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ABSTRACT
Some properties of characteristic curves in connection with the viscosity
solution of the Hamilton–Jacobi equation (H, σ) defined by the Hopf
formula u(t, x) = maxq∈Rn{〈x , q〉 − σ∗(q) − tH(q)} are studied. We are
concernedwith the points at which the solution u(t, x) is differentiable, and
the strip of the form R = (0, θ) × R

n in the domain � where u(t, x) is of
class C1(R).
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1. Introduction

Consider the Cauchy problem for the Hamilton–Jacobi equation (H , σ) :

ut + H(Dxu) = 0 , (t, x) ∈ � = (0,T) × R
n, (1.1)

u(0, x) = σ(x) , x ∈ R
n. (1.2)

It is well-known that, due to the nonlinearity in theHamiltonianH(p) in general, smooth solutions
of the problem exist in a narrow neighborhood of the hyperplane t = 0 no matter how smooth the
given data are. The studies of global solutions (i.e. the solutions defined on the whole domain �)
of the Cauchy problem began in the decade of 1950’s with the notion of Lipschitz solution. By the
definition, it is a locally Lipschitz function u(t, x) that satisfies Equation (1.1) almost everywhere on
� and u(0, x) = σ(x), x ∈ R

n.
In 1965, Hopf [1] established two well-known formulas for representations of Lipschitz solutions

of the Hamilton–Jacobi equations (H , σ) which depend on the Fenchel conjugates H∗ and σ ∗,
respectively. If H = H(p) is convex and superlinear and σ is Lipschitz on R

n, a solution of the
equation is given by

u(t, x) = min
y∈Rn

{
σ(y) + tH∗(x − y

t
)}

. (1.3)

In the case where H = H(p) is continuous and σ(x) is a convex and Lipschitz function,

u(t, x) = max
q∈Rn

{〈x, q〉 − σ ∗(q) − tH(q)}. (1.4)
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2 N. HOANG

These formulas are called Hopf formulas. When n = 1, the representation formula (1.3) was proved
by Lax [2] in 1958, and so this formula is also called Hopf-Lax formula.

In general, the Lipschitz solutions of the problem are not unique, and thus one must restrict to
consider the solutions in some specific classes of functions.

In 1983, Crandall and Lions in [3] first introduced the notion of viscosity solutions of Hamilton–
Jacobi equations together with several existence and uniqueness theorems. By the definition, a
viscosity solution is a continuous function u satisfying the differential inequalities associated with the
equation. The viscosity solution plays a fundamental role in the study of Hamilton–Jacobi equations
as well as their related problems such as calculus of variation, optimal control theory and differential
games.

In 1984, Bardi and Evans [4] proved that the function u(t, x) defined by (1.3) as well as (1.4) is a
viscosity solution of the corresponding problem (H , σ).

Note that the representation formula (1.3) and its generalization for the case whereH = H(t, x, p)
were widely studied under an essential assumption that H(t, x, p) is a convex function with respect
to p; see [5,6] and references therein. Indeed, one can prove that the value function of a calculus of
variation problem or an optimal control problem is a viscosity solution of the associated dynamic
programming equation where the Hamiltonian is convex in the gradient variable p.Many important
results on the theoretical aspect as well as applications have been obtained in the literature. In
particular, regularity properties and propagation of singularities of viscosity solutions in the case of
convex Hamiltonians have been intensively studied; see [6–9] and the references therein.

On the other hand, in the theory of differential games, the Hamiltonians of the associated dynamic
programming equations are neither convex nor concave in general (see [10,11]). Nevertheless, not
many researchers were interested in this case, even for simple HamiltonianH = H(p). In [12], Bardi
and Faggian explicitly presented lower and upper estimates of the form ‘maxmin’ and ‘minmax’ for
the viscosity solutionswhere either theHamiltonians or the initial data are not necessarily convex, but
can be expressed as the sum of a convex and a concave function. Recently, Evans [11,13] establishes a
general representation formula for nonconvexCauchy problem (H , σ) by themethods of ‘generalized
envelopes’ and ‘adjoint and compensated compactness’.

This paper is devoted to studying some regularity properties of the viscosity solution u(t, x) given
by Hopf formula (1.4). Our method is to investigate the set of maximizers �(t, x) in the formula (1.4)
along characteristic curves. We examine the differentiability of u(t, x) on the characteristic curves
and define some strips of the form R = (0, θ) × R

n ⊂ � so that u(t, x) ∈ C1(R). Some results
similar to the ones of Hopf-Lax formula (1.3) in [14] are obtained. This study continues our effort
initiated in [15] to fill the gap between the viscosity solution and the classical solution for nonconvex
Hamiltonians.

Note that in [8] the authors introduced and studied the backward and forward problems and
proved that under some conditions, a viscosity solution u = u(t, x) of a Cauchy problem is of class
C1((0,T) × R

n) if u(t, x) is both a backward and forward solution of the problem.
The structure of the paper is as follows. In Section 2, we present some necessary notions and

properties of the Hopf formula and viscosity solutions. In Section 3, we suggest a classification of
characteristic curves at each point of the domain and then study the differentiability properties of
the Hopf formula u(t, x) on these curves. In the last section, we establish various conditions based on
the characteristic curves so that u(t, x) defined by (1.4) is continuously differentiable on the strip of
the form (0, t0) × R

n. Several illustrative examples are also given.
We use the following notations. Let T be a positive number,� = (0,T) × R

n; | . | and 〈., .〉 be the
Euclidean norm and the scalar product inR

n, respectively, and let B′(x0, r) be the closed ball centered
at x0 with radius r. For a function u(t, x) defined on �, we denote Dxu = ux = (ux1 , . . . , uxn) and
Du = (ut ,Dxu).
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APPLICABLE ANALYSIS 3

2. The Hopf formula and viscosity solution

We now consider the Cauchy problem for the Hamilton–Jacobi equation:

ut + H(Dxu) = 0 , (t, x) ∈ � = (0,T) × R
n, T > 0, (2.1)

u(0, x) = σ(x) , x ∈ R
n, (2.2)

where the Hamiltonian H(p) is a continuous function and σ(x) is a convex function on R
n.

Let σ ∗ be the Fenchel conjugate of σ. We denote by

D = dom σ ∗ = {y ∈ R
n | σ ∗(y) < +∞}

the effective domain of the convex function σ ∗.
We assume a compatible condition for H(p) and σ(x) as follows:

(Hf1): For every (t0, x0) ∈ [0,T) × R
n, there exist positive constants r and N such that

〈x, p〉 − σ ∗(p) − tH(p) < max|q|≤N
{〈x, q〉 − σ ∗(q) − tH(q)}

whenever (t, x) ∈ [0,T) × R
n, |t − t0| + |x − x0| < r and |p| > N .

Let
ϕ(t, x, q) = 〈x, q〉 − σ ∗(q) − tH(q), (t, x) ∈ �, q ∈ R

n. (2.3)

For each (t, x) ∈ �, denote

�(t, x) = {q ∈ R
n | ϕ(t, x, q) = max

p∈Rn
ϕ(t, x, p)}. (2.4)

Remark 2.1: In virtue of (Hf1) �(t, x) 
= ∅, for all (t, x) ∈ �. Moreover, the multi-valued function

� � (t, x) → �(t, x) ⊂ R
n

is upper semi-continuous on �; see [16].
First, we briefly recall definitions of Fréchet semidifferentials of a function and viscosity solution.

Definition 2.2: Let u = u(t, x) : � → R be a function and let (t0, x0) ∈ �. For (h, k), (p, q) ∈
R × R

n, we denote

τ(p, q, h, k) = u(t0 + h, x0 + k) − u(t0, x0) − ph − 〈q, k〉√|h|2 + |k|2 ,

D+u(t0, x0) = {(p, q) ∈ R
n+1 | lim sup

(h,k)→(0,0)
τ (p, q, h, k) ≤ 0}

D−u(t0, x0) = {(p, q) ∈ R
n+1 | lim inf

(h,k)→(0,0)
τ (p, q, h, k) ≥ 0},

where p ∈ R, q ∈ R
n.

Then D+u(t0, x0) (resp. D−u(t0, x0)) is called the superdifferential (resp. subdifferential) of u(t, x)
at (t0, x0).
Definition 2.3: A continuous function u : [0,T) × R

n → R is called a viscosity subsolution (resp.
viscosity supersolution) of the Cauchy problem (2.1)–(2.2) on � = (0,T) × R

n, provided that the
following hold:

(i) u(0, x) = σ(x) for all x ∈ R
n;
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4 N. HOANG

(ii) For each (t0, x0) ∈ � and (p, q) ∈ D+u(t0, x0), one has

p + H(q) ≤ 0,

(resp. for each (t0, x0) ∈ � and (p, q) ∈ D−u(t0, x0), one has

p + H(q) ≥ 0).

A continuous function u : [0,T)×R
n → R is called a viscosity solution of the problem (2.1)–(2.2)

if it is a viscosity sub- and supersolution of the problem.
Note that, there are several propositions which are equivalent to this definition, e.g. the notion of

C1-test function is used instead of semidifferentials; see [3].
From now on, the Hopf formula for the problem (2.1)–(2.2) is the function defined by

u(t, x) = max
q∈Rn

{〈x, q〉 − σ ∗(q) − tH(q)}. (2.5)

We collect here some properties of the Hopf formula u(t, x) for further presentation.
Theorem 2.4: Assume (Hf1). Then we have the following:

(a) u(t, x) is a convex function on � and it is a Lipschitz solution of the problem (2.1)–(2.2).
(b) u(t, x) is a viscosity solution of the problem (2.1)–(2.2).
(c) u(t, x) is differentiable at (t, x) ∈ � if and only if, the set �(t, x) defined by (2.4) is a singleton.

Then (ut(t, x), ux(t, x)) = ( − H(q), q), {q} = �(t, x). Moreover, the function u(t, x) is
differentiable at (t0, x0) in both variables if and only if, v(x) = u(t0, x) is differentiable at
x0. Consequently, u(t, x) is continuously differentiable in an open set V ⊂ � if �(t, x) is a
singleton for all (t, x) ∈ V.

Proof: For the proof of (a) see [1,16]. There are several ways to prove (b). The reader can find the
first proof in [4]; see also [17,18].

For the proof of (c), first note that, if v(x) = u(t0, x) is differentiable at x0 then �(t0, x0) = {q} is
a singleton (see [19, p.112]). Conversely, if �(t0, x0) is a singleton, say {q}, then all partial derivatives
of u(t, x) at (t0, x0) exist and ux(t0, x0) = q, ut(t0, x0) = −H(q). Since the function u(t, x) is
convex, then it is differentiable at this point. Besides, if it is differentiable on V then it is continuously
differentiable on this open set by a property of convex functions.

Definition 2.5: We call a point (t0, x0) ∈ � regular for u(t, x) if the function is differentiable at this
point. If u(t, x) is not differentiable at a point (t1, x1) ∈ �, then this point is said to be singular for
the function.

Consequently, by Theorem 2.4, we see that (t0, x0) ∈ � is regular for the Hopf formula u(t, x) if
and only if �(t0, x0) is a singleton.

We conclude the section by introducing the notion of semiconcavity and uniform convexity that
will be used later.
Definition 2.6: Let O be a convex subset of R

m and let v : O → R be a continuous function.

(a) We say that the function v is semiconcave with linear modulus if there exists a constant C ≥ 0
such that

λv(x) + (1 − λ)v(y) − v(λx + (1 − λ)y) ≤ λ(1 − λ)
C
2

|x − y|2

for any x, y in O and for any λ ∈ [0, 1]. The number C is called a semiconcavity constant of v.
Alternatively, the continuous functionw : O → R is called semiconvex if the function v = −w
is semiconcave.
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APPLICABLE ANALYSIS 5

(b) We call the function v uniformly convex with constant 	 > 0 if the function v1(x) = v(x) −
	
2 |x|2, x ∈ O is a convex function.

Remark 2.7:

(i) The semiconcavity of a function was first studied to solve the problem of uniqueness of
Lipschitz solution of Hamilton–Jacobi equations. A comprehensive presentation of the theory
of semiconcave functions can be found in the interesting monograph [6].

(ii) In article [20], the authors presented and studied the notion of σ -smoothness (resp. ρ-
convexity) of a function. When considering a special case for σ (resp. ρ), one obtains the
notion of semiconcavity (resp. uniform convexity). The following proposition is extracted
from Proposition 2.6 and its corollaries from above-mentioned article. See also [14].

Proposition 2.8: Given a function v : R
m → R. Then we have

(i) If v is a uniformly convex function with a constant 	 > 0, then the Fenchel conjugate function
v∗ is a semiconcave function with a semiconcavity constant 1

	
> 0.

(ii) If v is a semiconcave function with a semiconcavity constant C∗ > 0, then v∗ is a uniformly
convex function with a constant 1

C∗ .

3. A classification of characteristics

In this section, we focus on the study of the relationship between theHopf formula and characteristics.
To this aim, let us recall the Cauchy method of characteristics for the problem (2.1)–(2.2). See [6] for
example.

First, by the routine, we assume that H(p) and σ(x) are of class C2(Rn).
The system of characteristic differential equations of the problem (2.1)–(2.2) is as follows

ẋ = Hp ; v̇ = 〈Hp, p〉 − H ; ṗ = 0, (3.1)

with initial conditions

x(0) = y ; v(0) = σ(y) ; p(0) = σy(y) , y ∈ R
n. (3.2)

Then a characteristic strip of the Cauchy problem (2.1)–(2.2) (i.e. a solution of the system of
differential equations (3.1)–(3.2)) is defined by

⎧⎪⎨
⎪⎩
x = x(t, y) = y + tHp(σy(y)),
v = v(t, y) = σ(y) + t{〈Hp(τ , σy(y)), σy(y)〉 − H(σy(y))},
p = p(t, y) = σy(y).

(3.3)

The first component of solution (3.3) is called a characteristic curve (briefly, characteristics)
emanating from y, i.e. the straight line defined by

C : x = x(t, y) = y + tHp(σy(y)), t ∈ [0,T]. (3.4)

Let t0 ∈ (0,T]. If for any t ∈ (0, t0) such that x(t, ·) : R
n → R

n is a diffeomorphism, then
u(t, x) = v(t, x−1(t, x)) is a C2 solution of the problem on the region (0, t0) × R

n.
From now on, we make an additional assumption on H and σ.

(Hf2): Assume that H and σ are functions of class C1(Rn).
Note that, in this case, the characteristic strip (3.3) is also defined.
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6 N. HOANG

Let (t0, x0) ∈ �. Denote by �∗(t0, x0) the set of all y ∈ R
n such that there is a characteristic

curve emanating from y and passing the point (t0, x0). We have �(t0, x0) ⊂ σy(�
∗(t0, x0)); see [15].

Therefore �∗(t0, x0) 
= ∅ since �(t0, x0) 
= ∅ by (Hf1).
Proposition 3.1: Let (t0, x0) ∈ �. Then a characteristic curve passing (t0, x0) has the form

x = x(t, y) = x0 + (t − t0)Hp(σy(y)), t ∈ [0,T] (3.5)

for some y ∈ �∗(t0, x0).

Proof: Let C : x = x(t, y) = y + tHp(σy(y)) be a characteristic curve passing (t0, x0). By the
definition, y ∈ �∗(t0, x0). Then we have

x0 = y + t0Hp(σy(y)).

Therefore,
x = x0 − t0Hp(σy(y)) + tHp(σy(y)) = x0 + (t − t0)Hp(σy(y)).

Conversely, let C1 : x = x(t, y) = x0 + (t − t0)Hp(σy(y)) for y ∈ �∗(t0, x0) be some curve passing
(t0, x0). Then we can rewrite C1 as:

x = x0 − t0Hp(σy(y)) + tHp(σy(y)) = x0 + (t − t0)Hp(σy(y)). (3.6)

On the other hand, let C2 :
x = y + tHp(σy(y)) (3.7)

be a characteristic curve also passing (t0, x0). Besides that, both C1, C2 are integral curves of the ODE
x′ = Hp(σy(y)), thus they must coincide. This proves the proposition.

Remark 3.2: Suppose that σy(y) = p0 ∈ �(t0, x0) for some (t0, x0) ∈ � then y belongs to the
subgradient of the convex function σ ∗ at p0 : y ∈ ∂σ ∗(p0). Moreover, from (3.6) and (3.7), we have
y = x0 − t0Hp(p0).

Now, let C be a characteristic curve passing a point (t0, x0). Then C can be written as

x = x(t, y) = x0 + (t − t0)Hp(σy(y)), t ∈ [0,T].

We say that the characteristic curve C is of the type (I) at the point (t0, x0) ∈ �, if σy(y) = p0 ∈
�(t0, x0). If σy(y) ∈ σy(�

∗(t0, x0)) \ �(t0, x0) then C is said of the type (II) at the point (t0, x0).
Note that, in [14] we also got a similar classification of characteristic curves at a point (t0, x0) based

on their initial points.
The following lemma is helpful in studying Fenchel conjugate function of a C1− convex function.

Lemma 3.3 (see [14]): Let v be a convex function and D = dom v ⊂ R
n. Suppose that there exist

p, p0 ∈ D, p 
= p0 and y ∈ ∂v(p0) such that

〈y, p − p0〉 = v(p) − v(p0).

Then for all z in the straight line segment [p, p0], we have

v(z) = 〈y, z〉 − 〈y, p0〉 + v(p0).

Moreover, y ∈ ∂v(z) for all z ∈ [p, p0].
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APPLICABLE ANALYSIS 7

Proof: For the convenience of the reader, we reproduce the proof here. Take z = λp + (1 − λ)p0 ∈
[p, p0], λ ∈ [0, 1]. Then we have

v(z) ≤ λv(p) + (1 − λ)v(p0) = λ(v(p) − v(p0)) + v(p0).

From the hypotheses, we have

v(z) ≤ λ〈y, p − p0〉 + v(p0)
≤ 〈y, λp + (1 − λ)p0 − p0〉 + v(p0).

On the other hand, since y ∈ ∂v(p0), then

〈y, λp + (1 − λ)p0 − p0〉 ≤ v(z) − v(p0).

Thus
v(z) = 〈y, z〉 − 〈y, p0〉 + v(p0).

Next, let z ∈ [p, p0]. For any x ∈ D, we have

v(x) − v(z) = v(x) − 〈y, z〉 + 〈y, p0〉 − v(p0)
= v(x) − v(p0) − 〈y, z − p0〉
≥ 〈x − p0, y〉 − 〈z − p0, y〉
≥ 〈x − z, y〉.

This gives us that y ∈ ∂v(z).

Now we present some properties of characteristic curves of the type (I) at (t0, x0) given by the
following theorem.
Theorem 3.4: Assume (Hf1), (Hf2). Let (t0, x0) ∈ � = (0,T)× R

n, p0 = σy(y0) ∈ �(t0, x0) and let

C : x = x(t) = x0 + (t − t0)Hp(p0), (t, x) ∈ � (3.8)

be a characteristic curve of the type (I) at (t0, x0). Then we have the following:

(i) p0 ∈ �(t, x) for all (t, x) ∈ C, 0 ≤ t ≤ t0. Moreover, �(t, x) ⊂ �(t0, x0).
(ii) The set �(t, x) = {p0} for all (t, x) ∈ C, 0 ≤ t < t0.

As a consequence, if the characteristic curve C : x = x(t) is of the type (I) at (t0, x0) then it is of
the type (I) at any point (t1, x(t1)), t1 ≤ t0 and the Hopf formula is differentiable on a piece of the
curve C corresponding to t ∈ [0, t0).
Proof: Take an arbitrary p ∈ R

n and denote by

η(t, p) = ϕ(t, x, p) − ϕ(t, x, p0), (t, x) ∈ C, t ∈ [0, t0],

where ϕ(t, x, p) = 〈x, p〉 − σ ∗(p) − tH(p). Then

η(t, p) = 〈x(t), p − p0〉 − (σ ∗(p) − σ ∗(p0)) − t(H(p) − H(p0)) (3.9)

for (t, x) ∈ C.

First, we will check that η(t, p) ≤ 0 for all t ∈ [0, t0].
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8 N. HOANG

It is obvious that, η(t0, p) ≤ 0. On the other hand, from (3.9) and Remark 3.2, we have

η(0, p) = 〈y0, p − p0〉 − (σ ∗(p) − σ ∗(p0)),

where y0 ∈ ∂σ ∗(p0). By a property of subgradient of convex functions, we have

η(0, p) = 〈y0, p − p0〉 − (σ ∗(p) − σ ∗(p0)) ≤ 0. (3.10)

As a result, we have η(0, p) ≤ 0 and η(t0, p) ≤ 0, for any p ∈ R
n.

Since x = x(t) = x0 + (t − t0)Hp(p0), then from (3.9), we also have

η′
t(t, p) = 〈Hp(p0), p − p0〉 − (H(p) − H(p0)) = c (const), ∀t ∈ [0, t0]. (3.11)

Now we start to prove (i). Fix (t1, x1) ∈ C where 0 ≤ t1 ≤ t0 and x1 = x(t1). For any p ∈ R
n, as

shown above, we get
+ If η′

t(t, p) = c > 0 then η(t1, p) < η(t0, p) ≤ 0.
+ If η′

t(t, p) = c ≤ 0 then η(t1, p) ≤ η(0, p) ≤ 0.
Thus we obtain that for all p ∈ R

n,ϕ(t1, x1, p) ≤ ϕ(t1, x1, p0). Consequently, p0 ∈ �(t1, x1) for
any (t1, x1) ∈ C, t1 ∈ [0, t0].

Next, we check that �(t, x) ⊂ �(t0, x0), t ∈ [0, t0]. To this end, take p ∈ R
n \ �(t0, x0). If η′

t(t, p) =
c ≥ 0, we have

η(t, p) ≤ η(t0, p) < 0,

and if η′
t(t, p) = c < 0, then

η(t, p) < η(0, p) = 〈y, p − p0〉 − (σ ∗(p) − σ ∗(p0)) ≤ 0, t ∈ [0, t0).

Therefore, in any case, η(t, p) < 0. This means that p /∈ �(t, x) and the inclusion �(t, x) ⊂ �(t0, x0)
has been checked.

The proof of (i) is then complete.
The next step is to prove (ii). Let (t1, x1) ∈ C where t1 ∈ [0, t0). Take p ∈ �(t1, x1). Then we have

η(t1, p) = ϕ(t1, x1, p) − ϕ(t1, x1, p0) = 0. (3.12)

As in (3.11), we have η′
t(t, p) = c (const), ∀t ∈ [0, t0].

If c > 0 then η(t1, p) < η(t0, p) ≤ 0 and if c < 0 then η(t1, p) < η(0, p) ≤ 0. These yield a
contradiction to the equality (3.12).

Now we consider the case η′
t(t, p) = 0, or

〈Hp(p0), p − p0〉 − (H(p) − H(p0)) = 0, ∀t ∈ [0, t0]. (3.13)

From the equality (3.12), we have

〈x0, p − p0〉 − (σ ∗(p) − σ ∗(p0)) = t0(H(p) − H(p0)). (3.14)

Subtracting both sides of (3.14) by 〈t0Hp(p0), p − p0〉, and noticing that y0 = x0 − t0Hp(p0), we
get

〈y0, p − p0〉 − (σ ∗(p) − σ ∗(p0)) = (H(p) − H(p0)) − 〈Hp(p0), p − p0〉. (3.15)

Thus
〈y0, p − p0〉 − (σ ∗(p) − σ ∗(p0)) = 0.
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APPLICABLE ANALYSIS 9

As mentioned before, since p0 = σy(y0), then y0 ∈ ∂σ ∗(p0). If p 
= p0 we see that the straight line
segment [p, p0] is contained in D = {z ∈ domσ ∗ | ∂σ ∗(z) 
= ∅}. Applying Lemma 3.3, we see that
the function σ ∗ is not strictly convex on the set [p, p0]. This is a contradiction, since σ(x) is of class
C1(Rn), then σ ∗ is essentially strictly convex on D = domσ ∗. In particular, σ ∗ is a strictly convex
function on [p, p0] (see [21, Theorem 26.3]). Thus p = p0 and consequently, �(t, x) = {p0} for all
(t, x) ∈ C, 0 ≤ t < t0.

The reachable gradient can be considered as the intermediate notion between the gradient and the
sub/superdifferential of a locally Lipschitz function; see, e.g. [6]. It is useful to study thedifferentiability
of a function.We use Theorem 3.4 to establish a relationship between �(t0, x0) and the set of reachable
gradients.

Let us recall the set D∗v(t0, x0) of reachable gradients of a function v(t, x) defined on � at (t0, x0)
as follows:

Given (p, q) ∈ R
n+1. We say that (p, q) ∈ D∗v(t0, x0) if and only if there exists a sequence

(tk, xk)k ⊂ � \ {(t0, x0)} such that v(t, x) is differentiable at (tk, xk) and

(tk, xk) → (t0, x0), (vt(tk, xk),Dxv(tk, xk)) → (p, q) as k → ∞.

If v(t, x) is a locally Lipschitz function, then D∗v(t, x) 
= ∅, and it is a compact set ([6, p.54]).
Now let u(t, x) be the Hopf formula and let (t0, x0) ∈ �. We denote by

H(t0, x0) = {( − H(q), q) | q ∈ �(t0, x0)}. (3.16)

Then a relationship between D∗u(t0, x0) and the set �(t0, x0) is given by the following theorem.

Theorem 3.5 (cf. [14, p.273]): Assume (Hf1), (Hf2). Let u(t, x) be the Hopf formula for the problem
(2.1)–(2.2). Then for all (t0, x0) ∈ �, we have

D∗u(t0, x0) = H(t0, x0).

Proof: Let (p0, q0) be an element of H(t0, x0), then p0 = −H(q0) for some q0 ∈ �(t0, x0). Let
C : x = x(t) be the characteristic curve of the type (I) at (t0, x0) defined as in Theorem 3.4. By
this theorem, all points (t, x) ∈ C, t ∈ [0, t0) are regular. Put tk = t0 − 1/k, xk = x(tk) then
C � (tk, xk) → (t0, x0). By Theorem 2.4, (c) one has (ut(tk, xk),Dxu(tk, xk)) = ( − H(q0), q0). Thus,

( − H(q0), q0) = lim
k→∞

(ut(tk, xk),Dxu(tk, xk)) ∈ D∗u(t0, x0)

and therefore, H(t0, x0) ⊂ D∗u(t0, x0).
On the other hand, let (p, q) ∈ D∗u(t0, x0) and (tk, xk)k ⊂ � \ {(t0, x0)} such that u(t, x) is

differentiable at (tk, xk) and

(tk, xk) → (t0, x0), (ut(tk, xk),Dxu(tk, xk)) → (p, q) as k → ∞.

Since (ut(tk, xk),Dxu(tk, xk)) = ( − H(qk), qk) for qk ∈ �(tk, xk), and the multi-valued function
�(t, x) is u.s.c, then letting k → ∞, we see that q ∈ �(t0, x0) and p = limk→∞ −H(qk) = −H(q).
Thus (p, q) ∈ H(t0, x0).

The proof of Theorem 3.5 is then complete.

Remark 3.6: A general result for the correspondence between D∗u(t, x) and the set of minimizers
of a problem of calculus of variation (CV)t,x is established for convex Hamiltonian H(t, x, p) in p in
[6, Theorem 6.4.9, p.167].
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10 N. HOANG

4. Existence of a strip of differentiability of the Hopf formula

Let v(t, x) be a continuous function on � = (0,T) × R
n, T > 0. Suppose that there exists t0 ∈ (0,T)

such that v ∈ C1((0, t0) × R
n).

Denote θ = sup{t ∈ (0,T) | v ∈ C1((0, t) × R
n)}. Then R = (0, θ) × R

n is the largest strip
in (0,T) × R

n on which the function v(t, x) is continuously differentiable. We call R the strip of
differentiability of the function v(t, x).

First, we present a result on the existence of strips of the form R∗ = (0, t∗) × R
n ⊂ � such that

the viscosity solution u(t, x) defined by the Hopf formula is continuously differentiable on R∗.
Theorem 4.1: Assume (Hf1). Suppose that the Hamiltonian H = H(p) is a semiconvex function
with a semiconvexity constant γ > 0. In addition, let σ be a semiconcave function with a semiconcavity
constantμ−1 > 0.Then there exists t∗ ∈ (0,T) such that for all t0 ∈ (0, t∗), the function v(x) = u(t0, x)
is semiconcave, where u(t, x) is the Hopf formula defined by (2.5).

Proof: We follow an argument in the proof of Theorem 3.5.3 (iv) [6] with a suitable adjustment to
this case. See also [14].

By the assumption and Proposition 2.8, we first note that the Fenchel conjugate function σ ∗ is
a uniformly convex function with constant μ > 0. By the definition, the function σ ∗(p) − μ

2 |p|2 is
convex. Then, for all a, b ∈ R

n we obtain

σ ∗(a) + σ ∗(b) − 2σ ∗
(
a + b
2

)
≥ μ

2
(|a|2 + |b|2 − 2|a + b

2
|2) = μ

4
|a − b|2. (4.1)

Now, take t∗ ∈ (0,T) such that 0 < γ t∗ ≤ μ
2 . Let t0 ∈ (0, t∗), x, y ∈ R

n, pick out p ∈ �(t0, x), q ∈
�(t0, y). Using the inequality (4.1) and the Cauchy inequality of the form 2〈x − y, p − q〉 ≤ μ

2 |p −
q|2 + 2

μ
|x − y|2, we have

u(t0, x) + u(t0, y) − 2u(t0,
x + y
2

)

≤ 〈x, p〉 − σ ∗(p) − t0H(p) + 〈y, q〉 − σ ∗(q)

− t0H(q) − 2
(
〈x + y

2
,
p + q
2

〉 − σ ∗(p + q
2

) − t0H(
p + q
2

)
)

≤ 2
(
σ ∗(p + q

2
) − σ ∗(p) + σ ∗(q)

2

)
+ 1

2
〈x − y, p − q〉 + 2t0(H(

p + q
2

) − H(p) + H(q)
2

)
≤ −μ

4
|p − q|2 + 1

4
(2〈x − y, p − q〉) + 2t0(

γ

8
|p − q|2)

≤ −μ

4
|p − q|2 + t0(

γ

4
|p − q|2 + 1

4
(
μ

2
|p − q|2 + 2

μ
|x − y|2)

≤ 1
4
(γ t0 − μ

2
)|p − q|2 + 1

2μ
|x − y|2.

Since γ t0 − μ
2 < 0, we get

u(t0, x) + u(t0, y) − 2u(t0,
x + y
2

) ≤ 1
2μ

|x − y|2, x, y ∈ R
n.

Therefore, the function v(x) = u(t0, x) is a semiconcave function.

Corollary 4.2: Suppose that all assumptions of Theorem 4.1 hold. Then the function u(t, x) defined
by the Hopf formula is of class C1((0, t∗) × R

n), where 0 < γ t∗ ≤ μ
2 .

Proof: Let (t0, x0) ∈ (0, t∗)×R
n.ByTheorem 4.1, the function v(x) = u(t0, x) is semiconcave onR

n.
Moreover, v(x) is also a convex function. By Theorem 3.3.7 [6], the function v(x) = u(t0, x) is of class
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APPLICABLE ANALYSIS 11

C1(Rn). Thus, �(t0, x0) is a singleton and then u(t, x) as a function of two variables is differentiable
at (t0, x0). Besides, u(t, x) is a convex function, therefore u(t, x) is of class C1((0, t∗) × R

n).

Corollary 4.3: Assume (Hf1). In addition, suppose that H and σ belong to the class C1,1(Rn). Then
the strip of differentiability of the function u(t, x) defined by the Hopf formula u(t, x) is ever nonempty.

Proof: Since H , σ ∈ C1,1(Rn), then H and σ are both semiconvex and semiconcave functions with
linear modulus (see [6, Proposition 2.1.2]). By Theorem 4.1 and Corollary 4.2, the function u(t, x) is
of class C1((0, t1) × R

n) for some t1 ∈ (0,T). By the definition, the strip of differentiability of u(t, x)
is not empty.

Further we need an additional assumption for the problem (2.1)–(2.2) as follows.

(Hf3): Either σ(x) is Lipschitz or Hp(p) is bounded on R
n.

Being inspired by the proof of Lemma 6.5.1 [6], we can obtain the following lemmawhich is useful
in studying the regularity of the Hopf formula.
Lemma 4.4: Assume (Hf1), (Hf2) and (Hf3). Let (t0, x0) ∈ [0,T)×R

n.Moreover, suppose that there
exists t∗ ∈ (t0,T) such that �(t∗, y) = {p(y)} is a singleton, for all y ∈ R

n. Then there exist x∗ ∈ R
n

and a characteristic curve C of the type (I) at (t∗, x∗) : x = x∗ + (t − t∗)Hp(p(x∗)), that goes through
(t0, x0).

Proof: Following Remark 2.1, the multi-valued function y → �(t∗, y) is upper semi-continuous. By
the assumption, �(t∗, y) = {p(y)}, thus the single-valued function y → p(y) is continuous on R

n.
For all y ∈ R

n, let
	(y) = x0 − (t0 − t∗)Hp(p(y)),

then the function 	 is also continuous on R
n.

First, suppose that σ(x) is Lipschitz on R
n, then D = dom σ ∗ is bounded. Hence, D ⊂ B′(0,M)

for some positive numberM. Let N = (t∗ − t0) sup|p|≤M |Hp(p)|.
Note that, if y ∈ B′(x0,N) then

|	(y) − x0| ≤ (t∗ − t0)|Hp(p(y))| ≤ N .

Therefore,	 is a continuous function from the closed ball B′(x0,N) into itself. By Brouwer theorem,
	 has a fixed point x∗ ∈ B′(x0,N), i.e. 	(x∗) = x∗, hence,

x0 = x∗ + (t0 − t∗)Hp(p(x∗)).

In other words, there exists a characteristic curve C of the type (I) at (t∗, x∗) described as in
Proposition 3.1 that passes (t0, x0).

Next, if supp∈Rn |Hp(p)| < ∞ then we take N = (t∗ − t0) supp∈Rn |Hp(p)| and argue as above.
The lemma is then proved.

Remark 4.5: By the Cauchy method of characteristics and by the assumptions that H and σ

are of class C2(Rn), the unique C2-solution u(t, x) of the problem (2.1)–(2.2) exists in a narrow
neighborhood of the hyperplane t = 0 where characteristic curves do not meet. Nevertheless, if
u(t, x) given by the Hopf formula is differentiable in some open set containing (t0, x0) ∈ �, then
several characteristic curves may cross at (t0, x0) as in the following example.

Consider the following problem

ut −
(
1 + |ux|2

) 1
2 = 0, t > 0, x ∈ R,

u(0, x) = x2

2
, x ∈ R.
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12 N. HOANG

The Hopf formula of this problem is

u(t, x) = max
y∈R

{xy − y2

2
+ t(1 + y2)

1
2 }.

By a computation, we recognize that �(t, x) is a singleton for all points in the region R∗ =
((0,+∞) × R) \ {(t, 0)| t ≥ 1}. Thus, the solution u(t, x) is continuously differentiable in this
region. Using themethod of characteristics, we see that when t > 1, the characteristic curves intersect.
Concretely, two curves of the form x(t, y) = y − ty√

1 + y2
starting from y0 = 1 and y1 = 2 meet

each other at the point
( √

10
2
√
2−√

5
, 2(

√
2−√

5)
2
√
2−√

5

) ∈ R∗, but the differentiability of the solution u(t, x) is
also preserved in some neighborhood of this point.

However, if the Hopf formula u(t, x) is differentiable on a whole strip of the form (0, t0)×R
n then

the situation is different. More specific, we have the following theorem as a necessary condition.
Theorem 4.6: Assume (Hf1), (Hf2) and (Hf3). Suppose that u(t, x) is differentiable on the strip
R = (0,T0) × R

n, T0 ≤ T . Then at any point (t0, x0) ∈ R, there are no characteristic curves crossing
each other.

Proof: On the contrary, suppose that two distinct characteristic curves Ci : x = xi(t) = yi +
tHp(σy(yi)), i = 1, 2, y1 
= y2 meet at (t0, x0). If both Ci, i = 1, 2 are of the type (I) at (t0, x0), then
{p1, p2} ⊂ �(t0, x0), where p1 = σy(y1) 
= σy(y2) = p2. By Theorem 2.4, the function u(t, x) is not
differentiable at (t0, x0). This contradicts to the hypothesis. Therefore, at least one Ci, i = 1, 2, say, C1
is of the type (II) at (t0, x0). Let

t+ = inf {t ∈ [0, t0] | C1 is of the type (II) at (t, x1(t)}.

Consider the point (t+, x+) where x+ = x1(t+). Since u(t, x) is differentiable at (t0, x), x ∈ R
n,

then �(t0, x) is a singleton for all x ∈ R
n. Applying Lemma 4.4, there exists a point (t0, x∗) ∈ R and

a characteristic curve C′ : x = x∗ + (t − t0)Hp(p(x∗)) of the type (I) at (t0, x∗) that passes (t+, x+).

We first note that 0 < t+ ≤ t0. Indeed, if t+ = 0 then C1 = C′ since there is a unique characteristic
curve starting at (0, y1). Then (t0, x0) = (t0, x∗). This is a contradiction by the type of C1 and C′ at
(t0, x0). Next, we consider the following cases:

(i) If Hp(σy(y1)) = Hp(p(x∗)) then C1 = C′; i.e. x0 = x∗. This means that the characteristic
curve C1 is of the type (I) at (t0, x0), and we get a contradiction.

(ii) If Hp(σy(y1)) 
= Hp(p(x∗)) (i.e. C1 
= C′), then C1 is of the type (I) at all points (t, x1(t)), 0 <
t < t+.

Let xn = x1(tn)where tn = t+ − 1
n , then p(xn) = σy(y1). Since u(t, x) is differentiable at (tn, xn), thus

(ut(tn, x), ux(tn, xn)) = ( − Hp(p(xn)), p(xn)) = ( − Hp(σy(y1)), σy(y1))

for n ∈ N. Letting n → ∞, we see that ( − Hp(σy(y1)), σy(y1)) ∈ D∗u(t+, x+). On the other hand,
( − Hp(p(x∗)), p(x∗)) ∈ D∗u(t+, x+). Since σy(y1) 
= p(x∗) thus D∗u(t+, x+) is not a singleton.
It follows that u(t, x) is not differentiable at (t+, x+), which also contradicts the hypothesis of the
theorem.

The proof Theorem 4.6 is now complete.

Next, we present some sufficient conditions so that there exists a strip of the form (0, t∗) × R
n on

which the function u(t, x) is differentiable. Note that the similar results were previously established
in [14] for the Hopf-Lax formula (1.3).
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APPLICABLE ANALYSIS 13

It is known that in the Cauchy problem (H , σ), the characteristic curves bring the initial data with
them to construct a solution at any point of the domain. The next two theorems show that, if the
initial datum is of class C1 and this smoothness is preserved at some terminal time t = t∗, then the
solution u(t, x) defined by the Hopf formula is of class C1 in the strip (0, t∗] × R

n. The first result is
concerned with noncrossing characteristics condition, i.e. �∗(t∗, x) is a singleton.
Theorem 4.7: Assume (Hf1), (Hf2). Let u(t, x) be the viscosity solution of the problem (2.1)–(2.2)
defined by theHopf formula (2.5). Suppose that there exists t∗ ∈ (0,T) such that at any point (t∗, x), x ∈
R
n there is at most a characteristic curve passing through, (i.e. the mapping: R

n � y → x(t∗, y) =
y + t∗Hp(σy(y)) is injective). Then u(t, x) is continuously differentiable in the strip (0, t∗] × R

n.

Proof: First, by the assumption, the set �∗(t∗, x) is a singleton for all x ∈ R
n. Moreover, �(t∗, x) ⊂

σy(�
∗(t∗, x)), x ∈ R

n, then �(t∗, x) is also a singleton.
Next, take an arbitrary point (t0, x0) ∈ (0, t∗) × R

n. We check that �(t0, x0) is a singleton. Let C :

x = x0 + (t − t0)Hp(p0)

where p0 = σy(y0) ∈ �(t0, x0), be a characteristic curve going through (t0, x0) that is defined as in
Proposition 3.1.

Let (t∗, x∗)be the intersectionpoint of the straight lineC andplanePt∗ : t = t∗.Since �(t∗, x∗) 
= ∅,
and by the assumption, C is the unique characteristic curve that starts at (0, y0) and passes through
(t∗, x∗). Therefore, C can be rewritten as follows:

x = x∗ + (t − t∗)Hp(p∗),

where p∗ ∈ �(t∗, x∗).
On the other hand, �(t∗, x∗) ⊂ σy(�

∗(t∗, x∗)) and �∗(t∗, x∗) = {y∗} is a singleton, so is �(t∗, x∗).
Consequently, C is of the type (I) at (t∗, x∗) and �(t, x) = {p∗} for all (t, x) ∈ C, t < t∗; particularly
�(t0, x0) = {p∗} = {p0} by Theorem 3.4.

Thus, �(t, x) is a singleton for all (t, x) ∈ (0, t∗] × R
n. Following Theorem 2.4, we obtain that

u(t, x) is of class C1((0, t∗] × R
n).

The next theorem concerns with the single-valuedness of the set of maximizers �(t∗, x) while
�∗(t∗, x) may not be a singleton.
Theorem 4.8: Assume (Hf1), (Hf2) and (Hf3). If �(t∗, x) is a singleton for every point of the plane
Pt∗ = {(t∗, x) ∈ R

n+1 : x ∈ R
n}, for some t∗ ∈ (0,T), then the function u(t, x) defined by the Hopf

formula (2.5) is continuously differentiable in the strip (0, t∗] × R
n.

Proof: Let (t0, x0) ∈ (0, t∗] × R
n. By Lemma 4.4, there exists a characteristic curve C of the type

(I) at (t∗, x∗) passing (t0, x0). Since �(t∗, x∗) is a singleton, so is �(t0, x0) by Theorem 3.4. Applying
Theorem 2.4, we see that u(t, x) is continuously differentiable in (0, t∗] × R

n.

As a direct consequence of the above theorem, we have the following:
Corollary 4.9: Assume (Hf1), (Hf2) and (Hf3). If g(x) = u(T , x) is of class C1(Rn) where u(t, x)
defined by the Hopf formula (2.5), then u(t, x) is of class C1((0,T] × R

n), i.e. u(t, x) is a classical
solution of the problem (2.1)–(2.2).

Wenote that the key hypotheses of above theorems are equivalent to the fact that, there is a unique
characteristic curve of the type (I) at a regular point (t∗, x∗), x∗ ∈ R

n, t∗ > t0 for u(t, x) that goes
through the point (t0, x0). This makes the point (t0, x0) regular.

In general, suppose that u(t, x) is differentiable at (t0, x0) ∈ (0, t∗) × R
n and C0 is a unique

characteristic curve of the type (I) at (t0, x0) that cuts Pt∗ at (t∗, x∗). Then there may exist other
characteristic curves of the type (I) or (II) at the point (t∗, x∗), that is �∗(t∗, x∗) need not be a
singleton. Even neither is �(t∗, x∗); see Remark 4.5. In other words, the function v(x) = u(t∗, x)
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may not be differentiable on R
n.Nevertheless, when considering the type of characteristic curves, we

have:
Theorem 4.10: Assume (Hf1), (Hf2). Let u(t, x) be the viscosity solution of the problem (2.1)–(2.2)
defined by the Hopf formula (2.5) and let t∗ ∈ (0,T). Suppose that all characteristic curves passing
(t∗, x), x ∈ R

n are of the type (I) at this point. Then u(t, x) is continuously differentiable in the open
strip (0, t∗) × R

n.

Proof: We argue similarly to the proof of Theorem 4.7. Let (t0, x0) ∈ (0, t∗) × R
n and let C :

x = x0 + (t − t0)Hp(p0)

where p0 = σy(y0) ∈ �(t0, x0) be any characteristic curve of the type (I) at the point (t0, x0).
Let (t∗, x∗) be the intersection point of C and plane Pt∗ : t = t∗. Then we have

x∗ = x0 + (t∗ − t0)Hp(p0).

Therefore, we can rewrite C as

x = x(t) = x∗ − (t∗ − t0)Hp(p0) + (t − t0)Hp(p0) = x∗ + (t − t∗)Hp(p0).

Thus C is also a characteristic curve that passes through the point (t∗, x∗). By the assumption, C is
of the type (I) at this point, so each �(t, x), (t, x) ∈ C, 0 ≤ t < t∗ is a singleton by Theorem 3.4.
In particular, �(t0, x0) is a singleton. Applying Theorem 2.4 again, we come to the conclusion of the
theorem.

Example: Let

ut − ln (1 + u2x) = 0, t ∈ (0, 2), x ∈ R,

u(0, x) =
{

x2
2 , |x| ≤ 1
x sgn x − 1

2 , |x| > 1
.

The viscosity solution of this problem defined by the Hopf formula is

u(t, x) = max|y|≤1
{xy − y2

2
+ t ln (1 + y2)}.

Let ϕ(t, x, y) = xy − y2
2 + t ln (1 + y2), then ϕy(t, x, y) = x − y + 2ty

1+y2 .

A simple computation shows that at point (t0, x0) = (2, 25 ), we have ϕy(2, 25 , y) = 0 ⇔ y1 =
2; y2 = −4+√

11
5 , y3 = −4−√

11
5 and the function ϕ(t0, x0, y) attains its maximum at y1 = 2.

There are three characteristic curves that go through the point (2, 25 ) as follows:
C1 : x = 2 − 4t

5 , starting at y=2 and
Ci = yi − 2yit

1+y2i
, i = 2, 3, starting at y2 = −4+√

11
5 , y3 = −4−√

11
5 .

We see that C1 is the characteristic curve of the type (I) at (2, 25 ) and C2, C3 are the characteristic
curves of the type (II) at this point since �(2, 25 ) = {σ ′(y1)} = {2} and σy(yi) /∈ �(2, 25 ), i = 2, 3.
Note that, (2, 25 ) is a regular point of u(t, x).

Now let (t1, x1) = (t1, 0) and let the characteristic curve C′
1 starting from y ∈ R go through (t1, 0).

Then y is a solution of the equation y − 2t1y
1+y2 = 0.

If 0 ≤ t1 ≤ 1
2 then (t1, 0) is a regular point of u(t, x) and C′

1 : x = 0 is of the type (I) at (t1, 0).
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If t1 > 1
2 then (t1, 0) is singular, since �(t1, 0) = {y2, y3}, where y2 = √

2t1 − 1, y3 = −√
2t1 − 1.

In this case, the characteristic curves C′
2 and C′

3 starting at y2 and y3 are of the type (I), and C′
1 is of

the type (II) at (t1, 0).
Let t∗ = 1

2 . We have ϕ( 12 , x, y) = xy − y2
2 + 1

2 ln (1 + y2), then ϕ′
y(

1
2 , x, y) = x − y + y

1+y2 and

ϕ′′
y (

1√
2
, x, y) = −y2 3+y2

(1+y2)2 < 0, y 
= 0. Therefore, �( 12 , x) is a singleton for all x ∈ R. Applying
Theorem 4.7, we see that the solution u(t, x) is continuously differentiable on the strip (0, 12 ) × R

n.

At last, the segment x = 0; t ∈ ( 12 , 2] is a set of singular points for u(t, x). So the singularities of
u(t, x) propagate to the boundary.
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