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This work examines a class of switching jump diffusion processes. The main effort is devoted
to proving the maximum principle and obtaining the Harnack inequalities. Compared with the
diffusions and switching diffusions, the associated operators for switching jump diffusions are
non-local, resulting in more difficulty in treating such systems. Our study is carried out by
taking into consideration of the interplay of stochastic processes and the associated systems of
integro-differential equations.
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1. Introduction

In recent years, many different fields require the handling of dynamic systems in which
there is a component representing random environment and other factors that are not
given as a solution of the usual differential equations. Such systems have drawn new as
well as resurgent attention because of the urgent needs of systems modeling, analysis, and
optimization in a wide variety of applications. Not only do the applications arise from
the traditional fields of mathematical modeling, but also they have appeared in emerg-
ing application areas such as wireless communications, networked systems, autonomous
systems, multi-agent systems, flexible manufacturing systems, financial engineering, and
biological and ecological systems, among others. Much effort has been devoted to the
so-called hybrid systems. Taking randomness into consideration, a class of such systems
known as switching diffusions has been investigated thoroughly; see

�
, for example, [23, 32]

and references therein. Continuing our investigation on regime-switching systems, this
paper focuses on a class switching jump diffusion processes. To work on such systems, it is
necessary to study a number of fundamental properties. Although we have a good under-
standing of switching diffusions, switching jump diffusions are more difficult to deal with.
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2 Chen et al.

One of the main difficulties is the operator being non-local. When we study switching
diffusions, it has been demonstrated that although they are similar to diffusion processes,
switching diffusions have some distinct features. With the non-local operator used, the
distinctions are even more pronounced. Our primary motivation stems from the study
of a family of Markov processes in which continuous dynamics, jump discontinuity, and
discrete events coexist. Their interactions reflect the salient features of the underlying
systems. Specifically, we focus on regime-switching jump diffusion processes, in which
the switching process is not exogenous but depends on the jump diffusions. The distinct
features of the systems include the presence of non-local operators, the coupled systems
of equations, and the tangled information due to the dependence of the switching process
on the jump diffusions.

To elaborate a little more on the systems, similar to [32, Section 1.3, pp. 4-5]
���������������������
[32, Section 1.3, pp. 4–5]

, we begin with the following description. Consider a two component process (Xt,Λt),
where Λt ∈ {1, 2}. We call Λt the discrete event process with state space {1, 2}. Imagine
that we have two parallel planes. Initially, Λ0 = 1. It then sojourns in the state 1 for a
random duration. During this period, the diffusion with jump traces out a curve on plane
1 specified by the drift, diffusion, and jump coefficients. Then a random switching takes
place at a random time τ1, and Λ switches to plane 2 and sojourns there for a random
duration. During this period, the diffusion with jump traces out a curve on plane 2 with
different drift, diffusion, and jump coefficients. What we are interested in is the case that
Λt itself is not Markov, but only the two-component process (Xt,Λt) is a Markov process.
Treating such systems, similar to the study of switching diffusions, we may consider a
number of questions: Under what conditions, will the processes be recurrent and positive
recurrent? Under what conditions, will the process be positive recurrent? Is it true that
positive recurrence implies the existence of an ergodic measure. To answer these ques-
tions, we need to examine a number of issues of the switching jump diffusions and the
associated systems of integro-partial differential equations.

Switching jump diffusions models arise naturally in many applications. To illustrate,
consider the following motivational example–an optimal stopping problem. It is an ex-
tension of the optimal stopping problem for switching diffusions with diffusion dependent
switching in [22]. We assume that the dynamics are described by switching jump diffu-
sions rather than switching diffusions. Consider a two component Markov process (Xt,Λt)
given by

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dW (t) +

∫
R0

c(Xt−,Λt−, z)Ñ0(dt, dz),

where b(·), σ(·), and c(·) are suitable real-valued functions, Ñ0(·) is a compensated real-
valued Poisson process, W (·) is a real-valued Brownian motion, and R0 = R − {0}.
Because the example is for motivation only, we defer the discussion of the precise setup,
formulation, and conditions needed for switching jump diffusions to the next section. We
assume that Λ depends on the dynamics of X. Denote the filtration by {Ft}t≥0 and let
T be the collection of Ft-stopping times. Then the treatment of the optimal stopping
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Maximum Principles and Harnack Inequalities 3

problem leads to the consideration of the following value function

V (x, i) = sup
τ̃∈T

Ex,i

[ ∫ τ̃

0

[e−βtL(Xt,Λt)dt+ e−βτ̃ G̃(Xτ̃ ,Λτ̃ )]
]
,

where L(·) and G̃(·) are suitable functions, and X0 = x and Λ0 = i. As an even more
specific example, consider an asset model

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dW (t) +

∫
R0

c(Λt−, z)Xt−Ñ0(dt, dz).

Then the risk-neutral price of the perpetual American put option is given by

V (x, i) = sup
τ̃∈T

Ex,i[K −Xτ̃ ]
+.

One of the motivations for using jump-diffusion type models is that it has been ob-
served empirically that distributions of the returns often have heavier tails than that of
normal distributions. In particular, if we take N(t) to be a one-dimensional stationary
Poisson process with EN(t) = λt for some λ > 0, and take the compensated Poisson

process to be Ñ(t) = N(t)−λt. The resulted system is used widely in option pricing and
mean-variance portfolio selections.

Next, consider a modification of a frequently used system in control theory. Let Γ be
a compact subset of Rd − {0} that is the range space of the impulsive jumps. For any
subset B in Γ, N(t, B) counts the number of impulses on [0, t] with values in B. Consider

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dWt + dJt,

Jt =

∫ t

0

∫
Γ

c(Xs−),Λs−), γ)N(ds, dγ),

with X0 = x,Λ0 = Λ, together with a transition probability specification of the form

P{Λt+Δt = j|Λt = i, (Xs,Λs), s ≤ t} = qij(Xt)Δt+ o(Δt), i �= j,

where b and σ are suitable vector-valued and matrix-valued functions, respectively, and
W is a standard vector-valued Brownian motion. Assume that N(·, ·) is independent of
the Brownian motion W (·) and the switching process Λ(·). Alternatively, we can write

dΛt =

∫
R

h(Xs−),Λs−), z)N1(dt, dz),

where h(x, i, z) =
∑

j∈M(j − i)1{z∈Δij(x)} with Δij(x) being the consecutive left closed

and right open intervals of the real line, and Ñ(t, B) being a compensated Poisson mea-
sure, which is independent of the Brownian motion W (t), λ ∈ (0,∞) is known as the
jump rate and π(B) is the jump measure; N1(dt, dz) is a Poisson measure with intensity
dt × m1(dz), and m1(dz) is the Lebesgue measure on R, N1(dt, dz) is independent of
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the Brownian motion W (t) and the Poisson measure Ñ(·, ·). Define a compensated or
centered Poisson measure as

Ñ(t, B) = N(t, B)− λtπ(B), for B ⊂ Γ,

where 0 < λ < ∞ is known as the jump rate and π(·) is the jump distribution (a
probability measure). In the above, we used the setup similar to [21, p. 37]. With this
centered Poisson measure, we can rewrite Jt as

Jt =

∫ t

0

∫
Γ

g(Xs−,Λs−, γ)Ñ(ds, dγ) + λ

∫ t

0

∫
Γ

g(Xs−,Λs−, γ)π(dγ)ds.

The related jump diffusion models without switching have been used in a wide range of
applications in control systems; see [21] and references therein.

We devote our attention to the maximum principle and Harnack inequalities for the
jump-diffusion processes with regime-switching in this paper. Apart from being inter-
esting in their own right, they play very important roles in analyzing many properties
such as recurrence, positive recurrence, and ergodicity of the underlying systems. There
is growing interest in treating switching jump systems; see [31] and many references
therein. However, up to date, there seems to be no results on maximum principles and
Harnack inequality for jump-diffusion processes with regime switching. As was alluded to
in the previous paragraph, the main difficulty is that the operators involved are non-local.
Thus, the results obtained for the systems (known as weakly coupled elliptic systems)
corresponding to switching diffusions cannot be carried over. Thus new approaches and
ideas have to be used.

Looking into the literature, in [15], Evans proved the maximum principle for uniformly
elliptic equations. In the classical book [27], Protter and Weinberger treated maximum
principle for elliptic equations as well as Harnack inequalities and generalized maximum
principle together with a number of other topics. For switching diffusion processes, several
papers studied Harnack inequality for the weakly coupled systems of elliptic equations.
In [14], Chen and Zhao assumed Hölder continuous coefficients, and established Harnack
inequality and full Harnack inequality based on the representations and estimates of the
Green function and harmonic measures of the operators in small balls. In [1], Arapos-
tathis, Ghosh, and Marcus assumed only measurability of the coefficients to prove the
desired results; their proofs were based on the approach of Krylov [19] for estimating the
oscillation of a harmonic function on bounded sets. There have been much interest in
treating jump processes and associated non-local operators. In a series of papers, Bass
and Kassmann [3], Bass, Kassmann, and Kumagai [4], Bass and Levin [5], Chen and
Kumagai [8, 9, 10], Foondun [16], Song and Vondracek [29] examined Harnack inequali-
ties for Markov processes with discontinuous sample paths; see also Chen, Hu, Xie, and
Zhang [11] for a related work and a maximum principle. In [6], Caffarelli and Silvestre
considered nonlinear integro-differential equations arising from stochastic control prob-
lems with pure jump Lévy processes (without a Brownian motion) using a purely analytic
approach. Nonlocal version of ABP (Alexandrov-Bakelman-Pucci) estimate, Harnack in-
equality, and regularity were obtained. Most recently, Harnack inequality for solutions to
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the Schrödinger operator were dealt with in [2] by Athreya and Ramachandran for jump
diffusions on R

d with d ≥ 3 whose associate operator is an integro-differential operator
includes the pure jump part as well as elliptic part. Their approach is based on the com-
parability of Green functions and Poisson kernels using conditional gauge function and
strong regularity is assumed on the coefficients of the diffusion and jumping components.

In this paper, we focus on stochastic processes that have a switching component in
addition to the jump diffusion component. The switching in fact is “jump diffusion depen-
dent”; more precise notion will be given in the formulation section. When the switching
component is missing, it reduces to the jump diffusion processes; when the continu-
ous disturbance due to Brownian motion is also missing, it reduces to the case of pure
jump processes. If only the jump process is missing, it reduces to the case of switching
diffusions. Compared to the case of switching diffusion processes, in lieu of systems of
elliptic partial differential equations, we have to deal with systems of integro-differential
equations. Using mainly a probabilistic approach, we establish the maximum principles.
Because local analysis alone is not adequate, the approach treating Harnack inequal-
ity for switching diffusion processes cannot be used in the current case. We adopt the
probabilistic approach via Krylov type estimates from [5], which was further extended in
[3, 16, 29], to derive the Harnack inequality for the nonnegative solution of the system
of integro-differential equations.

We remark that since in this paper we are concerned with regime-switching jump-
diffusions, we assume the regime-switching component m ≥ 2. However, the results and
their proofs of this paper hold for the case of m = 1 but are much easier as there would
be no regime-switching. In particular, as a byproduct we have Harnack inequality for
non-negative harmonic functions for Schrodinger operator L+ q, where L is an integro-
differential operator of (3.1) and q ≤ 0 is bounded and measurable. Although in this case
our potential q is non-positive and bounded while in [2] the potential q can be a function
in a suitable Kato class, our integro-differential operator L of (3.1) has very general
non-local operator component and the diffusion coefficients and the jumping measure
are much less regular than that in [2].

The rest of the paper is arranged as follows. Section 2 presents the formulation of the
problem. In Section 3, we develop the maximum principle for regime-switching jump-
diffusions, using a probabilistic approach that allows us to work under a quite general
context. We obtain the Harnack inequality for the regime-switching jump-diffusions pro-
cesses in Section 4. Finally, the paper is concluded with further remarks.

2. Formulation

Throughout the paper, we use z′ to denote the transpose of z ∈ R
l1×l2 with l1, l2 ≥ 1, and

R
d×1 is simply written as Rd. If x ∈ R

d, the norm of x is denoted by |x|. For x0 ∈ R
d and

r > 0, B(x0, r) denotes the open ball in R
d centered at x0 with radius r > 0. IfD is a Borel

set in R
d, D and Dc = R

d \D denote the closure and the complement of D, respectively.
The space C2(D) refers to the class of functions whose partial derivatives up to order 2
exist and are continuous in D, and C2

b (D) is the subspace of C2(D) consisting of those
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6 Chen et al.

functions whose partial derivatives up to order 2 are bounded. The indicator function
of a set A is denoted 1A. Let Yt = (Xt,Λt) be a two component Markov process such
that X is an R

d-valued process, and Λ is a switching process taking values in a finite set
M = {1, 2, . . . ,m}. Throughout this paper, d ≥ 1 and m ≥ 2. Let b(·, ·) : Rd ×M �→ R

d,
σ(·, ·) : Rd ×M �→ R

d × R
d, and for each x ∈ R

d, πi(x, dz) is a σ-finite measure on R
d

satisfying ∫
Rd

(1 ∧ |z|2)πi(x, dz) < ∞.

Let Q(x) = (qij(x)) be an m×m matrix depending on x such that

qij(x) ≥ 0 for i �= j,
∑
j∈M

qij(x) ≤ 0.

Define
Q(x)f(x, ·)(i) :=

∑
j∈M

qij(x)f(x, j).

The generator G of the process (Xt,Λt) is given as follows. For a function f : Rd×M �→ R

and f(·, i) ∈ C2(Rd) for each i ∈ M, define

Gf(x, i) = Lif(x, i) +Q(x)f(x, ·)(i), (x, i) ∈ R
d ×M, (2.1)

where

Lif(x, i) =
d∑

k,l=1

akl(x, i)
∂2f(x, i)

∂xk∂xl
+

d∑
k=1

bk(x, i)
∂f(x, i)

∂xk

+

∫
Rd

(
f(x+ z, i)− f(x, i)−∇f(x, i) · z1{|z|<1}

)
πi(x, dz), (2.2)

where a(x, i) :=
(
akl(x, i)

)
= σ(x, i)σ′(x, i), ∇f(·, i) denotes the gradient of f(·, i).

Let Ω = D
(
[0,∞),Rd×M

)
denote the space of all right continuous functions mapping

[0,∞) to R
d×M, having finite left limits. Define (Xt,Λt) = w(t) for w ∈ Ω and let {Ft}

be the right continuous filtration generated by the process (Xt,Λt). A probability measure
Px,i on Ω is a solution to the martingale problem for

(
G, C2

b (R
d)
)
started at (x, i) if

(a) Px,i(X0 = x,Λ0 = i) = 1,
(b) if f(·, i) ∈ C2

b (R
d) for each i ∈ M, then

f(Xt,Λt)− f(X0,Λ0)−
∫ t

0

Gf(Xs,Λs)ds,

is a Px,i martingale.
If for each (x, i), there is only one such Px,i, we say that the martingale problem
for

(
G, C2

b (R
d)
)
is well-posed.
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Maximum Principles and Harnack Inequalities 7

Definition 2.1 Let U = D ×M with D ⊂ R
d being a bounded connected open set. A

bounded and Borel measurable function f : Rd ×M �→ R
d is said to be G-harmonic in

U if for any relatively compact open subset V of U ,

f(x, i) = Ex,i

[
f (X(τV ),Λ(τV ))

]
for all (x, i) ∈ V,

where τV = inf{t ≥ 0 : (X(t),Λ(t)) /∈ V } is the first exit time from V .

Throughout the paper, we assume conditions (A1)-(A3) hold until further notice.

(A1) The functions σ(·, i) and b(·, i) are bounded continuous on R
d, and qij(·) is bounded

Borel measurable on R
d for every i, j ∈ M.

(A2) There exists a constant κ0 ∈ (0, 1] such that

κ0|ξ|2 ≤ ξ′a(x, i)ξ ≤ κ−1
0 |ξ|2 for all ξ ∈ R

d, x ∈ R
d, i ∈ M,

and |b(x, i)| ≤ κ−1
0 for all x ∈ R

d and i ∈ M.
(A3) There exists a σ-finite measure Π(dz) so that πi(x, dz) ≤ Π(dz) for every x ∈ R

d

and i ∈ M and ∫
Rd

(
1 ∧ |z|2

)
Π(dz) ≤ κ1 < ∞.

(A4) For any i ∈ M and x ∈ R
d, πi(x, dz) = π̃i(x, z)dz. Moreover, for any r ∈ (0, 1], any

x0 ∈ R
d, any x, y ∈ B(x0, r/2) and z ∈ B(x0, r)

c, we have

π̃i(x, z − x) ≤ αrπ̃i(y, z − y),

where αr satisfies 1 ≤ αr ≤ κ2r
−β with κ2 and β being positive constants.

Remark 2.2 (a) Under Assumptions (A1)-(A3), for each i ∈ M, the martingale problem
for (Li, C

2
b (R

d)) is well-posed for every starting point x ∈ R
d (see [20, Theorem 5.2]).

Then the switched Markov process (Xt,Λt) can be constructed from jump diffusions
having infinitesimal generators Li, 1 ≤ i ≤ m, as follows. Let Xi be the strong Markov
process whose distribution is the unique solution to the martingale problem (Li, C

2
b (R

d)).

Suppose we start the process at (x0, i0), run a subprocess X̃i0 of Xi0 that got killed with

rate −qi0i0(x); that is, via Feynman-Kac transform exp
(∫ t

0
qi0i0(X

i0
s )ds

)
. Note that this

subprocess X̃i0 has infinitesimal generator Li0 + qi0i0 . At the lifetime τ1 of the killed

process X̃i0 , jump to plane j �= i0 with probability −qi0j(X
i0(τ1−))/qi0i0(X

i0(τ1−))

and run an independent copy of a subprocess X̃j of Xj with killing rate −qjj(x) from
position Xi0(τ1−). Repeat this procedure. The resulting process (Xt,Λt) is a strong
Markov process with lifetime ζ by [17, 24]. For each x ∈ R

d, we say that the matrix
Q(x) is Markovian if

∑
j∈M qij(x) = 0 a.e. on R

d for every i ∈ M, and sub-Markovian

if
∑

j∈M qij(x) ≤ 0 a.e. on R
d for every i ∈ M. When Q(x) is Markovian, the lifetime

ζ = ∞, and when Q(x) is just sub-Markovian, ζ can be finite. We use the convention
that (Xt,Λt) = ∂ for t ≥ ζ, where ∂ is a cemetery point, and any function is extended
to ∂ by taking value zero there. It is easy to check that the law of (Xt,Λt) solves the
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martingale problem for
(
G, C2

b (R
d)
)
so it is the desired switched jump-diffusion. This

way of constructing switched diffusion has been utilized in [13, p.296]. It follows from
[30] that law of (Xt,Λt) is the unique solution to the martingale problem for

(
G, C2

b (R
d)
)
.

(b) Conditions (A1) and (A2) presents the uniform ellipticity of a(x, i) and the uniform
boundedness of b(x, i) and qij(x). The measure πi(x, dz) can be thought of as the intensity
of the number of jumps from x to x+z (see [3, 5]). Condition (A4) tells us that πi(x, dy) is
absolutely continuous with respect to the Lebesgue measure dx on R

d, and the intensities
of jumps from x and y to a point z are comparable if x, y are relatively far from z but
relatively close to each other. If π̃i(x, z) is such that

c−1
i

|z|d+βi
≤ π̃i(x, z) ≤

ci
|z|d+βi

for some ci ≥ 1 and βi ∈ (0, 2), then condition (A4) is satisfied with 1 < αr < κ2

independent of r ∈ (0, 1). Condition (A4) is an essential hypothesis in the proof of the
Harnack inequality.

Throughout the paper, we use capital letters C1, C2, . . . for constants appearing in
the statements of the results, and lowercase letters c1, c2, . . . for constants appearing in
proofs. The numbering of the latter constants afresh in every new proof.

3. Maximum Principle

In this section, we establish maximum principle for the coupled system under conditions
(A1)-(A3). We emphasize that we do not assume condition (A4) for the maximum prin-
ciple. In Subsection 3.1, we prepare three propositions for general diffusions with jumps
that will be used several times in the sequel.

3.1. Jump Diffusions and Strict Positivity

Consider

Lf(x) =
d∑

k,l=1

akl(x)
∂2f(x)

∂xk∂xl
+

d∑
k=1

bk(x)
∂f(x)

∂xk

+

∫
Rd

(
f(x+ z)− f(x)−∇f(x) · z1{|z|<1}

)
π(x, dz), (3.1)

where (akl(x)) is a continuous matrix-valued function and b(x) = (b1(x), . . . , bd(x)) is a
R

d-valued function on R
d such that

λ−1Id×d ≤ (akl(x)) ≤ λId×d and ‖b‖∞ ≤ λ on R
d (3.2)

for some λ ≥ 1, and π(x, dz) is a σ-finite measure on R
d satisfying

K :=

∫
Rd

(
1 ∧ |z|2

)
sup
x∈Rd

π(x, dz) < ∞. (3.3)
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Maximum Principles and Harnack Inequalities 9

Here Id×d denotes the d × d-identity matrix. By [20, Theorem 5.2], there is a unique
conservative strong Markov process X = {Xt, t ≥ 0;Px, x ∈ R

d} that is the unique
solution to the martingale problem (L, C2

b (R
d)). Suppose q ≥ 0 is a bounded function

on R
d. One can kill the sample path of X with rate q. For this, let η be an independent

exponential random variable with mean 1. Let

ζ = inf

{
t > 0 :

∫ t

0

q(Xs)ds > η

}

and define Zt = Xt for t < ζ and Zt = ∂ for t ≥ ζ, where ∂ is a cemetery point. It is
easy to see that for any x ∈ R

d and ϕ ≥ 0 on R
d,

Ex[ϕ(Zt); t < ζ] = Ex [eq(t)ϕ(Xt)] , t ≥ 0, (3.4)

where

eq(t) := exp

(
−
∫ t

0

q(Xs)ds

)
.

The process Z is called the subprocess of X killed at rate q, and ζ the lifetime of Z. For
A ⊂ R

d, we define its hitting time and exit time of Z by

σZ
A = inf{t ≥ 0 : Zt ∈ A} and τZA = inf{t ≥ 0 : Zt /∈ A},

with the convention that inf ∅ = ∞. Note that τZA ≤ ζ. The following two propositions
are based on the support theorem for diffusions with jumps in [16].

Proposition 3.1 There is a positive constant C1 depending only on λ and K in (3.2)-
(3.3) and an upper bound on ‖q‖∞ such that for any R ∈ (0, 1], r ∈ (0, R/4), x0 ∈ R

d,
x ∈ B(x0, 3R/2) and y ∈ B(x0, 2R),

Py

(
σZ
B(x,r) < τZB(x0,2R)

)
≥ C1r

6.

Proof: Note that Zt = Xt for t ∈ [0, ζ), where ζ is the lifetime of Z. Define

σB(x,r) = inf{t ≥ 0 : Xt ∈ B(x, r)}, τB(x0,2R) = inf{t ≥ 0 : Xt /∈ B(x0, 2R)}.

Define a function φ : [0, 8] �→ R
d as follows

φ(t) = y +
x− y

|x− y| t, t ∈ [0, 8].

By [16, Theorem 4.2] and [16, Remark 4.3], there exists a constant c1 > 0 so that

Py

(
sup
t≤8

|Xt − φ(t)| < r
)
≥ c1r

6, (3.5)

for any x ∈ B(x0, 3R/2) and r ∈ (0, R/4). Moreover, c1 depends only on λ and an upper
bound on ‖b‖∞ and ‖q‖∞. Since |φ′(t)| = 1 and φ(|x−y|) = x, on

{
sup
t≤8

|Xt−φ(t)| < r
}
,
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10 Chen et al.

we have X|x−y| ∈ B(x, r), Xt ∈ B(x0, 2R) for 0 ≤ t ≤ |x − y|, and |X8R − x0| ≥
|X8R − y| − |y − x0| > 3R. As a result, σB(x,r) < |x − y| < τB(x0,2R) < 8R ≤ 8 on{
sup
t≤8

|Xt − φ(t)| < r
}
. Then (3.5) leads to

Py

(
σB(x,r) < τB(x0,2R) < 8

)
≥ c1r

6.

It follows from (3.4) that

Py

(
σZ
B(x,r) < τZB(x0,2R)

)
≥ Py

(
σZ
B(x,r) < τZB(x0,2R) < 8 < ζ

)

≥ exp(−6‖q‖∞)Py

(
σB(x,r) < τB(x0,2R) < 8

)

≥ exp(−6‖q‖∞)c1r
6.

This proves the proposition. �

Proposition 3.2 (i) For any 0 < r ≤ 1/2 and x0 ∈ R
d, if A ⊂ B(x0, r) has positive

Lebesgue measure, then Px(σ
Z
A < τZB(x0,2r)

) > 0 for every x ∈ B(x0, r).

(ii) Let ρ ∈ (0, 1) be a constant. There exist a nondecreasing function Φ : (0,∞) �→
(0,∞) and r0 ∈ (0, 1/2], depending only on λ and K in (3.2)-(3.3) and an upper bound
on ‖q‖∞, such that for any x0 ∈ R

d, any r ∈ (0, r0), and any Borel subset A of B(x0, r)
with |A|/rd ≥ ρ, we have

Px

(
σZ
A < τZB(x0,2r)

)
≥ 1

2
Φ
(
|A|/rd

)
, x ∈ B(x0, r). (3.6)

Proof: As in the proof of Proposition 3.1, define

σA = inf{t ≥ 0 : Xt ∈ A} and τB(x0,2r) = inf{t ≥ 0 : Xt /∈ B(x0, 2r)}.

By [16, Corollary 4.9], there is a nondecreasing function Φ : (0,∞) �→ (0,∞) such that if
A ⊂ B(x0, r), |A| > 0, r ∈ (0, 1/2] and x ∈ B(x0, r), then

Px(σA < τB(x0,2r)) ≥ Φ
(
|A|/rd

)
. (3.7)

Using test function and Itô’s formula, it is easy to derive (see [16, Proposition 3.4(b)] or
Proposition 4.4 below) that there is a constant c1 > 0 independent of x0 and r ∈ (0, 1/2]
so that

ExτB(x0,2r) ≤ c1r
2 for any x ∈ B(x0, 2r). (3.8)

(i) Suppose 0 < r ≤ 1/2 and A ⊂ B(x0, r) has positive Lebesgue measure. Then by
(3.7), Px(σA < τB(x0,2r)) > 0. Hence in view of (3.8), we have for every x ∈ B(x0, r),

Px(σ
Z
A < τZB(x0,2r)

) ≥ Px(σA < τB(x0,2r) < ζ) = Ex

[
eq(τB(x0,2r))1{σA<τB(x0,2r)}

]
> 0.
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Maximum Principles and Harnack Inequalities 11

(ii) Observe that

Px

(
σZ
A < τZB(x0,2r)

)
≥ Px

(
σA < τB(x0,2r); τB(x0,2r) < ζ

)

≥ Px

(
σA < τB(x0,2r)

)
− Px

(
τB(x0,2r) ≥ ζ

) (3.9)

For A ⊂ B(x0, r) with |A| ≥ ρrd, we have Px(σA < τB(x0,2r)) ≥ Φ(ρ) . On the other
hand,

Px(ζ > t) = Ex

[
exp

(
−
∫ t

0

q(Xs)ds

)]
≥ exp(−‖q‖∞ t).

This combined with (3.8) yields that

Px(ζ > τB(x0,2r)) ≥ Px(ζ > r > τB(x0,2r))
≥ Px(ζ > r)− Px(τB(x0,2r) ≥ r)

≥ exp(−‖q‖∞r)−
ExτB(x0,2r)

r
≥ exp(−‖q‖∞r)− c1r.

Since limr→0 (exp(−‖q‖∞r)− c1r) = 1, there is a constant r0 ∈ (0, 1/2] such that

Px

(
τB(x0,2r) ≥ ζ

)
≤ 1

2
Φ(ρ) for all r ∈ (0, r0). (3.10)

The desired conclusion follows from (3.9), (3.7), and (3.10). �

For a connected open subset D ⊂ R
d and a Borel measurable function f ≥ 0 on D,

define Gq
Df(x) = Ex

[∫ τZ
D

0
f(Zs)ds

]
.

Proposition 3.3 For f ≥ 0, either Gq
Df(x) > 0 on D or Gq

Df(x) ≡ 0 on D. Moreover,
if Gq

Df > 0 on D if and only if {x ∈ D : f(x) > 0} has positive Lebesgue measure.

Proof: Suppose that A := {x ∈ D : Gq
Df(x) > 0} has positive Lebesgue measure.

We claim that for any r ∈ (0, 1] and B(x0, r) ⊂ D so that B(x0, r/2) ∩ A has positive
Lebesgue measure, then B(x0, r/2) ⊂ A. This is because if B(x0, r/2) ∩ A has positive
Lebesgue measure, then there is a compact subset K ⊂ B(x0, r/2) ∩ A having positive
Lebesgue measure. By Proposition 3.2 (i), we have Px(σ

Z
K < τZB(x0,r)

) > 0 for every

x ∈ B(x0, r/2). Consequently,

Gq
Df(x) = Ex

∫ τZ
D

0

f(Zs)ds ≥ Ex

[
Gq

Df(ZσK
);σZ

K < τZB(x0,r)

]
> 0

for every x ∈ B(x0, r/2). This proves the claim. Since B(x0, r/2) ⊂ A, by a chaining
argument, the above reasoning shows that A = D if A has positive Lebesgue measure.
Now assume that Gq

Df = 0 a.e. on D. Since Gq
Df(x) = Ex

∫ τD
0

eq(s)f(Xs)ds, we have

GDf(x) := Ex

∫ τD
0

f(Xs)ds = 0 a.e. on D. In particular, GD(f∧n) = 0 a.e. on D. By [16,
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12 Chen et al.

Theorem 2.3], bounded harmonic functions of X is Hölder continuous. By the proof of
[4, Proposition 3.3], this together with (3.8) implies that GD(f ∧n) is Hölder continuous
on D. Therefore we have GD(f ∧ n)(x) = 0 for every x ∈ D. Consequently, GDf(x) = 0
for every x ∈ D and so is Gq

Df(x). This proves the first part of the proposition.
For the second part of the proposition, suppose that f ≥ 0 and f = 0 a.e. on D. It

follows from [25, Corollary 2] that for every x0 ∈ R
d,

Ex

∫ τB(x0,1)

0

(1Df)(Xs)ds = 0 for every x ∈ B(x0, 1). (3.11)

We claim that Ex

∫ τD
0

f(Xs)ds = 0 for every x ∈ D. For this, we define a sequence of
stopping times: τ0 := 0, τ1 := inf{t ≥ 0 : |Xt−X0| ≥ 1}∧τD, and for n ≥ 2, τn := inf{t ≥
τn−1 : |Xt−Xτn−1 | ≥ 1}∧ τD. Note that on {limn→∞ τn < τD}, limn→∞ Xτn = Xlimn→∞

by the left-continuity of Xt. On the other hand, the sequence {Xτn ;n ≥ 1} diverges on
{limn→∞ τn < τD} as |Xτn−Xτn−1 | ≥ 1 by the definition of τn. This contradiction implies
that Px(limn→∞ τn < τD) = 0; in other words, limn→∞ τn = τD Px-a.s. Consequently,
we have by (3.11)

Ex

∫ τD

0

f(Xs)ds = Ex

∞∑
n=1

∫ τn

τn−1

f(Xs)ds

=
∞∑

n=1

Ex

[
EXτn−1

∫ τB(Xτn−1
,1)∧τD

0

f(Xs)ds; τn−1 < τD

]

= 0.

It follows then Gq
Df(x) = Ex

∫ τD
0

eq(Xs)f(Xs)ds = 0 for every x ∈ D. This proves that
if f ≥ 0 and f = 0 a.e. on D, then Gq

Df ≡ 0 on D. Next suppose that f ≥ 0 is a bounded
function on R

d and {x ∈ D : f(x) > 0} has positive Lebesgue measure, we will show
that Gq

D(x) > 0 for every x ∈ D. Let cp > 0 be the constant in the Remark following
Theorem 3.1 on p.282 of [20]. Using a localization argument if needed, we may assume
that |aij(x) − aij(y)| ≤ 1/cp for every x, y ∈ R

d. Let K be a compact subset of D so
that {x ∈ K : f(x) > 0} has positive Lebesgue measure. Then by Theorem 3.6 and
the proof of Theorem 4.2 both in [20], for λ > 0 large, v(x) := Ex

∫∞
0

e−λt(1Kf)(Xs)ds

is non-trivial on R
d. We define a sequence of stopping times as follows. Let S1 := σK ,

T1 := inf{t > σK : Xt /∈ D}; for n ≥ 2, define Sn := inf{t > Tn−1 : Xt ∈ K} and
Tn := inf{t > Sn : Xt /∈ D}. Then

v(x) =

∞∑
n=1

Ex

∫ Tn

Sn

e−λsf(Xs)ds =
∞∑

n=1

Ex

[
e−λSnGD,λ(1Kf)(XSn)

]
,

where GD,λϕ(x) := Ex

∫ τD
0

e−λsϕ(Xs)ds. Hence GD,λ(1Kf)(x) cannot be identically zero
on K. By the first part of this proof (by taking q = λ), we have GD,λ(1Kf)(x) > 0 for
every x ∈ D. It follows that GDf(x) > 0 and so Gq

Df(x) > 0 for every x ∈ D. �
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Maximum Principles and Harnack Inequalities 13

3.2. Maximum Principle for Switched Markov Processes

Now we return to the setting of switched Markov process (Xt,Λt). Let D be a bounded
open set in R

d and U = D × M. Then τD = inf{t > 0 : Xt /∈ D} is the same as
τU := inf{t > 0 : Yt := (Xt,Λt) /∈ U}. Suppose u is a G-harmonic function in U . Under
some mild assumptions (for example, when u is bounded and continuous up to ∂D×M),
we have

u(x, i) = Ex,i[u (XτD ,ΛτD )] for (x, i) ∈ U. (3.12)

It follows immediately that if u ≥ 0 on U c, then u ≥ 0 in U .
To proceed, we recall the notion of irreducibility of the generator G or the matrix

function Q(·). The operator G or the matrix function Q(·) is said to be irreducible on D
if for any i, j ∈ M, there exist n = n(i, j) ≥ 1 and Λ0, . . . ,Λn ∈ M with Λk−1 �= Λk for
1 ≤ k ≤ n, Λ0 = i,Λn = j such that {x ∈ D : qΛk−1Λk

(x) > 0} has positive Lebesgue
measure for k = 1, . . . , n.

For each i ∈ M, denote by Xi the jump diffusion that solves the martingale problem
(Li, C

2
b (R

d)) and X̃i the subprocess of Xi killed at rate −qii(x). For a connected open

set D ⊂ R
d, Gi

D denotes the Green operator of X̃i in D.

Theorem 3.4 Assume that conditions (A1)-(A3) hold, that D is a bounded connected
open set in R

d, and that Q is irreducible on D. Suppose that u is a G-harmonic function
in U = D ×M given by

u(x, i) = Ex,i[φ (XτD ,ΛτD ) ; τD < ∞] for (x, i) ∈ U

and φ ≥ 0 on Dc ×M. Then either u(x, i) > 0 for every (x, i) ∈ U or u ≡ 0 on U .

Proof: Clearly u ≥ 0 on U . Suppose that u is not a.e. zero on U . Without loss of
generality, let us assume that {x ∈ D : u(x, 1) > 0} has positive Lebesgue measure.
Denote by τ1 := inf{t > 0 : Λt �= Λ0} the first switching time for Yt = (Xt,Λt). Let

vi(x) := v(x, i) := Ex,i[φ(X̃
i
τD , i)] = Ex,i[φ(X

i
τD , i); τD < τ1].

Then vi is a harmonic function of Li + qii in D with vi = φ(·, i) on Dc. For 1 ≤ i ≤ m,
using the strong Markov property τ1, we have

u(x, i) = vi(x) +

m∑
j=1
j �=i

Gi
D(qiju(·, j))(x). (3.13)

Under the above assumption, either {x ∈ D : v1(x) > 0} or {x ∈ D : G1
D(

∑m
j=1
j �=i

qiju(·, j))(x) >
0} has positive Lebesgue measure. If the latter happens, then by Proposition 3.3,
G1

D(
∑m

j=1
j �=i

qiju(·, j))(x) > 0 and hence u(x, 1) > 0 for every x ∈ D. Note that

vi(x) = Ex[e−qii(τD)φ(Xi(τD), i)] ≤ Ex[φ(X
i(τD), i)] =: ũi(x). (3.14)
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14 Chen et al.

Suppose |{x ∈ D : v1(x) > 0}| > 0. Then so does A := {x ∈ D : ũ1(x) > 0}. For any
x0 ∈ D and r ∈ (0, 1) so that B(x0, r) ⊂ D and B(x0, r/2) ∩ A has positive Lebesgue
measure, let K ⊂ B(x0, r/2)∩A be a compact set having positive Lebesgue measure. By
(3.7), Px(σ

1
K < τ1B(x0,r))

> 0 for every x ∈ B(x0, r/2), where σ1
K := inf{t ≥ 0 : X1

t ∈ K}
and τ1B(x0,r)

:= inf{t ≥ 0 : X1
t /∈ B(x0, r)}. Hence for every x ∈ B(x0, r/2), by the strong

Markov property of Xi at σ1
K ,

ũ1(x) ≥ Ex

[
ũ1(X

i
σ1
K
);σ1

K < τD

]
> 0.

Consequently, B(x0, r/2) ⊂ A. By the chaining argument, the same reasoning as above
leads to A = D; that is, ũ1(x) > 0 on D. By the probabilistic representation (3.14) of
v1, we have v1(x) > 0 on D and hence u(x, 1) > 0 on D. Thus we have shown that
u(x, 1) > 0 on D whenever {x ∈ D : u(x, 1) > 0} has positive Lebesgue measure.

For i �= 1, there is a self-avoiding path i = i0, . . . , in = i so that {x ∈ D : qik−1ik(x) >
0} has positive Lebesgue measure for each k = 1, . . . , n. By (3.13) and its iteration, we
have

u(x, i) = vi(x) +

n∑
k=1

m∑
l1,...,lk=1

l1 �=1,l2 �=l1,...,lk �=lk−1

Gi
D(qil1(G

l1
Dql1l2(· · · (G

lk−1

D qlk−1lkvlk)) · · · )))(x)

+

m∑
l1,...,ln=1

l1 �=1,l2 �=l1,...,ln �=ln−1

Gi
D(qil1(G

l1
Dql1l2(· · · (G

ln−1

D qln−1lnu(·, ln)) · · · )))(x)

≥ Gi
D(qii1(G

i1
Dqi1i2(· · · (G

in−1

D qin−1inu(·, i)) · · · )))(x),

which is strictly positive in D by Proposition 3.3.
Next assume that u = 0 a.e. on U . We claim that u ≡ 0 on U . In view of (3.13) and

Proposition 3.3, it suffices to show that vi(x) ≡ 0 on D for every i ∈ M. Since

vi(x) = Ex,i

[
φ(Xi

τD , i); τD < τ1
]
= Ex,i

[
e
(i)
−qii(τD)φ(Xi

τD , i)
]
,

and vi(x) = 0 a.e. on D, where

e
(i)
−qii(t) := exp

(∫ t

0

qii(X
i
s)ds

)
,

we have ui(x) := Ex,i

[
φ(Xi

τD , i)
]
vanishes a.e. on D. The function ui(x) is harmonic in

D with respect to Xi (or equivalently, with respect to the operator Li in D). By [16,
Theorem 2.3], it is Hölder continuous in D. Hence ui(x) = 0 for every x ∈ D, and so is
vi(x). This proves that u(x, i) = 0 for every x ∈ D and every i ∈ M. �
Theorem 3.5 (Strong Maximum Principle I) Assume conditions (A1)-(A3) hold, D is
a bounded connected open set in R

d, and Q(x) is irreducible on D. Suppose u is a G-
harmonic function in U = D ×M given by

u(x, i) = Ex,i[φ (XτD ,ΛτD )] for (x, i) ∈ U
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Maximum Principles and Harnack Inequalities 15

for some φ with M := sup(y,j)∈Dc×M φ(y, j) ∈ [0,∞). If (x0, i0) ∈ D×M and u(x0, i0) =
M , then u ≡ M on D ×M. If in addition M > 0, then the matrix Q(x) is Markovian.

Proof: (i) First,
�
we assume that Q(x) is Markovian in the sense that

∑
j∈M qij(x) = 0

a.e. on R
d for every i ∈ M. In this case, by the construction of the switched Markov

process (Xt,Λt) outlined in Remark 2.2(a), (Xt,Λt) has infinite lifetime and so constant
1 is a G-harmonic function on R

d. Hence,
�

M − u(x, i) = Ex,i [(M − φ)(XτD ,ΛτD ); τD < ∞]

is a non-negative G-harmonic function in D×M. (Note that τD < ∞ Px,i-a.s. in view of
Proposition 4.4 below.) Since u(x0, i0) = M , we have by Theorem 3.4 that u(x, i) = M
for every (x, i) ∈ U .

(ii) We now consider the general case that Q(x) is a sub-Markovian matrix. Define a
Markovian matrix Q̄(x) = (q̄ij(x)) by taking q̄ij(x) = qij(x) and q̄ii(x) = −

∑
j∈M\{i} qij(x).

Let (X̄t, Λ̄t) be the conservative switched Markov process corresponding to Ḡ as in (2.1)
but with Q̄(x) in place of Q(x). The original switched Markov process (Xt,Λt) can be
viewed as a subprocess of

(
X̄t, Λ̄t

)
killed at rate κ(x, i) = q̄ii(x)−qii(x); that is, for every

ψ(x, i) ≥ 0 on R
d ×M,

Ex,i[ψ(Xt,Λt)] = Ex,i

[
ēκ(t)ψ(X̄t, Λ̄t)

]
,

where ēκ(t) = exp(−
∫ t

0
κ(X̄s, Λ̄s)ds). We consider

v(x, i) := Ex,i [(M − φ)(XτD ,ΛτD ); τD < ∞] , (3.15)

which is a non-negative G-harmonic function in D ×M. We can rewrite v(x, i) on U as

v(x, i) = Ex,i[ēκ(τD)(M − φ)(X̄τD , Λ̄τD )]. (3.16)

Since u(x0, i0) = M ≥ 0,

0 ≤ v(x0, i0) = MPx0,i0(τD < ∞)− u(x0, i0) ≤ 0,

that is, v(x0, i0) = 0. Thus by Theorem 3.4, v(x, i) ≡ 0 on D×M. This implies by (3.16)
that (M − φ)(X̄τD , Λ̄τD ) = 0 Px,i-a.s. for every (x, i) ∈ D ×M. Consequently, we have

u(x, i) = MEx,i [ēκ(τD)] for (x, i) ∈ D ×M (3.17)

and so

u(x, i) = M +MEx,i[ēκ(τD)− 1)]

= M − Ex,i

[∫ τD

0

κ(X̄s, Λ̄s) exp

(
−
∫ τD

s

κ(X̄r, Λ̄r)dr

)
ds

]

= M −MEx,i

[∫ τD

0

κ(X̄s, Λ̄s)ds

]
.
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16 Chen et al.

Let τ1 := inf{t > 0 : Λ̄t �= Λ̄0} and denote by Ḡi
D be the Green function of Li + q̄ii in

D. Since u(x0, i0) = M , we have by the strong Markov property and the construction of
(X̄t, Λ̄t) in Remark 2.2(a),

0 = Ex0,i0

[∫ τD

0

κ(X̄s, Λ̄s)ds

]

≥ Ex0,i0

[∫ τD∧τ1

0

κ(X̄s, i0)ds

]
= Ḡi0

D(κ(·, i0))(x0) ≥ 0. (3.18)

Thus Ḡi0
D(κ(·, i0))(x0) = 0 and so by Proposition 3.3 we have κ(x, i0) = 0 a.e. on D.

Observe that

u(x0, i0) = Ex0,i0 [ēκ(τD)φ(X̄τD , Λ̄τD )]

= Ex0,i0 [φ(X̄τD , Λ̄τD ); τD < τ1] + Ex0,i0 [ēκ(τD)φ(X̄τD , Λ̄τD ); τ1 ≤ τD].

Hence using the strong Markov property, we have

0 = (M − u)(x0, i0) = Ex0,i0 [(M −Mēκ(τD))]

= Ex0,i0 [(M −Mēκ(τD)); τ1 ≤ τD]

= Ex0,i0

[
(M − u)(X̄τ1 , Λ̄τ1); τ1 ≤ τD

]
=

∑
j∈M\{i0}

Ex0,i0

[
(M − u)(X̄τ1−, j))(qi0j/q̄i0i0)(X̄τ1−); τ1 ≤ τD

]

=
∑

j∈M\{i0}

Ḡi0
D(qi0j(M − u)(x0).

By Proposition 3.3 again, we have
∑

j∈M\{i0} qi0j(M − u) = 0 a.e. on D. Since Q̄ is

irreducible on D, for any j �= i0, there is a self-avoiding path {j0 = i0, j1, . . . , jn = j} so
that {x ∈ D : qjkjk+1

(x) > 0} having positive Lebesgue measure for k = 0.1, . . . , n − 1.
Thus we have u(x, j1) = M on {x ∈ D : qi0j1(x) > 0}. By the argument above, this
implies that κ(x, j1) = 0 a.e. on D. Continuing as this, we get κ(x, jk) = 0 a.e. on D
and {x ∈ D : u(x, jk) = M} has positive Lebesgue measure for k = 2, . . . , n. This proves
that κ(x, i) = 0 a.e. on D for every i ∈ M and so u(x, i) = M for every x ∈ D in view
of (3.17). �

Before presenting the next version of strong maximum principle, we first prepare a
lemma.

Lemma 3.6 Assume conditions (A1)-(A3) hold, D is a bounded connected open set in
R

d, and Q(x) is irreducible on D. For any φ ≥ 0 on D×M, either Ex,i

∫ τD
0

φ(Xs,Λs)ds >

0 for every (x, i) ∈ D ×M or Ex,i

∫ τD
0

φ(Xs,Λs)ds ≡ 0 on D ×M.

Proof: Denote by Gi
D the Green function of Li + q̄ii in D. Using the strong Markov

property at the first switching time τ1 := inf{t ≥ 0 : Λt �= Λt−} in a similar way to that
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Maximum Principles and Harnack Inequalities 17

for (3.18), we have for every (x, i) ∈ D ×M,

v(x, i) := Ex,i

∫ τD

0

φ(Xs,Λs)ds

= Ex,i

∫ τD∧τ1

0

φ(Xs,Λs)ds+ Ex,i

[∫ τD∧τ1

τ1

φ(Xs,Λs)ds; τ1 < τD

]

= Gi
D(φ(·, i))(x) + Ex,i [v(Xτ1 ,Λτ1); τ1 < τD]

= Gi
D(φ(·, i))(x) +

∑
k∈M\{i}

Ex,i [v(Xτ1−, k)(qik/qii)(Xτ1−); τ1 < τD]

= Gi
D(φ(·, i))(x) +

∑
k∈M\{i}

Gi
D (qikv(·, k)) (x), (3.19)

where the last identity is due to [28, p.286]; see the proof of [13, Proposition 2.2].
Suppose v(x0, i0) = 0 for some (x0, i0) ∈ D×M. Then by Proposition 3.3, v(x, i0) ≡ 0

on D. For any j ∈ M\ {i0}, since Q(x) is irreducible on D, there is a self-avoiding path
{j0 = i0, j1, . . . , jn = j} so that {x ∈ D : qjkjk+1

(x) > 0} having positive Lebesgue
measure for k = 0, 1, . . . , n− 1. It follows from (3.19) and its iteration that

0 = v(x0, i0) ≥ Gi0
D(qi0j1(G

j1
Dqj1j2(· · · (G

jn−1

D (qjn−1jv(·, j)) · · · )))(x0) ≥ 0.

We conclude from Proposition 3.3 that qjn−1j(·)v(·, j) = 0 a.e. on D. So there is some
y ∈ D so that v(y, j) = 0. By (3.19) with (y, j) in place of (x, i) and Proposition 3.3, we
have v(x, j) = 0 for every x ∈ D. �
Theorem 3.7 (Strong Maximum Principle II) Suppose that conditions (A1)-(A3) hold,
D is a bounded connected open set in R

d and Q(x) is irreducible on D. If f(·, i) ∈ C2(D),
sup

Rd×M f ≥ 0, and
Gf(x, i) ≥ 0 for (x, i) ∈ D ×M,

then f(x, i) can not attain its maximum inside D ×M unless

f(x, i) ≡ sup
Rd×M

f(y, j) on D ×M.

Proof: Suppose f achieves its maximum at some (x0, i0) ∈ D×M. Let D1 be any rela-
tively compact connected open subset of D that contains x0 and that Q(x) is irreducible
on D1. Then by Itô’s formula, we have for every (x, j) ∈ D1 ×M,

f(x, j) = Ex,j

[
f(XτD1

,ΛτD1
)
]
− Ex,j

∫ τD1

0

Gf(Xs,Λs)ds

≤ Ex,j

[
f(XτD1

,ΛτD1

]
=: h(x, j). (3.20)

Let M = sup(y,j)∈Rd×M f(y, j), which is non-negative. In view of (3.20),

M = sup
(y,j)∈Dc

1×M
f(y, j) = f(x0, i0).
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18 Chen et al.

Clearly, h ≤ M and h is G-harmonic in D1 ×M. We have by (3.19), h(x0, i0) = M and

Ex0,i0

∫ τD1

0

Gf(Xs,Λs)ds = 0.

Theorem 3.5 and Lemma 3.6 tell us that h ≡ M onD1×M and Ex,i

∫ τD1

0
Gf(Xs,Λs)ds =

0 for every (x, i) ∈ D1 ×M. Consequently, f(x, i) ≡ M on D1 ×M. Letting D1 increase
to D establishes the theorem. �

4. Harnack Inequality

This section is devoted to the Harnack inequality for G-harmonic functions. For simplicity,
we introduce some notation as follows. For any U = D ×M ⊂ R

d ×M, recall that

τD = inf{t ≥ 0 : Xt /∈ D}.

We define
T i
D := inf{t ≥ 0 : Xt ∈ D,Λt = i}, i ∈ M.

Proposition 4.1 Assume conditions (A1)-(A3) hold. There exists a constant C2 not
depending on x0 ∈ R

d such that for any r ∈ (0, 1) and any i ∈ M,

Px0,i

(
τB(x0,r) ≤ C2r

2
)
≤ 1/2. (4.1)

Proof: Let v(·, i) ∈ C2(Rd) be a nonnegative function independent of i and

v(x, i) =

{
|x− x0|2, |x− x0| ≤ r/2,
r2, |x− x0| ≥ r

such that v is bounded by c1r
2, and its first and second order derivatives are bounded

by c1r and c1, respectively. Since Px0,i solves the martingale problem, we have

Ex0,iv(Xt∧τB(x0,r)
,Λt∧τB(x0,r)

) = v(x0, i) + Ex0,i

∫ t∧τB(x0,r)

0

Gv(Xs,Λs)ds.

Using the boundedness of the first and second derivatives of v(·, i) and Q(·), we have
∫ t∧τB(x0,r)

0

Gv(Xs,Λs)ds ≤ c2t.

It follows that
Ex0,iv(Xt∧τB(x0,r)

,Λt∧τB(x0,r)
)− v(x0, i) ≤ c2t.

On the other hand, since v(XτB(x0,r)
,ΛτB(x0,r)

) = r2, we obtain

Ex0,iv(Xt∧τB(x0,r)
,Λt∧τB(x0,r)

) ≥ r2Px0,i(τB(x0,r) ≤ t).

Hence
r2Px0,i(τB(x0,r) ≤ t) ≤ c2t.

Taking C2 = 1
2c2

in the above formula and replacing t by C2r
2, we obtain (4.1). �
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Maximum Principles and Harnack Inequalities 19

Proposition 4.2 Assume conditions (A1)-(A3) hold. For any constant ε ∈ (0, 1), there
exist positive constants C3 and C4 depending only on ε such that for any (x0, i) ∈ R

d×M
and any r ∈ (0, 1), we have

(a) Px,i

(
τB(x0,r) > C3r

2
)
≥ 1/2 for (x, i) ∈ B(x0, (1− ε)r)×M.

(b) Ex,iτB(x0,r) ≥ C4r
2 for (x, i) ∈ B(x0, (1− ε)r)×M.

Proof: By Proposition 4.1, there exists a constant c1 depending only on ε such that for
any (x, i) ∈ B(x0, (1− ε)r)×M, we have

Px,i(τB(x0,r) ≤ c1r
2) ≤ Px,i(τB(x,εr) ≤ c1r

2) ≤ 1/2,

which implies (a). Hence,
�

Ex,iτB(x0,r) ≥ c1r
2
Px,i(τB(x0,r) > c1r

2) ≥ c1r
2/2.

Then (b) follows. �

For a measure μ on R
d and y ∈ R

d, we use μ(dx − y) to denote the measure ν(dx)
defined by ν(A) := μ(A−y) for A ∈ B(Rd), where A−y := {x−y : x ∈ A}. We know how
the switched Markov processes jumps at the switched times between different plates. The
following describes how the switched Markov process (Xs,Λs) jumps at non-switching
times.

Proposition 4.3 Assume conditions (A1)-(A3) hold. Suppose A and B are two bounded
open subsets of Rd having a positive distance apart and i0 ∈ M. Then

∑
s≤t

1{Xs−∈A,Xs∈B,Λs=i0} −
∫ t

0

1A (Xs)1{i0} (Λs)πΛs(Xs, B −Xs)ds (4.2)

is a Px,i-martingale for each (x, i) ∈ R
d ×M.

Proof: Let A1 be a bounded open subset of R
d so that A ⊂ A1 ⊂ A1 ⊂ Bc. Let

v(·, j) ≡ 0 for all j �= i0, and v(·, i0) ∈ C2
b (R

d) so that v(x, i0) = 0 on A1 and v(x, i0) = 1
on B. Fix (x, i) ∈ R

d ×M. Note that

Mv(t) := v(Xt,Λt)− v(X0,Λ0)−
∫ t

0

Gv(Xs,Λs)ds

is a Px,i-martingale, so is
∫ t

0
1A(Xs−)dM

v(s). Define τ0 = 0, τ1 = inf{t ≥ 0 : Xt ∈ A},
τ2 = inf{t ≥ τ1 : Xt ∈ Ac

1}, and for k ≥ 2,

τ2k−1 = inf{t ≥ τ2(k−1) : Xt ∈ A}, τ2k = inf{t ≥ τ2k−1 : Xt ∈ Ac
1}.

Note that v(Xt,Λt) = 0 for t ∈ ∪k≥1[τ2k−1, τ2k) and 1A(Xt−) = 0 for t ∈ ∪k≥1[τ2(k−1), τ2k−1).
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20 Chen et al.

Thus the Riemann sum approximation of stochastic integral yields that

∫ t

0

1A (Xs−) dM
v(s)

=
∞∑
k=1

1A(Xτ2k∧t−)
(
v(Xτ2k∧t,Λτ2k∧t)− v(Xτ2k∧t−,Λτ2k∧t−)

)

−
∫ t

0

1A (Xs−)Gv(Xs,Λs)ds

=
∑
s≤t

1A (Xs−)
[
v(Xs,Λs)− v(Xs−,Λs−)

]

−
∫ t

0

1A (Xs)Gv(Xs,Λs)ds.

Since v(y, j) = 0 on A1 ×M, we have

Gv(y, j) =
∫
Rd

v(y + z, j)πj(y, dz) =

∫
Rd

v(z, j)πj(y, dz − y)

for every (y, j) ∈ A1 ×M. Therefore,

∑
s≤t

1A (Xs−)
[
v(Xs,Λs)− v(Xs−,Λs−)

]

−
∫ t

0

1A (Xs)

∫
Rd

v(z,Λs)πΛs(Xs, dz −Xs)ds is a Px,i-martingale.

Because A and B are a positive distance from each other, the sum on the left of the above
formula is in fact a finite sum. With these facts we can pass to the limit to conclude that

∑
s≤t

1A (Xs−)
[
1B×{i0} (Xs,Λs)− 1B×{i0} (Xs−,Λs−)

]

−
∫ t

0

1A (Xs)

∫
Rd

1B×{i0} (z,Λs)πΛs(Xs, dz −Xs)ds is a Px,i- martingale,

which implies

∑
s≤t

1{Xs−∈A,Xs∈B,Λs=i0} −
∫ t

0

1A (Xs)1{Λ(s)=i0}πΛs(Xs, B −Xs)ds

is a Px,i-martingale. �
Proposition 4.4 There exist r̃0 ∈ (0, 1/2] and C5 > 0, depending only on κ0 and κ1 in
(A2)- (A3) and an upper bound on

∑m
k=1 ‖qkk‖∞, such that for any x0 ∈ R

d and any
r ∈ (0, r̃0), we have

sup
(x,i)∈B(x0,r)×M

Ex,iτB(x0,r) ≤ C5r
2. (4.3)
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Maximum Principles and Harnack Inequalities 21

Proof: Let u(x) ∈ C2(Rd) be a convex function in x with values in [0, 10] and increase
with respect to |x| such that

u(x) = |x|2, |x| ≤ 2.

Let r̃0 ∈ (0, 1/2) be sufficiently small. For x0 ∈ R
d and r ∈ (0, r̃0), let v(x, i) = u(x−x0

r ).
Then for any (x, i) ∈ B(x0, r)×M, since v(·, ·) is bounded between 0 and 10 and Q(·) is
bounded, there exists c1 > 0 such that

Q(x)v(x, ·)(i) ≥ −c1. (4.4)

Moreover,

L(c)v(x, i) :=

d∑
k,l=1

akl(x, i)
∂2v(x, i)

∂xk∂xl
+

d∑
k=1

bk(x, i)
∂v(x, i)

∂xk

=

d∑
k=1

2akk(x, i)r
−2 +

d∑
k=1

2bk(x, i)(xk − x0,k)r
−2

≥ c2r
−2 − c3r

−1 ≥ c4r
−2,

(4.5)

provided r̃0 is small enough. Define

L(j)v(x, i) =

∫
Rd

[
f(x+ z, i)− f(x, i)−∇f(x, i) · z1{|z|<1}

]
πi(x, dz).

We break L(j)v(x, i) into two parts, |z| ≤ 1 and |z| > 1, respectively. For the first part,
by the convexity of u(x), we deduce

∫
|z|≤1

[v(x+ z, i)− v(x, i)−∇v(x, i) · z]πi(x, dz) ≥ 0. (4.6)

For the second part with |z| > 1, since r < 1
2 , we know x + z /∈ B(x0, r) for any

x ∈ B(x0, r). Then we have v(x+ z, i) ≥ 1 and v(x, i) ≤ 1, it follows that

∫
|z|>1

[v(x+ z, i)− v(x, i)]πi(x, dz) ≥ 0. (4.7)

Since Px,i solves the martingale problem, together with (4.4), (4.5), (4.6), and (4.7), we
deduce that

Ex,iv
(
Xt∧τB(x0,r)),Λt∧τB(x0,r))

)
− v(x, i)

= Ex,i

∫ t∧τB(x0,r)

0

Gv(Xs,Λs)ds ≥ c5r
−2

Ex,i(t ∧ τB(x0,r)).
(4.8)

By the definition of v(x, i),

Ex,iv(Xt∧τB(x0,r)),Λt∧τB(x0,r)))− v(x, i) ≤ 10. (4.9)
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22 Chen et al.

It follows from (4.8) and (4.9) that

c5r
−2

Ex,i(t ∧ τB(x0,r)) ≤ 10.

The conclusion follows by letting t → ∞. �
In the remaining of this section, we assume that conditions (A1)-(A4) hold.

Definition 4.5 The generator G or the matrix function Q(·) is said to be strictly irre-
ducible on D if for any i, j ∈ M and i �= j, there exists q0ij > 0 such that inf

x∈D
qij(x) ≥ q0ij .

Proposition 4.6 Assume conditions (A1)-(A4) hold. Let x0 ∈ R
d and r ∈ (0, r̃0), where

r̃0 is the constant in Proposition 4.4. Suppose that the operator G is strictly irreducible
on B(x0, r). Let H : R

d × M �→ R be a bounded non-negative function supported in
B(x0, 2r)

c × M. Then there exists a constant C6 > 0, depending only on κ0 and κ1 of
(A2)-(A3), an upper bound on

∑m
k=1 ‖qkk‖∞ and on {q0ij ; i �= j ∈ M} in the definition

of strict irreducibility of G, such that for any x, y ∈ B(x0, r/2) and any i ∈ M,

Ex,iH
(
XτB(x0,r)

,ΛτB(x0,r)

)
≤ C6α2rEy,iH

(
XτB(x0,r)

,ΛτB(x0,r)

)
.

Here αr is the constant appeared in condition (A4).

Proof: Denote B = B(x0, r). Define

u(x, i) = Ex,iH (XτB ,ΛτB ) for (x, i) ∈ B ×M.

Since H = 0 on B(x0, 2r)×M, we have by using the Lévy system formula of Y = (X,Λ)
given by Proposition 4.3 that

u(x, i) = Ex,i

[
H (XτB ,ΛτB ) ;XτB− ∈ B;XτB ∈ B(x0, 2r)

c
]

= Ex,i

[∫ τB

0

∫
B(x0,2r)c

H (z,Λs) π̃Λs (Xs, z −Xs) dzds

]
.

(4.10)

We deduce that

u(x, i) ≤ Ex,i

⎡
⎣
∫ τB

0

∫
B(x0,2r)c

m∑
j=1

H(z, j)π̃j (Xs, z −Xs) dzds

⎤
⎦

≤
( m∑

j=1

∫
B(x0,2r)c

H(z, j) sup
w∈B

π̃j(w, z − w)dz
)
Ex,iτB

≤ c1r
2

m∑
j=1

∫
B(x0,2r)c

H(z, j) sup
w∈B

π̃j(w, z − w)dz

= c1r
2M,

where the last inequality is a consequence of Proposition 4.4, and

M =

m∑
j=1

Mj , Mj =

∫
B(x0,2r)c

H(z, j) sup
w∈B

π̃j(w, z − w)dz.
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Maximum Principles and Harnack Inequalities 23

Thus,
u(x, i) ≤ c1r

2M for (x, i) ∈ B ×M. (4.11)

Let τ1 = inf{t > 0 : Λt �= Λ0} and denote the Green operator of Li + qii in B by Gi
B .

Define
hi(x) = Ex,i[H (XτB ,ΛτB ) ; τB < τ1], (x, i) ∈ B ×M.

By the strong Markov property of (Xt,Λt), we have

u(x, i) = hi(x) +
∑
k 	=i

Gi
B

(
qik(·)u(·, k)

)
(x). (4.12)

By (4.11) and the fact that ||qik||∞ = sup
x∈Rd

|qik(x)| < ∞, we arrive at

∑
k 	=i

Gi
B

(
qik(·)u(·, k)

)
(x) ≤

∑
k 	=i

c1r
2M ||qik||∞Ex,iτB

≤
∑
k 	=i

c1r
2M ||qik||∞c1r

2 = c2Mr4.

Combining above estimates, we obtain

u(x, i) ≤ hi(x) + c2Mr4 for (x, i) ∈ B ×M. (4.13)

Next, we drive an lower bound for Ex,i(τB∧τ1) for (x, i) ∈ B(x0, r/2)×M. By Proposition
4.2, there exists c3 > 0 such that

Px,i

(
τB > c3r

2
)
≥ 1

2
.

It follows that

Px,i(τB ∧ τ1 ≥ c3r
2) ≥ Px,i

(
τB > c3r

2 and τ1 ≥ c3r
2
)

≥ exp
(
−||qkk||∞c3r

2
)
Px,i

(
τB > c3r

2
)

≥ 1

2
exp

(
−||qkk||∞c3r̃

2
0

)
=: c4.

Then we obtain

Ex,i (τB ∧ τ1) ≥ c3c4r
2 for (x, i) ∈ B(x0, r/2)×M. (4.14)

By assumption (A4), for any z ∈ B(x0, 2r)
c,

sup
w∈B

π̃j (w, z − w) ≤ α2r inf
w∈B

π̃j (w, z − w) .

By this inequality and (4.14), we have by using Lévy system formula of Y = (X,Λ),

hi(x) = Ex,i

[∫ τB∧τ1

0

∫
B(x0,2r)c

H (z,Λs) π̃Λs (Xs, z −Xs) dzds

]

≥ Ex,i

[∫ τB∧τ1

0

∫
B(x0,2r)c

H(z, i) inf
w∈B

π̃i (w, z − w) dzds

]

≥ α−1
2r MiEx,i(τB ∧ τ1)

≥ c5α
−1
2r Mir

2 for x ∈ B(x0, r/2).

(4.15)
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On the other hand,

hi(x) = Ex,i

[∫ τB∧τ1

0

∫
B(x0,2r)c

H (z,Λs) π̃Λs (Xs, z −Xs) dzds

]

≤ Ex,i

[∫ τB∧τ1

0

∫
B(x0,2r)c

H(z, i) sup
w∈B

π̃i (w, z − w) dzds

]

≤ MiEx,iτB
≤ c6Mir

2 for x ∈ B(x0, r/2).

(4.16)

Note that for i �= k, inf
x∈Rd

qik(x) ≥ q0ik > 0. By (4.12) and (4.15), we have

∑
k 	=i

Gi
B

(
qik(·)u(·, k)

)
(x) ≥

∑
k 	=i

c5α
−1
2r Mkr

2Gi
B

(
qik(·)1B(x0,3r/4)(·)

)
(x)

≥
∑
k 	=i

c5α
−1
2r Mkr

2q0ikEx,i

(
τB(x0,3r/4) ∧ τ1

)

≥
∑
k 	=i

c5α
−1
2r Mkr

2q0ikc7r
2

= c8α
−1
2r r

4
∑
k 	=i

Mk for x ∈ B(x0, r/2).

(4.17)

In the above, we used the fact that Ex,i

(
τB(x0,3r/4) ∧ τ1

)
≥ c7r

2. This can be derived
in the same way as that of (4.14). By (4.12), (4.13), (4.15), (4.16), and (4.17), for any
x, y ∈ B(x0, r/2) and i ∈ M, we have

u(y, i) = hi(y) +
∑
k 	=i

Gi
B

(
qik(·)u(·, k)

)
(y)

≥ c5α
−1
2r Mir

2 + c8α
−1
2r r

4
∑
k 	=i

Mk

≥ c9α
−1
2r

(
Mir

2 + r4
∑
k 	=i

Mk

)

≥ c10α
−1
2r

(
Mir

2 + r4M
)
≥ c11α

−1
2r u(x, i).

The proof of the proposition is complete. �

Theorem 4.7 Assume conditions (A1)-(A4) hold. Let D ⊂ R
d be a bounded connected

open set and K be a compact set in D ⊂ R
d. Suppose that G is strictly irreducible on D.

Then there exists C7 > 0 which depends only on D,K and operator G such that if f(·, ·)
is a nonnegative, bounded function in R

d ×M that is G-harmonic in D ×M, we have

f(x, i) ≤ C7f(y, j) for x, y ∈ K and i, j ∈ M. (4.18)

Proof: We first show that for each fixed ball B(x0, 4R) ⊂ D with R < 1
8 ∧ r̃0 (where r̃0

is given in Proposition 4.4), there exists a constant C > 0 that depends only on R ∧ 1,
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Maximum Principles and Harnack Inequalities 25

κ0 and κ1 of (A2)-(A3), an upper bound on
∑m

k=1 ‖qkk‖∞ and on {q0ij ; i �= j ∈ M} in
the definition of strict irreducibility of G on B(0, 4R), such that for any nonnegative,
bounded and G-harmonic function f(·, ·) in B(x0, 4R)×M, we have

f(x, i) ≤ Cf(y, j) for x, y ∈ B(x0, R) and i, j ∈ M. (4.19)

By looking at f + ε and sending ε to 0, we may suppose that f is bounded below by
a positive constant. By looking at af(x, i0) for a suitable constant a if needed, we may
assume that inf

(x,i)∈B(x0,R)×M
f(x, i) = 1/2.

(a) Let us recall several results. Let r < r̃0 < 1/2. By Proposition 3.1, there exits a
constant c1 > 0 such that for any x ∈ B(x0, 3R/2) and any i ∈ M,

Pxi,i

(
T i
B(x,r/2) < τB(x0,4R)

)
≥ c1r

6. (4.20)

By Proposition 3.2, there exists a nondecreasing function Φ : (0,∞) �→ (0,∞) such that
if A is a Borel subset of B(x, r) and |A|/rd ≥ ρ for a given ρ, then for any (y, i) ∈
B(x, r)×M and r ∈ (0, r̃0),

Py,i(T
i
A < τB(x,2r)) ≥

1

2
Φ
(
|A|/rd

)
. (4.21)

By Proposition 4.6 and H being a nonnegative function supported on B(x, 2r)c, for any
y, z ∈ B(x, r/2) and i ∈ M,

Ey,iH(XτB(x,r)
,ΛτB(x,r)

) ≤ c2α2rEz,iH(XτB(x,r)
,ΛτB(x,r)

). (4.22)

To proceed, we first consider the case that

inf
x∈B(x0,2R)

f(x, i) < 1 for each i ∈ M. (4.23)

Thus, there exists {xi}i∈M such that

xi ∈ B(x0, 2R) and f(xi, i) < 1. (4.24)

(b) For n ≥ 1, let
rn = c3R/n2,

where c3 is a positive number such that
∑∞

n=1 rn < R/4 and rn ∈ (0, r̃0) for all n, that
is,

c3 <
1

4
∑∞

n=1 1/n
2
∧ r̃0

R
. (4.25)

In particular, it implies rn < R/4. Let ξ, c4, c5 be positive constants to be chosen later.
Once these constants have been chosen, we can take N1 large enough so that

ξN1 exp(c4n)c5r
6+β
n ≥ 2κ2 for all n = 1, 2, . . . (4.26)
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The constants κ2 and β are taken from assumption (A4). Such a choice is possible
since c4 > 0 and rn = c3R/n2. Suppose that there exists (x1, i1) ∈ B(x0, R) ×M with
f(x1, i1) = N1 for N1 chosen above. We will show that in this case there exists a sequence
{(xk, ik) : k ≥ 1} with

(xk+1, ik+1) ∈ B(xk, 2rk)×M ⊂ B(x0, 3R/2)×M,
Nk+1 := f(xk+1, ik+1) ≥ N1 exp (c4(k + 1)) .

(4.27)

(c) Suppose that we already have {(xk, ik); 1 ≤ k ≤ n} so that (4.27) is satisfied for
k = 1, . . . , n− 1. Define

An =
{
y ∈ B(xn, rn/2) : f(y, in) ≥ ξNnr

β
n/κ2

}
.

We claim that
|An|

|B(xn, rn/2)|
≤ 1

4
. (4.28)

Suppose on the contrary, |An|
|B(xn,rn/2)| > 1/4. Let F be a compact subset of An such that

|F |
|B(xn,rn/2)| > 1/4. Then F ⊂ B(x0, 2R). By (4.20),

Pxin ,in

(
T in
B(xn,rn/2)

< τB(x0,4R)

)
≥ c1r

6
n,

where c1 is independent of xn and rn. By the strong Markov property of (Xt,Λt), we
have

Pxin ,in

(
T in
F < τB(x0,4R)

)
≥ Exin ,in

[
PX

T
in
B(xn,rn/2)

,in

(
T in
F < τB(xn,rn)

)
;T in

B(xn,rn/2)
< τB(x0,4R)

]

≥ 1

2
Φ

(
2d|F |
rdn

)
Pxin ,in

(
T in
B(xn,rn/2)

< τB(x0,4R)

)

≥ 1

2
Φ

(
α(d)

4

)
c1r

6
n,

where α(d) is the volume of the unit ball in R
d.

We take c5 = Φ(α(d)/4) c1/2. By the definition of G-harmonicity and the above esti-
mates, we obtain

1 > f(xin , in) ≥ Exin ,in [f(XT in
F ∧τB(x0,4R)

,ΛT in
F ∧τB(x0,4R)

);T in
F < τB(x0,4R)]

≥ ξNnr
β
n

κ2
Pxin ,in(T

in
F < τB(x0,4R))

≥ ξNnr
β+6
n c5
κ2

≥ 2,

(4.29)
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which is a contradiction. Note that the last inequality follows from Nn ≥ N1 exp (c4n)
and our choice of N1 given by (4.26). Thus, (4.28) is valid. Therefore, there is a compact

subset F̃ of B(xn, rn/2) \An such that |F̃ | ≥ 1
2 |B(xn, rn/2)|. By the definition of F̃ and

An,

f(x, in) <
ξNnr

β
n

κ2
for x ∈ F̃ .

Denote τrn := τB(xn,rn), pn := Pxn,in(T
in
˜F

< τrn) andMn := sup(y,j)∈B(xn,2rn)×M f(y, j).

Since |F̃ | ≥ 1
2 |B(xn, rn/2)|, using (4.21), we obtain

pn ≥ 1

2
Φ

(
α(d)

2d+1

)
:= c6 for n = 1, 2, . . . (4.30)

By the definition of G-harmonic function and the right continuity of the sample paths of
(Xt,Λt), we have

Nn = f(xn, in) = Exn,in [f(XT in
˜F

,ΛT in
˜F

) : T in
˜F

< τrn ]

+Exn,in [f(Xτrn ,Λτrn ) : X (τrn) ∈ B(xn, 2rn), τrn < T in
˜F
]

+Exn,in [f(Xτrn ,Λτrn ) : X (τrn) /∈ B(xn, 2rn), τrn < T in
˜F
]

≤ ξNnr
β
n

κ2
+Mn(1− pn)

+Exn,in [f(Xτrn ,Λτrn ) : Xτrn /∈ B(xn, 2rn), τrn < T in
˜F
].

(4.31)

Take a point yn ∈ F̃ . Then f(yn, in) <
ξNnr

β
n

κ2
. We then deduce from (4.22) that

ξNnr
β
n

κ2
> f(yn, in)

≥ Eyn,in [f(Xτrn ,Λτrn ) : Xτrn /∈ B(xn, 2rn)]

≥ 1

c2α2rn

Exn,in [f(Xτrn ,Λτrn ) : Xτrn /∈ B(xn, 2rn)].

It follows that

Exn,in [f(Xτrn ,Λτrn ) : Xτrn /∈ B(xn, 2rn)] ≤ ξNnr
β
nc2α2rn

κ2

≤ ξc2
2β

Nn,

where the last inequality is obtained by noting that α2rn ≤ κ2(2rn)
−β . Hence by (4.31),

Nn ≤
( ξ

κ2
+

ξc2
2β

)
Nn +Mn(1− pn). (4.32)

Denote η = 1 −
( ξ

κ2
+

ξc2
2β

)
. Let ξ > 0 be sufficiently small such that

η

1− c6
> 3/2.

By (4.30) and (4.32), Mn/Nn > 3/2. Using the definition of Mn, there is (xn+1, in+1) ∈
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B(xn, 2rn)×M so that

Nn+1 := f(xn+1, in+1) ≥ 3Nn/2.

We take c4 = ln(3/2). Then (4.27) holds for k = n. By induction, we have constructed
a sequence of points {(xk, ik)} such that (4.27) holds for all k ≥ 1. It can be seen that
Nk → ∞ as k → ∞, a contradiction to the assumption that f is bounded. Thus, for a
positive constant N1 sufficiently large such that (4.26) holds, we have

f(x, i) < N1 for all (x, i) ∈ B(x0, R)×M.

Since inf
(x,i)∈B(x0,R)×M

f(x, i) = 1/2, we arrive at

f(x, i) ≤ 2N1f(y, j), x, y ∈ B(x0, R) and i, j ∈ M. (4.33)

For any compact set K ⊂ D, we use a standard finite ball covering argument. Since K
is compact, there exists a finite number of points zk ∈ K, k = 1, 2, . . . , n such that

K ⊂
n⋃

k=1

B(zi, R) ⊂ D,

and |zk − zk−1| < R/2. Let x, y ∈ K and i, j ∈ M. Applying Harnack inequality (4.33)
at most n+ 1 times, we obtain f(x, i) ≤ (2N1)

n+1f(y, j).
Now we suppose that (4.23) is invalid. Then there exists i ∈ M such that f(x, i) ≥ 1

for all x ∈ B(x0, 2R). Set

Ki := inf
x∈B(x0,2R)

f(x, i), K := sup
i∈M

Ki, g(x, i) := f(x, i)/3K.

It follows that (4.23) holds with g in place of f . Moreover, if i0 ∈ M and K = Ki0 , then

g(x, i0) ≥ 1/3 for x ∈ B(x0, 2R).

By the same argument as in Theorem 3.4, there is a constant c7 > 0 such that

g(x, i) ≥ Gi
B(x0,2R)

(
qii0(·)g(·, i0)

)
(x)

≥ c7,

for all (x, i) ∈ B(x0, R)×M, where Gi
B(x0,2R) is the Green operator of X̃i in B(x0, 2R).

Note also that inf
x∈D

qii0(x) ≥ q0ii0 > 0. The Harnack inequalities for g, and for f can be

established similarly as in the previous case. �
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5. Further Remarks

This paper has been devoted to switching jump diffusions. Important properties such as
maximum principle and Harnack inequality have been obtained. The utility and appli-
cations of these results will be given in a subsequent paper [7] for obtaining recurrence
and ergodicity of switching jump diffusions. The ergodicity can be used in a wide variety
of control and optimization problems with average cost per unit time objective functions
(see also various variants of the long-run average cost problems in [18]), in which the
instantaneous measures are replaced by the corresponding ergodic measures.

We note that the references [8, 9, 10, 12, 26] are devoted to regularity for the parabolic
functions of non-local operators (on each of the parallel plane). The results obtained in
this paper should be useful when one considers regularity of the coupled systems or
switched jump-diffusions.
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with degenerate Lévy generating operators, Stochastics Stochastic Reports, 26, 29–

61.

[27] Protter, M.H. and Weinberger, H.F. (1967) Maximum Principles in Differential

Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J.

[28] Sharpe, M. (1986) General Theory of Markov Processes, Academic, New York, 1986.
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