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a b s t r a c t

The magnetoresistivity (MR) in a parabolic quantum well (PQW), subjected to a crossed dc
electric field and magnetic field, modulated by a terahertz field (TF), is theoretically
calculated. The electron - acoustic phonon interaction is taken into account at low tem-
peratures. In the case of absence of the TF, the Shubnikov - de Haas oscillations are
observed. The temperature dependence of the relative amplitude of these oscillations is in
good agreement with previous theories and experiments in some two-dimensional elec-
tron systems. In the presence of the TF, there exist the oscillations in the MR which are
similar to those observed experimentally in some two-dimensional electron systems. The
amplitude of these oscillations increases with increasing the TF amplitude (intensity).

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The discoveries of the quantum Hall and Shubnikov - de Haas (SdH) effects open up a large number of applications in
materials science. SdH oscillations in the magnetoresistance can be used in experiments to extract basic information of
materials such as the carrier concentration, the effective mass, the momentum relaxation time, the carrier mobility, and so on
[1]. For example, in the works [2,3] the authors investigated experimentally the dependence of the magnetoresistance on the
temperature and used the temperature-dependent relative amplitude of SdH oscillations to determine the electron effective
mass. Theoretically, the dependence of the relative amplitude of these oscillations on temperature had been studied before in
a two-dimensional electron gas (2DEG) [1,2] utilising a connection between the conductivity and the density of states, which
is a function of the single-relaxation time. The results showed that the relative amplitude at a fixed magnetic field decreases
as the temperature increases.

When 2DEGs are subjected simultaneously to amagnetic field and amicrowave, one can observe the so-calledmicrowave-
induced magnetoresistance oscillations [4e11]. It has been shown that the occurrence of maximum peaks of the magneto-
resistance is governed by the ratio of the cyclotron and the electromagnetic wave (EMW) frequency [4e11]. However, little
theoretical discussion has been made thus for. On the other hand, the Boltzmann equation was applied to study theoretically
the Hall effect in three-dimensional (3D) materials under the influence of EMWs [12e17]. The odd and even properties of the
magnetoresistance were also considered. The problem is that in a strong quantum limit (high magnetic field, low temper-
ature), the Boltzmann equation is no longer valid. Then, a quantum theory is necessary to study these effects at quantum
conditions [18]. In this work, based on the Hamiltonian of electrons in a parabolic quantumwell (PQW), subjected to a crossed
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dc electric field and magnetic field in the presence of a terahertz EMW, we derive a quantum transport equation for electron.
From this equation, the magnetoresistivity (MR) is calculated for the electron - acoustic phonon scattering at low temper-
atures and one-photon absorption/emission limit. The paper is organised as follow. In the next section, we describe our
theoretical model and the brief derivation of the quantum transport equation for electrons. The calculation of the MR is
presented briefly in Sec. 3. Numerical results and discussion are given in Sec. 4. Finally, remarks and conclusions are given
briefly in Sec. 5.
2. Theoretical model and transport equation for electrons

We consider the transport of an electron gas in a quantum well structure, in which a one-dimensional electron gas is
confined in a heterostructure by a parabolic potential UðzÞ along the z-direction, and electron motions are free along two

directions (assumed the ðx� yÞ plane). A static magnetic field B
!

is applied in the z-direction and a dc electric field E
!

1 is
applied in the x-direction. Then, the one-electron Hamiltonian (h0), its normalised eigenfunctions (jx〉), and the eigenvalues

(εx) in the Landau gauge for the vector potential A
!¼ ð0;Bx;0Þ are, respectively, given by Refs. [19e21]
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where e andme are the charge and the effective mass of a conduction electron, respectively, p! is its momentum operator, N is
the Landau level index and n denotes level quantisation in z-direction, vd ¼ E1=B is the drift velocity and uc ¼ eB=me is the
cyclotron frequency. Also, fN represents harmonic oscillator wave functions, centered at x0 ¼ �ℓ

2
Bðky �mevd=ZÞ where ℓB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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is the radius of the Landau orbit in the (x� y) plane. Here, k
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y and Ly are thewave vector and normalisation length

in the y-direction, respectively. For a parabolic well given by UðzÞ ¼ meu2
z z

2=2 with the characteristic frequency uz of the
confinement potential, the one-electron normalised eigenfunctions and the corresponding eigenvalues in the conduction
band are, respectively, given by Ref. [21]
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where HnðxÞ is the nth Hermite polynomial and ℓz is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z=ðmuzÞ

p
.

When a terahertz field (TF) with the electric field vector E
!¼ ð0; E0 sin ut;0Þ (E0 and u are the amplitude and the fre-

quency, respectively) propagates in the structure, the Hamiltonian of electron - phonon system, in the second quantisation
representation, can be written similarly to the ones obtained in Refs. [22e24]. Then, one can obtain an equation for the time-
dependent electron distribution function as
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(6)

where l ¼ eE0qy=ðmeuÞ, N q! is the equilibrium distribution function of phonons, Zu
q! is the energy of a phonon with the

frequency u
q! and the wave vector q!¼ ðqx; qy; qzÞ, JsðxÞ is the sth-order Bessel function of argument x, and [19,25]
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jDN;n;N0;n0 ð q!Þj2 ¼ jC
q!j2jIn;n0 ð±qzÞj2jJN;N0 ðuÞj2; (7)

where C
q! is the electron-phonon interaction constant which depends on themechanism of electron-phonon interaction; the

term In;n0 ð±qzÞ is called the electron form factor and defined by

In;n0 ð±qzÞ ¼ 〈n
���e±iqzz���n0〉; (8)

and,
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with Nmin ¼ minfN;N0g, Nmax ¼ maxfN;N0g, LNMðxÞ being the associated Laguerre polynomial, and u ¼ ℓ
2
Bðq2x þ q2yÞ=2.

In the single (constant) scattering time approximation, the equation for the particle number can be also written classically
as
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where h ¼ B =B is the unit vector along the direction of the magnetic field, the notation ‘∧’ represents the cross product
(vector product), f0 is the equilibrium distribution function of electrons, and t is the electron momentum relaxation time,
which is assumed to be constant in this calculation. Combining Eq. (6) and Eq. (10), we have
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Equation (11) is the quantum kinetic equation for electrons interactingwith phonons. It is fairly general and can be applied
for any kind of phonon including acoustic phonon, polar optical phonon, non-polar optical phonon, etc. In the following, we
will use this equation to derive analytical expression of the MR in the present model.

3. Analytical expression for the magnetoresistivity

When an electron absorbs a photon, it acquires an energy Zu. In the presence of disorder the excited electrons can be
scattered by impurities or phonons. It has been shown that at low temperatures, the longitudinal optical phonon scattering
becomes negligible and the main source of energy relaxation is acoustic phonon scattering [3]. In this calculation we only
consider the electron - acoustic phonon scattering at low temperatures and limit the calculation to the cases of s ¼ �1;0;1.
This means that only one-photon (absorption/emission) processes are taken into account. If the electron - acoustic phonon
scattering is elastic, the acoustic phonon energy in Eq. (11) can be neglected [26]. This is reasonable because when the
magnetic field and the TF frequency are relatively high, the acoustic phonon energy are much smaller than the cyclotron and

photon energy. If wemultiply both sides of Eq. (11) by ðeZ=meÞ k
!

ydðε� εN;nð k
!

yÞÞ and carry out the summations over N, n, and

ky, we canwrite out the equation for the partial current density j
!ðεÞ (the current caused by electrons that have energy of ε) as
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Solving Eq. (12) (see Appendix) we have
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The total current density is given by

J
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0
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If the temperature is low enough, the electrons system is degenerate and the electron distribution function is assumed to

be the Heaviside step function. In addition, N
q! ¼ kBT=ðZu q!Þ ¼ kBT=ðZvsqÞ ¼ ðbZvsqÞ�1 with b ¼ ðkBTÞ�1, and
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where kB, vs, Ed, r, and V0 are the Boltzmann constant, the sound velocity in the material, the acoustic deformation potential,
the mass density, and the normalisation volume of specimen, respectively. Inserting Eq. (15) into Eq. (16) and performing
some manipulation, we obtain the expression for the conductivity tensor, sim, as
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where dij is the Kronecker delta, εijk being the antisymmetric Levi - Civita tensor, the Latin symbols i; j; k; l;m; p stand for the
components x; y; z of the Cartesian coordinates,
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εF and n0 are, respectively, the Fermi level and the electron density, g ¼ n0CLyIðn;n0ÞðεN;n � εFÞ=ð8p3bvsucZ
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and G is the damping factor associated with the momentum relaxation time, t, by GzZ=t [26]. The MR is obtained from the
conductivity tensor by the formula

rxx ¼
sxx

s2xx þ s2yx
; (28)

where sxx and syx are given by Eq. (18).
Equation (28) shows the dependence of the MR on the external fields, including the TF. It is obtained for arbitrary values of

the indices N;n;N0;n0 and looks complicated. The integral (27) was calculated analytically in detail for several transitions
between electronic subbands, such as n ¼ 0, n0 ¼ 1 [33,34]. In this calculation, it will be computationally evaluated. If the well
potential is not parabolic (for instance, rectangular or triangle) or has a finite height, the wavefunction and the energy
spectrum in the confinement direction no longer take the forms (4) and (5). This leads to the changes of the electron form
factor, the transition rate and the magnetoresistivity. In the following, we will give a deeper insight to the above results by
carrying out a numerical evaluation and a graphic consideration.

4. Numerical results and discussion

To deduce some physical conclusions of the above results, in this section we choose GaAs/Al0.32Ga0.68As PQW to carry out
numerical calculations of the MR. The parameters of the PQW are as follows [27,28]: εF ¼ 0:115� 10�18 J, Ed ¼ 13:5 eV, r ¼
5320 kg.m�3, vs ¼ 5378 m.s�1, me ¼ 0:067�m0 (m0 is the free electron mass). We also take t ¼ 10�12 s, Lx ¼ Ly ¼ 100 nm
and only consider the transitions: N ¼ 0,N0 ¼ 1, n ¼ 0, n0 ¼ 1 (the lowest and the first-excited levels). Two separated cases are
considered: absence and presence of the TF.

Fig. 1 shows the dependence of the MR on the magnetic field at different values of the temperature when the TF is absent.
We can see the appearance of the typical SdH oscillations whose period is proportional to 1=B, which is confirmed in Fig. 2. It
Fig. 1. The MR as functions of the magnetic field at different values of the temperature in the case of absence of the terahertz field (E0 ¼ 0). Here, E1 ¼ 5� 102 V/
m and uz ¼ 5:5� 1013 s�1.
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is seen that the period of the oscillations does not depend on the temperature. Also, the oscillation amplitude at a fixed
magnetic field decreases with increasing the temperature. To obtain the law of the temperature dependence of the MR, we
consider the relative amplitude of the SdH oscillations. The relative amplitude is defined as the ratio of amplitudes of the
oscillation peaks at a fixed magnetic field, Bn, and at temperatures T and T0, denoted by AðT ;BnÞ=AðT0;BnÞ. In Fig. 3, we show
the relative amplitude for Bn ¼ 2:126 T and T0 ¼ 1:5 K. The results obtained in other works are also plotted in this figure to
make a comparison. It can be seen that the temperature-dependent relative amplitude in this study is in good agreement with
those obtained experimentally by N. Balkan and his coworkers in the GaAs/AlGaAsmultiple-quantum-wells. The temperature
dependence of the relative amplitude was also theoretically studied in the absence of the EMW by Linke [1] and Balkan [2].
From Fig. 3, we can see a good accordance between our result and the formulae in Refs. [1] and [2].

The effect of the material structure on the MR is also investigated in Fig. 4 where we plot the MR at different values of the
confinement frequency of the PQW. We can see very clearly that at low confinement frequencies, i.e., weak confinement, the
MR oscillation is suppressed, and as the confinement frequency increases the oscillations become more evident. This
behaviour is reasonable because the SdH oscillations can be observed only in low-dimensional materials. When the
confinement is weak, electrons in the PQW behave as a 3D system, hence, the MR oscillations disappear.

We now consider the effect of the TF on the MR oscillations. In Fig. 5, we plot the MR versus the ratio u=uc at a fixed u for
two cases: absence (the dashed curve) and presence of the TF with E0 ¼ 2� 105 V/m and u ¼ 7� 1012 Hz (the solid curve). It
is seen that the TF makes the SdH oscillation broken down, especially at strong magnetic field, and a beat-like oscillation
occurs in this case.We also see that the amplitude of the oscillation remains unchanged at positions where the TF frequency is
equal to the cyclotron frequency multiplying by an integer. In contrast, it decreases most at positions where the TF frequency
Fig. 2. The MR versus the inversion of magnetic field at different values of the temperature in the case of absence of the terahertz field (E0 ¼ 0). Here, E1 ¼ 5�
102 V/m and uz ¼ 5:5� 1013 s�1.

Fig. 3. The relative amplitude AðT ;BnÞ=AðT0; BnÞ versus temperature. The full squares are our calculation, the full circles are experimental measurements for GaAs/
Al0.32Ga0.68 As multiple-quantum-wells from Ref. [2], and the dashed curve is the theory in Ref. [1].



Fig. 4. The MR versus the magnetic field in the absence of the TF at different values of the confinement frequency of the PQW. Here, T ¼ 4 K and E1 ¼ 5� 102

V.m�1.
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is equal to the half-integer of the cyclotron frequency. Moreover, at large magnetic field region the oscillations in both cases
are apparently the same. This behaviour has been observed in a GaAS-based 2DEG in the presence of a microwave at high
frequencies (u=2p � 280 GHz) [9].

To show the effect of the TF amplitude, E0, on the MR, in Fig. 6 we plot the MR on the ratio u=uc for the same system at
different values of E0. Here, uc is fixed ( ucz7:8835� 1012 s�1 for B ¼ 3 T). It is seen that the amplitude of MR oscillations
depends strongly on the TF amplitude. As the TF amplitude increases, the oscillation amplitude increases. This means that the
larger the intensity of the TF, the greater its influence on the MR. Similarly to Fig. 5, we can see in Fig. 6 the MR maxima at
u=uc ¼ 1;2;3;… and the minima at u=uc ¼ 3=2;5=2;7=2;…. Also, the positions of these maxima and minima do not depend
on the TF amplitude. This property is similar to those obtained experimentally in AlGaAs/GaAs quantum wells [5,6,8] where
the MR was modulated by a microwave radiation with frequency u=2p from 27 GHz to 150 GHz. Theoretically, it was also
explained by Ryzhii and Vyurkov [29] considering the scattering of electrons by acoustic piezoelectric phonons accompanied
by the absorption of microwave photons, and by Raichev [30] using the Kubo formula. These MR oscillations induced by an ac
field have been studied in details both theoretically [10,11] and experimentally [4e8]. Moreover, the maxima of the MR show
the cyclotron resonant behaviour of electron when the photon energy equals multiple-integer of the cyclotron energy. A
Fig. 5. Dependencies of the MR on the ratio u=uc with fixed u for two cases: presence (solid curve) and absence (dashed curve) of the TF. Here, T ¼ 4 K, E1 ¼
5� 102 V/m, and uz ¼ 5:5� 1013 s�1.



Fig. 6. Dependencies of the MR on the ratio of the TF frequency and cyclotron frequency at different values of the TF amplitude. Here, B ¼ 3 T (uc ¼ 7:8835� 1012

s�1), T ¼ 4 K, E1 ¼ 5� 102 V.m�1, and uz ¼ 5:5� 1013 s�1.
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review of the very first observations of the cyclotron resonance in a n-channel inversion layer on the Si(100) can be found in
the work by Ando, Fowler, and Stern [31]. The cyclotron resonance has been studied widely in various materials including
parabolic quantum wells [32e34].

5. Conclusions

So far, we have investigated the MR in a PQW, subjected to a crossed dc electric field and magnetic field under the in-
fluence of a TF. The electron - acoustic phonon interaction mechanism is adopted to calculate the conductivity tensor as well
as the MR at low temperature. Electron gas is assumed to be degenerate. The analytical results are applied for GaAs/
Al0.32Ga0.68As PQW to clarify physical meanings by carrying out numerical calculations. When the TF is absent we can see the
SdH oscillations in the MR. The period of these oscillations does not depend on the temperature whereas the amplitude
decreases with increasing temperature. The dependence of the relative amplitude of these oscillations is in good agreement
with the results obtained previously by other methods in similar structures. As the TF is switched on, there occurs the
magnetoresistance oscillations induced by an ac field (TF) which show the beat phenomenon, especially at large magnetic
field region. The amplitude of MR oscillations then has maximum values at u=uc ¼ 1;2;3;… and minimum values at u=uc ¼
3=2;5=2;7=2;… In addition, the amplitude of MR oscillations increases as the TF amplitude (intensity) increases.

Appendix

In this appendix, we present some steps to obtain Eq. (15) from Eq. (12) as follows.
Multiplying both sides of Eq. (12) by uct2, we have
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From Eq. (12) we also have
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h
!
∧ j
!i ¼ 1

uct

h
t
�
Q
!þ S

!�� j
!i

: (31)
Inserting ½ h!∧ j
!� from Eq. (31) into Eq. (30) we have

t
�
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ct
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2
�
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!
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!�

h
!¼ uct

2
h
h
!
∧Q
!iþ uct

2
h
h
!
∧ S
!i

: (32)
Taking the dot product of h
!

and both sides of Eq. (12), we have
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h
!
$ j
!
t

þ uc

h
h
!
∧ j
!i

$ h
!¼

�
Q
!þ S

!�
$ h
!
: (33)
The second term on the left side of Eq. (33) is equal to zero, so

h
!
$ j
!¼ t

�
Q
!þ S

!�
$ h
!
: (34)
Inserting Eq. (34) into Eq. (32) we obtain

t
�
Q
!þ S

!�þ u2
ct

3
��

Q
!þ S

!�
$ h
!�

h
!� uct

2
h
h
!
∧Q
!i� uct

2
h
h
!
∧ S
!i ¼ �1þ u2

ct
2
�
j
!

(35)
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j
!¼ t
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References

[1] H. Linke, P. Omling, P. Ramvall, J. Appl. Phys. 73 (1993) 7533.
[2] N. Balkan, H. Celik, A.J. Vickers, M. Cankurtaran, Phys. Rev. B52 (1995) 17210.
[3] E. Tiras, et al., Superlattices Microstruct. 51 (2012) 733.
[4] M.A. Zudov, R.R. Du, J.A. Simmons, J.L. Reno, Phys. Rev. B64 (2001) 201311 (R).
[5] M.A. Zudov, R.R. Du, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 90 (2003) 046807.
[6] C. L. Yang, M. A. Zudov, T. A. Knutilla, R. R. Du, L. N. Pfeiffer, and K. W. West, arXiv: cond-mat/0303472.
[7] A.T. Hatke, M.A. Zudov, L.N. Pfeiffer, K.W. West, Phys. E 42 (2010) 1081.
[8] I.I. Lyapilin, A.E. Patrakov, Low. Temp. Phys. 30 (2004) 834.
[9] X. Lei, S.Y. Lin, Appl. Phys. Lett. 86 (2005) 262101.

[10] J. Dietel, L.I. Glazman, F.W.J. Hekking, F. von Oppen, Phys. Rev. B 71 (2005) 045329.
[11] M. Torres, A. Kunold, J. Phys. Condens. Matter 18 (2006) 4029.
[12] E.M. Epshtein, Fiz. Tekh. Poluprovodn. 10 (1976) 1414 ([Russian]).
[13] E.M. Epshtein, Sov. J. Theor. Phys. Lett. 2 (1976) 234 ([Russian]).
[14] V.L. Malevich, E.M. Epshtein, Fiz. Tverd. Tela 18 (1976) 1286 ([Russian]).
[15] V.L. Malevich, E.M. Epshtein, Izvestiya Vysshikh Uchebnykh Zavedenij, Fizika 2 (1976) 121 ([Russian]).
[16] G.M. Shmelev, G.I. Tsurkan, Nguyen Hong Shon, Fiz. Tekh. Poluprovodn. 15 (1981) 156 ([Russian]).
[17] V.V. Pavlovich, E.M. Epshtein, Fiz. Tekh. Poluprovodn. 11 (1977) 809 ([Russian]).
[18] N.Q. Bau, N.V. Hieu, N.V. Nhan, Superlattices Microstruct. 52 (2012) 921.
[19] P. Vasilopoulos, M. Charbonneau, C.M. Van Vliet, Phys. Rev. B 35 (1987) 1334.
[20] B. Mitra, K.P. Ghatak, Phys. Stat. Sol. (b) 164 (1991) K13.
[21] S.C. Lee, J. Korean Phys. Soc. 51 (2007) 1979.
[22] N.Q. Bau, B.D. Hoi, J. Korean Phys. Soc. 60 (2012) 59.
[23] N.Q. Bau, N.V. Nghia, N.V. Hieu, B.D. Hoi, in: PIERS Proceedings, March 25-28, Taipei, 2013, p. 416.
[24] N.Q. Bau, B.D. Hoi, Int. J. Mod. Phys. B 28 (2014) 1450001.
[25] M.P. Chaubey, C.M.V. Vliet, Phys. Rev. B 33 (1986) 5617.
[26] P. Vasilopoulos, Phys. Rev. B 33 (1986) 8587.
[27] B.K. Ridley, Quantum Processes in Semiconductors, Clarendon Press, Oxford, 1993.
[28] J. Singh, Physics of Semiconductors and Their Heterostructures, McGraw-Hill, Singapore, 1993.
[29] V. Ryzhii, V. Vyurkov, Phys. Rev. B 68 (2003) 165406.
[30] O.E. Raichev, Phys. Rev. B 78 (2008) 125304.
[31] T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54 (1982) 437.
[32] Huynh Vinh Phuc, Nguyen Ngoc Hieu, Le Dinh, Tran Cong Phong, Opt. Commun. 335 (2015) 37.
[33] Huynh Vinh Phuc, Luong Van Tung, Superlattices Microstruct. 71 (2014) 124.
[34] Tran Cong Phong, Huynh Vinh Phuc, Superlattices Microstruct. 83 (2015) 755.

http://refhub.elsevier.com/S0749-6036(17)31658-0/sref1
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref2
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref3
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref4
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref5
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref7
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref8
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref9
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref10
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref11
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref12
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref13
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref14
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref15
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref16
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref17
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref18
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref19
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref20
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref21
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref22
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref23
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref24
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref25
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref26
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref27
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref28
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref29
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref30
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref31
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref32
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref33
http://refhub.elsevier.com/S0749-6036(17)31658-0/sref34

	Theoretical investigation of magnetoresistivity oscillations modulated by a terahertz field in quantum wells with parabolic ...
	1. Introduction
	2. Theoretical model and transport equation for electrons
	3. Analytical expression for the magnetoresistivity
	4. Numerical results and discussion
	5. Conclusions
	References


