antiferromagnetic to ferromagnetic
interaction in frustrated ferromagnetic films11) or this ratio
in the theory for the first order magnetization process
in polycrystalline perovskites.15) The SR point of view
developed in this work may be applied to investigate the
excitation spectra with the tuning parameter switched on.
The SR concept can be applied to explain the “critical
temperature-transverse magnetic field” or the “critical
temperature-tuning parameter” phase diagrams of transverse
Ising magnets given in Ref. 16.

4. Conclusions

Dynamical susceptibility and elementary excitations in
ferroic (magnetic or ferroelectric) single layer spin film was
calculated using the anisotropic exchange XZ Heisenberg
model in transverse and longitudinal fields. It is shown
that the transverse internal exchange interaction reduces
(enhances) the intensity of the collective excitation below
(above) spin reorientation temperature. The “spin reorienta-
tion temperature-transverse field” phase diagram in the XZ
Heisenberg model and the TIM is “critical temperature-
tuning parameter” diagram. The external spin reorientation
field is decreased by intrinsic transverse exchange interaction.
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