SOME DIFFERENTIAL PROPERTIES OF A HOPF-TYPE FORMULA FOR HAMILTON JACOBI EQUATIONS

Nguyen Hoang
Department of Mathematics, College of Education
Hue University, 32 Le Loi, Hue, Vietnam
e-mail: nguyenhoanghue@gmail.com or: nguyenhoang@hueuni.edu.vn

Abstract

A Hopf-type formula of the Cauchy problem for Hamilton - Jacobi equations (H, σ) is defined by $u(t, x)=\max _{q \in \mathbb{R}^{n}}\left\{\langle x, q\rangle-\sigma^{*}(q)-\int_{0}^{t} H(\tau, q) d \tau\right\}$. We investigate the points on the domain Ω where the function $u(t, x)$ is differentiable, and the strip of the form $\left(0, t_{0}\right) \times \mathbb{R}^{n}$ of Ω where the function $u(t, x)$ is continuously differentiable. Moreover, we present a simple propagation of singularity in forward of $u(t, x)$.

1 Introduction

Consider the Cauchy problem for Hamilton - Jacobi equation (H, σ)

$$
\begin{gather*}
\frac{\partial u}{\partial t}+H\left(t, D_{x} u\right)=0,(t, x) \in \Omega=(0, T) \times \mathbb{R}^{n} \tag{1.1}\\
u(0, x)=\sigma(x), x \in \mathbb{R}^{n} \tag{1.2}
\end{gather*}
$$

If the Hamiltonian $H=H(p)$ is convex and superlinear, σ is Lipschitz on \mathbb{R}^{n}, then the function

$$
\begin{equation*}
u(t, x)=\min _{y \in \mathbb{R}^{n}}\left\{\sigma(y)+t H^{*}\left(\frac{x-y}{t}\right)\right\}, \tag{1.3}
\end{equation*}
$$

is called the Hopf-Lax formula for the problem (H, σ).

Key words: Hamilton - Jacobi equation, Hopf-type formula, regular, singular, characteristics, strip of differentiability.
2010 AMS Mathematics classification: 35F21, 35D40, 35B65, 35A21.

If $H=H(p)$ is only a continuous function, $\sigma(x)$ is a convex and Lipschitz function, then the Hopf formula of the problem (H, σ) is

$$
\begin{equation*}
u(t, x)=\max _{q \in \mathbb{R}^{n}}\left\{\langle x, q\rangle-\sigma^{*}(q)-t H(q)\right\} \tag{1.4}
\end{equation*}
$$

see $[1,4,5]$. Here * denotes the Fenchel conjugate.
It is well-known that both formulas (1.3) and (1.4) are Lipschitz solutions as well as viscosity solutions of the problem (H, σ) where $H=H(p)$ under the corresponding assumptions stated as above, see [1, 2, 4].

If $H=H(t, p)$ is continuous and σ is convex, then a generalization of formula (1.4) called Hopf-type formula is

$$
\begin{equation*}
u(t, x)=\max _{q \in \mathbb{R}^{n}}\left\{\langle x, q\rangle-\sigma^{*}(q)-\int_{0}^{t} H(\tau, q) d \tau\right\} \tag{1.5}
\end{equation*}
$$

Ones prove that $u(t, x)$ is a locally Lipschitz continuous function satisfying the initial condition (1.2) in \mathbb{R}^{n}, and equation (1.1) at almost all points in the domain Ω, i.e. a Lipschitz solution, but in general, it is not a viscosity solution, see [5, 10]. Recently, in [7] we prove that the formula (1.5) defines a viscosity solution of the problem for a specific class of Hamiltonians $H=H(t, p)$.

In this paper we first analyze properties of characteristics of the Cauchy problem in connection with formula (1.5) where $H=H(t, p)$. We introduce a classification of characteristic curves at each point of the domain and then study differential properties of Hopf-type formula $u(t, x)$ on these curves. Next, we present various conditions based on the characteristics so that $u(t, x)$ defined by (1.5) is continuously differentiable on the strip $\left(0, t_{0}\right) \times \mathbb{R}^{n}$. Finally, we show that the singularities of the solution $u(t, x)$ may propagate forward from t-time t_{0} to the boundary of the domain.

This paper can be considered as a continuation of [6] to the case where dimension of state variable n is greater than 1 , see also [8]. Our method is to exploit the relationship between Hopf-type formula and characteristics where the role of the set of maximizers is essential.

We use the following notations. For a positive number T, denote $\Omega=$ $(0, T) \times \mathbb{R}^{n}$. Let $|$.$| and \langle.,$.$\rangle be the Euclidean norm and the scalar product in$ \mathbb{R}^{n}, respectively. For a function $u: \Omega \rightarrow \mathbb{R}$, we denote by $D_{x} u$ the gradient of u with respect to variable x, i.e., $D_{x} u=\left(u_{x_{1}}, \ldots, u_{x_{n}}\right)$, and let $B^{\prime}\left(x_{0}, r\right)$ be the closed ball centered at x_{0} with radius r.

2 The differentiability of Hopf-type formula and Characteristics

We now consider the Cauchy problem for Hamilton - Jacobi equation of the form:

$$
\begin{gather*}
\frac{\partial u}{\partial t}+H\left(t, D_{x} u\right)=0,(t, x) \in \Omega=(0, T) \times \mathbb{R}^{n} \tag{2.1}\\
u(0, x)=\sigma(x), x \in \mathbb{R}^{n} \tag{2.2}
\end{gather*}
$$

where the Hamiltonian $H(t, p)$ is of class $C\left([0, T] \times \mathbb{R}^{n}\right)$, and $\sigma(x) \in C\left(\mathbb{R}^{n}\right)$ is a convex function.

Let σ^{*} be the Fenchel conjugate of σ, i.e., $\sigma^{*}(y)=\max _{x \in \mathbb{R}^{n}}\{\langle x, y\rangle-\sigma(x)\}$. We denote by $D=\operatorname{dom} \sigma^{*}=\left\{y \in \mathbb{R}^{n} \mid \sigma^{*}(y)<+\infty\right\}$ the effective domain of the convex function σ^{*}.

In [10] we assumed a compatible condition for $H(t, p)$ and $\sigma(x)$ as follows.
(A1): For every $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{n}$, there exist positive constants r and N such that

$$
\langle x, p\rangle-\sigma^{*}(p)-\int_{0}^{t} H(\tau, p) d \tau<\max _{|q| \leq N}\left\{\langle x, q\rangle-\sigma^{*}(q)-\int_{0}^{t} H(\tau, q) d \tau\right\}
$$

whenever $(t, x) \in[0, T) \times \mathbb{R}^{n},\left|t-t_{0}\right|+\left|x-x_{0}\right|<r$ and $|p|>N$.
From now on, we denote

$$
\begin{equation*}
u(t, x)=\max _{q \in \mathbb{R}^{n}}\left\{\langle x, q\rangle-\sigma^{*}(q)-\int_{0}^{t} H(\tau, q) d \tau\right\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(t, x, q)=\langle x, q\rangle-\sigma^{*}(q)-\int_{0}^{t} H(\tau, q) d \tau,(t, x) \in \Omega, q \in \mathbb{R}^{n} \tag{2.4}
\end{equation*}
$$

For each $(t, x) \in \Omega$, let $\ell(t, x)$ be the set of all $p \in \mathbb{R}^{n}$ at which the maximum of the function $\varphi(t, x, \cdot)$ is attained. In virtue of (A1), $\ell(t, x) \neq \emptyset$.

Remark. If $\sigma(x)$ is convex and Lipschitz on \mathbb{R}^{n} then dom σ^{*} is bounded, hence condition (A1) is clearly satisfied. Thus (A1) can be considered as a generalization of the hypotheses used earlier, see [1, 4].

The following theorem is necessary for further presentation.
Theorem 2.1. [10] Assume (A1). Then the function $u(t, x)$ defined by (2.3) is a locally Lipschitz function satisfying equation (2.1) a.e. in Ω and $u(0, x)=$ $\sigma(x), x \in \mathbb{R}^{n}$. Furthermore, $u(t, x)$ is of class $C^{1}(V)$ in some open $V \subset \Omega$ if and only if, for every $(t, x) \in V, \ell(t, x)$ is a singleton.

Remark 2.2. If $\ell\left(t_{0}, x_{0}\right)=\{p\}$ is a singleton, then all partial derivatives of $u(t, x)$ at $\left(t_{0}, x_{0}\right)$ exist and $u_{x}\left(t_{0}, x_{0}\right)=p, u_{t}\left(t_{0}, x_{0}\right)=-H\left(t_{0}, p\right)$ see ([11], p. 112). Moreover, we have:

Theorem 2.3. Assume (A1). Let $\left(t_{0}, x_{0}\right) \in \Omega$ such that $\ell\left(t_{0}, x_{0}\right)$ is a singleton. Then the function $u(t, x)$ defined by (2.3) is differentiable at $\left(t_{0}, x_{0}\right)$.

Proof. By assumption, $\ell\left(t_{0}, x_{0}\right)=\{p\}$, put $p_{t}=-H\left(t_{0}, p\right)$. For $(h, k) \in \mathbb{R} \times \mathbb{R}^{n}$ let

$$
\alpha=\limsup _{(h, k) \rightarrow(0,0)} \frac{u\left(t_{0}+h, x_{0}+k\right)-u\left(t_{0}, x_{0}\right)-p_{t} h-\langle p, k\rangle}{\sqrt{h^{2}+|k|^{2}}}
$$

Then there exists a sequence $\left(h_{m}, k_{m}\right)_{m} \rightarrow 0$ such that $\lim _{m \rightarrow \infty} \Phi_{m}=\alpha$, where

$$
\Phi_{m}=\frac{u\left(t_{0}+h_{m}, x_{0}+k_{m}\right)-u\left(t_{0}, x_{0}\right)-p_{t} h_{m}-\left\langle p, k_{m}\right\rangle}{\sqrt{h_{m}^{2}+\left|k_{m}\right|^{2}}}
$$

For each $m \in \mathbb{N}$, we choose $p_{m} \in \ell\left(t_{0}+h_{m}, x_{0}+k_{m}\right)$ then

$$
\begin{aligned}
\Phi_{m} & \leq \frac{\varphi\left(t_{0}+h_{m}, x_{0}+k_{m}, p_{m}\right)-\varphi\left(t_{0}, x_{0}, p_{m}\right)-p_{t} h_{m}-\left\langle p, k_{m}\right\rangle}{\sqrt{h_{m}^{2}+\left|k_{m}\right|^{2}}} \\
& \leq \frac{-h_{m}\left(p_{t}+H\left(\tau_{m}, p_{m}\right)\right)-\left\langle p_{m}-p, k_{m}\right\rangle}{\sqrt{h_{m}^{2}+\left|k_{m}\right|^{2}}}
\end{aligned}
$$

for some τ_{m} lying between t_{0} and $t_{0}+h_{m} ; \varphi(t, x, p)$ is given by (2.4).
Taking into account the assumption (A1), it is easy to see that, for $\left(h_{m}, k_{m}\right)$ small enough, the sequence $\left(p_{m}\right)_{m}$ is bounded, then we can choose a subsequence also denoted by $\left(p_{m}\right)_{m}$ such that $p_{m} \rightarrow p_{0}$ as $m \rightarrow \infty$. Since the set-valued mapping $(t, x) \mapsto \ell(t, x)$ is upper semicontinuous, see [10], then $p_{0} \in \ell\left(t_{0}, x_{0}\right)$, that is $p_{0}=p$.

Now, letting $m \rightarrow \infty$ we have

$$
\alpha=\lim _{m \rightarrow \infty} \Phi_{m} \leq \lim _{m \rightarrow \infty} \frac{-h_{m}\left(p_{t}+H\left(\tau_{m}, p_{m}\right)\right)-\left\langle p_{m}-p, k_{m}\right\rangle}{\sqrt{h_{m}^{2}+\left|k_{m}\right|^{2}}}=0
$$

On the other hand, let

$$
\beta=\liminf _{(h, k) \rightarrow(0,0)} \frac{u\left(t_{0}+h, x_{0}+k\right)-u\left(t_{0}, x_{0}\right)-p_{t} h-\langle p, k\rangle}{\sqrt{h^{2}+|k|^{2}}}
$$

We have, for $p \in \ell\left(t_{0}, x_{0}\right)$

$$
\begin{aligned}
u\left(t_{0}+h, x_{0}+k\right)-u\left(t_{0}, x_{0}\right) & \geq \varphi\left(t_{0}+h, x_{0}+k, p\right)-\varphi\left(t_{0}, x_{0}, p\right) \\
& \geq-h H\left(\tau^{*}, p\right)+\langle p, k\rangle
\end{aligned}
$$

where τ^{*} lies between t_{0} and $t_{0}+h$. Therefore

$$
\beta \geq \liminf _{(h, k) \rightarrow(0,0)} \frac{-h\left(-p_{t}-H\left(\tau^{*}, p\right)\right)}{\sqrt{h^{2}+|k|^{2}}}=0
$$

Thus,

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{u\left(t_{0}+h, x_{0}+k\right)-u\left(t_{0}, x_{0}\right)-p_{t} h-\langle p, k\rangle}{\sqrt{h^{2}+|k|^{2}}}=0
$$

which shows that $u(t, x)$ is differentiable at $\left(t_{0}, x_{0}\right)$.
The proof of the theorem is then complete.
Next, we investigate the differentiability of Hopf-type formula $u(t, x)$ on the characteristics. First, let us recall the Cauchy method of characteristics for Problem (2.1) - (2.2). Note that, to use the method of characteristics, the given data are assumed at least to be of class C^{1}.

From now on, we thus suppose that $H(t, p)$ and $\sigma(x)$ are of class C^{1}.
The characteristic differential equations of Problem (2.1) - (2.2) is as follows

$$
\begin{equation*}
\dot{x}=H_{p} ; \quad \dot{v}=\left\langle H_{p}, p\right\rangle-H ; \quad \dot{p}=0 \tag{2.5}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
x(0)=y ; \quad v(0)=\sigma(y) ; \quad p(0)=\sigma_{y}(y) ; \quad y \in \mathbb{R}^{n} \tag{2.6}
\end{equation*}
$$

A solution of the system of differential equations (2.5) - (2.6) is defined by

$$
\left\{\begin{align*}
& x=x(t, y)=y+\int_{0}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau \tag{2.7}\\
& v=v(t, y)=\sigma(y)+\int_{0}^{t}\left\langle H_{p}\left(\tau, \sigma_{y}(y)\right), \sigma_{y}(y)\right\rangle d \tau-\int_{0}^{t} H\left(\tau, \sigma_{y}(y)\right) d \tau \\
& p=p(t, y)=\sigma_{y}(y)
\end{align*}\right.
$$

This solution is called a characteristic strip of Problem (2.1) - (2.2).
The first component of solution (2.7) is called a characteristic curve (briefly, characteristics) emanating from $(0, y)$ i.e. the curve defined by

$$
\begin{equation*}
\mathcal{C}: x=x(t, y)=y+\int_{0}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau, t \in[0, T] . \tag{2.8}
\end{equation*}
$$

Let $\left(t_{0}, x_{0}\right) \in \Omega$. Denote by $\ell^{*}\left(t_{0}, x_{0}\right)$ the set of all $y \in \mathbb{R}^{n}$ such that there is a characteristic curve emanating from $(0, y)$ and passing the point $\left(t_{0}, x_{0}\right)$. We have $\ell\left(t_{0}, x_{0}\right) \subset \sigma_{y}\left(\ell^{*}\left(t_{0}, x_{0}\right)\right)$, see [6]. Therefore $\ell^{*}\left(t_{0}, x_{0}\right) \neq \emptyset$.

Proposition 2.4. Let $\left(t_{0}, x_{0}\right) \in \Omega$. Then a characteristic curve passing $\left(t_{0}, x_{0}\right)$ has form

$$
\begin{equation*}
x=x(t, y)=x_{0}+\int_{t_{0}}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau, t \in[0, T] \tag{2.9}
\end{equation*}
$$

for some $y \in \ell^{*}\left(t_{0}, x_{0}\right)$.
Proof. Take $y \in \ell^{*}\left(t_{0}, x_{0}\right)$ and let $\mathcal{C}: x=x(t, y)=y+\int_{0}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau$ be a characteristic curve emanating from $(0, y)$. Since \mathcal{C} goes through $\left(t_{0}, x_{0}\right)$ we have

$$
\begin{equation*}
x_{0}=y+\int_{0}^{t_{0}} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau \tag{2.10}
\end{equation*}
$$

Therefore, the equation of \mathcal{C} can be written as

$$
x=x_{0}-\int_{0}^{t_{0}} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau+\int_{0}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau=x_{0}+\int_{t_{0}}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau
$$

Conversely, let $\mathcal{C}_{1}: x=x(t, y)=x_{0}+\int_{t_{0}}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau$ where $y \in \ell^{*}\left(t_{0}, x_{0}\right)$ be some curve passing $\left(t_{0}, x_{0}\right)$. Then we can rewrite \mathcal{C}_{1} as:

$$
x=x_{0}-\int_{0}^{t_{0}} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau+\int_{0}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau
$$

On the other hand, let \mathcal{C}_{2} defined by (2.8)

$$
x=y+\int_{0}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau
$$

be a characteristic curve also passing $\left(t_{0}, x_{0}\right)$. Besides that, both $\mathcal{C}_{1}, \mathcal{C}_{2}$ are integral curves of the ODE $\dot{x}=H_{p}\left(t, \sigma_{y}(y)\right)$, thus they must coincide. This proves the proposition.
Remark 2.5. Suppose that $p_{0}=\sigma_{y}(y) \in \ell\left(t_{0}, x_{0}\right)$ for some $y \in \ell^{*}\left(t_{0}, x_{0}\right)$. Then y is in the subgradient of convex function σ^{*} at p_{0}, i.e., $y \in \partial \sigma^{*}\left(p_{0}\right)$. Moreover, from (2.8) and (2.10), we have $y=x_{0}-\int_{0}^{t_{0}} H_{p}\left(\tau, p_{0}\right) d \tau$.

Now, let \mathcal{C} be a characteristic curve passing $\left(t_{0}, x_{0}\right)$ that is written as

$$
x=x(t, y)=x_{0}+\int_{t_{0}}^{t} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau
$$

We say that the characteristic curve \mathcal{C} is of the type (I) at the point $\left(t_{0}, x_{0}\right) \in \Omega$, if $\sigma_{y}(y)=p \in \ell\left(t_{0}, x_{0}\right)$. If $\sigma_{y}(y) \in \sigma_{y}\left(\ell^{*}\left(t_{0}, x_{0}\right)\right) \backslash \ell\left(t_{0}, x_{0}\right)$ then \mathcal{C} is said to be of type (II) at this point.

In the sequel, we need an additional condition for the Hamiltonian $H=$ $H(t, p)$.
(A2): The Hamiltonian $H(t, p)$ has one of the following forms:
a) $H(t, p)=g(t) h(p)+k(t)$ for some functions g, h, k where $g(t)$ does not change its sign for all $t \in(0, T)$.
b) $H(t, \cdot)$ is a convex function for all $t \in(0, T)$.
c) $H(t, \cdot)$ is a concave function for all $t \in(0, T)$.

Remark 2.6. 1. In particular, if $H(t, p)=H(p)$ then the condition (A2) - a) is obviously satisfied.
2. In [7] we proved that if the assumptions (A1) and (A2) are satisfied, then the function $u(t, x)$ defined by Hopf-type formula (2.3) is a viscosity solution of Problem (2.1) - (2.2). Moreover, if $\sigma(x)$ is Lipschitz on \mathbb{R}^{n} then $u(t, x)$ is a semiconvex function.

We introduce the following lemma which is necessary in the sequel, see [8].
Lemma 2.7. Let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function and let $D=\operatorname{dom} v \subset \mathbb{R}^{n}$. Suppose that there exist $p, p_{0} \in D, p \neq p_{0}$ and $y \in \partial v\left(p_{0}\right)$ such that

$$
\left\langle y, p-p_{0}\right\rangle=v(p)-v\left(p_{0}\right)
$$

Then for all z in the straight line segment $\left[p, p_{0}\right]$ we have

$$
v(z)=\langle y, z\rangle-\left\langle y, p_{0}\right\rangle+v\left(p_{0}\right)
$$

Moreover, $y \in \partial v(z)$ for all $z \in\left[p, p_{0}\right]$.
Now some properties of characteristic curves passing a point $\left(t_{0}, x_{0}\right)$ are given by the following theorems.

Theorem 2.8. Assume (A1) and (A2). Let $\left(t_{0}, x_{0}\right) \in(0, T) \times \mathbb{R}^{n}, p_{0}=$ $\sigma_{y}(y) \in \ell\left(t_{0}, x_{0}\right)$ and let

$$
\begin{equation*}
\mathcal{C}: x=x(t)=x_{0}+\int_{t_{0}}^{t} H_{p}\left(\tau, p_{0}\right) d \tau, t \in[0, T] \tag{2.11}
\end{equation*}
$$

be a characteristic curve of type (I) at $\left(t_{0}, x_{0}\right)$. Then for all $\left(t_{1}, x_{1}\right) \in \mathcal{C}, 0 \leq$ $t_{1} \leq t_{0}$ one has $p_{0} \in \ell\left(t_{1}, x_{1}\right)$. Moreover, $\ell\left(t_{1}, x_{1}\right) \subset \ell\left(t_{0}, x_{0}\right)$.

Proof. Fix $\left(t_{1}, x_{1}\right) \in \mathcal{C}, 0 \leq t_{1} \leq t_{0}$. Take an arbitrary element $p \in \mathbb{R}^{n}$. Let

$$
\begin{equation*}
\eta(t, p)=\varphi(t, x, p)-\varphi\left(t, x, p_{0}\right),(t, x) \in \mathcal{C}, t \in\left[0, t_{0}\right] \tag{2.12}
\end{equation*}
$$

where $\varphi(t, x, p)=\langle x, p\rangle-\sigma^{*}(p)-\int_{0}^{t} H(\tau, p) d \tau$.
To prove that $p_{0} \in \ell\left(t_{1}, x_{1}\right)$ it suffices to show that $\eta\left(t_{1}, p\right) \leq 0$.

It is obviously that, $\eta\left(t_{0}, p\right) \leq 0$. We rewrite $\eta(t, p)$ to obtain

$$
\begin{equation*}
\eta(t, p)=\left\langle x(t), p-p_{0}\right\rangle-\left(\sigma^{*}(p)-\sigma^{*}\left(p_{0}\right)\right)-\int_{0}^{t}\left(H(\tau, p)-H\left(\tau, p_{0}\right)\right) d \tau \tag{2.13}
\end{equation*}
$$

for $(t, x) \in \mathcal{C}$.
By Remark 2.5, $x(0)=y \in \partial \sigma^{*}\left(p_{0}\right)$ and a property of subgradient of convex function, we have

$$
\begin{equation*}
\eta(0, p)=\left\langle y, p-p_{0}\right\rangle-\left(\sigma^{*}(p)-\sigma^{*}\left(p_{0}\right)\right) \leq 0 \tag{2.14}
\end{equation*}
$$

As a result, we have $\eta(0, p) \leq 0$ and $\eta\left(t_{0}, p\right) \leq 0$.
From (2.11)-(2.13) we also have

$$
\eta^{\prime}(t, p)=\left\langle H_{p}\left(t, p_{0}\right), p-p_{0}\right\rangle-\left(H(t, p)-H\left(t, p_{0}\right)\right), t \in\left[0, t_{0}\right]
$$

Next, we consider the following cases:
Case 1. Assume $H(t, p)=g(t) h(p)+k(t)$, and $g(t)$ does not change its sign in $(0, T)$. Then

$$
\begin{aligned}
\eta^{\prime}(t, p) & =\left\langle g(t) h_{p}\left(p_{0}\right), p-p_{0}\right\rangle-g(t)\left(h(p)-h\left(p_{0}\right)\right) \\
& =\left(\left\langle h_{p}\left(p_{0}\right), p-p_{0}\right\rangle-\left(h(p)-h\left(p_{0}\right)\right)\right) g(t)=\lambda g(t)
\end{aligned}
$$

where $\lambda=\left\langle h_{p}\left(p_{0}\right), p-p_{0}\right\rangle-\left(h(p)-h\left(p_{0}\right)\right)$ is a constant. Therefore, $\eta^{\prime}(t, p)$ does not change its sign on $\left[0, t_{0}\right]$.

Case 2. Assume $H(t, \cdot)$ is convex. By a property of convex function, we have

$$
\left\langle H_{p}\left(t, p_{0}\right), p-p_{0}\right\rangle \leq H(t, p)-H\left(t, p_{0}\right)
$$

Therefore $\eta^{\prime}(t, p) \leq 0$, for all $t \in\left[0, t_{0}\right]$.
Case 3. Assume $H(t, \cdot)$ is concave. Then $-H(t, \cdot)$ is convex. Arguing as in Case 2, we have $\eta^{\prime}(t, p) \geq 0$, for all $t \in\left[0, t_{0}\right]$.

Combining the three cases above, we have, for all $t \in\left[0, t_{0}\right], \eta^{\prime}(t, p)$ does not change its sign on $\left[0, t_{0}\right]$. Thus,
(i) If $\eta^{\prime}(t, p) \geq 0, t \in\left[0, t_{0}\right]$, then $\eta\left(t_{1}, p\right) \leq \eta\left(t_{0}, p\right) \leq 0$.
(ii) If $\eta^{\prime}(t, p) \leq 0, t \in\left[0, t_{0}\right]$, then $\eta\left(t_{1}, p\right) \leq \eta(0, p) \leq 0$.

Consequently, we obtain $\varphi\left(t_{1}, x_{1}, p\right) \leq \varphi\left(t_{1}, x_{1}, p_{0}\right)$. This is true for all $p \in$ \mathbb{R}^{n}. As a result, $p_{0} \in \ell\left(t_{1}, x_{1}\right)$ for any $\left(t_{1}, x_{1}\right) \in \mathcal{C}, t_{1} \in\left[0, t_{0}\right]$ and the first assertion has been proved.

Next, let $p \notin \ell\left(t_{0}, x_{0}\right)$. Then $\eta\left(t_{0}, p\right)<0$. If (i) holds, i.e. $\eta^{\prime}(t, p) \geq 0$ then $\eta\left(t_{1}, p\right) \leq \eta\left(t_{0}, p\right)<0$.

Otherwise, if (ii) holds, i.e. $\eta^{\prime}(t, p) \leq 0$, we have

$$
\eta(t, p) \leq \eta(0, p)=\left\langle y, p-p_{0}\right\rangle-\left(\sigma^{*}(p)-\sigma^{*}\left(p_{0}\right)\right), t \in\left[0, t_{0}\right)
$$

Since $p \neq p_{0}$, then $\eta(0, p)<0$. Actually, if it is false, i.e. $\left\langle y, p-p_{0}\right\rangle=$ $\left(\sigma^{*}(p)-\sigma^{*}\left(p_{0}\right)\right)$, then applying Lemma 2.7 , we see that $\left[p, p_{0}\right]$ is contained in $\mathcal{D}=\left\{z \in \operatorname{dom} \sigma^{*} \mid \partial \sigma^{*}(z) \neq \emptyset\right\}$ and σ^{*} is not strictly convex on the straight line segment $\left[p, p_{0}\right]$. This is a contradiction, since $\sigma(x)$ is of $C^{1}\left(\mathbb{R}^{n}\right)$, then it is essentially strictly convex on \mathcal{D}. In particular, σ^{*} is stricly convex on $\left[p, p_{0}\right]$, see ([9], Thm. 26.3). This implies $\eta\left(t_{1}, p\right)<0$.

Therefore, in any case, if $p \notin \ell\left(t_{0}, x_{0}\right)$ then $\eta\left(t_{1}, p\right)<0$. Thus $p \notin \ell\left(t_{1}, x_{1}\right)$. The proof is then complete.

We have seen that, if the characteristic curve \mathcal{C} is of type (I) at $\left(t_{0}, x_{0}\right)$ then it is of the type (I) at any point $(t, x) \in \mathcal{C}, 0 \leq t \leq t_{0}$. Nevertheless, for the characteristic curve of type (II), we have the following result which is somewhat different.

Theorem 2.9. Assume (A1) and (A2). In addition, suppose that H, σ are of class C^{2}. Let $\mathcal{C}: x=x(t)=x_{0}+\int_{t_{0}}^{t} H_{p}\left(\tau, \sigma_{y}\left(y_{0}\right)\right) d \tau$ be a characteristic curve of type (II) at some $\left(t_{0}, x_{0}\right) \in \Omega$. Then there exists $\theta \in\left(0, t_{0}\right)$ such that \mathcal{C} is of type (I) at $(\theta, x(\theta))$ and \mathcal{C} is of type (II) for all point $(t, x) \in \mathcal{C}, t \in\left(\theta, t_{0}\right]$.
Proof. Let $\mathcal{C}: x=x_{0}+\int_{t_{0}}^{t} H_{p}\left(\tau, \sigma_{y}\left(y_{0}\right)\right) d \tau$ be the characteristic curve of type (II) at $\left(t_{0}, x_{0}\right)$ emanating from $\left(0, y_{0}\right)$. Then $\sigma_{y}\left(y_{0}\right) \in \sigma_{y}\left(\ell^{*}\left(t_{0}, x_{0}\right)\right) \backslash \ell\left(t_{0}, x_{0}\right)$.

By the Cauchy method of characteristics, the function defined by Hopf-type formula $u(t, x)$ coincides with the local C^{2} solution of Problem (2.1)-(2.2), see $[2,11]$. Then there exists $t_{1} \in\left(0, t_{0}\right)$ such that $u(t, x)$ is differentiable at any point $(t, x(t)) \in \mathcal{C}, u_{x}(t, x)=\sigma_{y}\left(y_{0}\right)$ and $\ell(t, x)=\left\{\sigma_{y}\left(y_{0}\right)\right\}, 0 \leq t \leq t_{1}$. Let

$$
\theta=\sup \left\{t_{1} \in\left[0, t_{0}\right) \mid \ell(s, x(s))=\left\{\sigma_{y}\left(y_{0}\right)\right\}, 0 \leq s \leq t_{1}\right\}
$$

Since the multivalued mapping $(t, x) \mapsto \ell(t, x)$ is upper semicontinuous, we get that $\sigma_{y}\left(y_{0}\right) \in \ell(\theta, x(\theta))$. It is obvious that, $\theta<t_{0}$ since $\sigma_{y}\left(y_{0}\right) \notin \ell\left(t_{0}, x_{0}\right)$ and \mathcal{C} is of type (I) at $(\theta, x(\theta))$. On the other hand, for $t \in\left(\theta, t_{0}\right], \mathcal{C}$ is of type (II) at $(t, x(t))$ by the definition of θ and Theorem 2.8.

3 Strip of differentiability of Hopf-type formula

In this section we will study the strips of the form $V=\left(0, t_{*}\right) \times \mathbb{R}^{n} \subset \Omega$ so that the Hopf-type formula $u(t, x)$ is continuously differentiable on them.

Theorem 3.1. Assume (A1) and (A2). Let $u(t, x)$ be the Hopf-type formula of Problem (2.1) - (2.2) defined by (2.3). Suppose that there exists $t_{0} \in(0, T)$ such that the mapping: $\mathbb{R}^{n} \ni y \mapsto x\left(t_{0}, y\right)=y+\int_{0}^{t_{0}} H_{p}\left(\tau, \sigma_{y}(y)\right) d \tau$ is injective. Then $u(t, x)$ is continuously differentiable in the open $\operatorname{strip}\left(0, t_{0}\right) \times \mathbb{R}^{n}$.

Proof. Let $\left(t_{1}, x_{1}\right) \in\left(0, t_{0}\right) \times \mathbb{R}^{n}$ and let \mathcal{C} :

$$
x=x_{1}+\int_{t_{1}}^{t} H_{p}\left(\tau, p_{1}\right) d \tau
$$

where $p_{1}=\sigma_{y}\left(y_{1}\right) \in \ell\left(t_{1}, x_{1}\right)$ be the characteristic curve going through $\left(t_{1}, x_{1}\right)$ defined as in Proposition 2.4.

Let $\left(t_{0}, x_{0}\right)$ be the intersection point of \mathcal{C} and plane $\Delta^{t_{0}}=\left\{\left(t_{0}, x\right) \in \mathbb{R}^{n+1}\right.$: $\left.x \in \mathbb{R}^{n}\right\}$. Since the mapping $y \mapsto x\left(t_{0}, y\right)$ is injective and $\ell\left(t_{0}, x_{0}\right) \neq \emptyset$, thus $\ell^{*}\left(t_{0}, x_{0}\right)$ is a singleton. Hence there is a unique characteristic curve passing $\left(t_{0}, x_{0}\right)$. This characteristic curve is exactly \mathcal{C}. Therefore, we can rewrite \mathcal{C} as follows:

$$
x=x_{0}+\int_{t_{0}}^{t} H_{p}\left(\tau, p_{0}\right) d \tau
$$

where $p_{0} \in \ell\left(t_{0}, x_{0}\right)$.
Since $\ell\left(t_{0}, x_{0}\right) \subset \sigma_{y}\left(\ell^{*}\left(t_{0}, x_{0}\right)\right)$ and $\ell^{*}\left(t_{0}, x_{0}\right)$ is a singleton, so is $\ell\left(t_{0}, x_{0}\right)$. Consequently, by Theorem 2.8, for all $(t, x) \in \mathcal{C}, 0<t<t_{0}$, the curve \mathcal{C} is of type (I) at (t, x) and $\ell(t, x)=\left\{p_{0}\right\}$ particularly, it holds at $\left(t_{1}, x_{1}\right)$ and then, $p_{0}=p_{1}$. Applying Theorem 2.1 we see that $u(t, x)$ is of class C^{1} in $\left(0, t_{0}\right) \times \mathbb{R}^{n}$.

Note that at some point $\left(t_{0}, x_{0}\right) \in \Omega$ where $u(t, x)$ is differentiable there may be more than one characteristic curve goes through, that is $\ell^{*}\left(t_{0}, x_{0}\right)$ may not be a singleton. Next, we have:

Theorem 3.2. Assume (A1) and (A2). Moreover, let σ be Lipschitz on \mathbb{R}^{n}. Take $t_{0} \in(0, T]$ and suppose that for every point of the plane $\Delta^{t_{0}}=\left\{\left(t_{0}, x\right) \in\right.$ $\left.\mathbb{R}^{n+1}: x \in \mathbb{R}^{n}\right\}$, the set $\ell\left(t_{0}, x\right)$ is a singleton. Then the Hopf-type formula $u(t, x)$ of Problem (2.1) - (2.2) defined by (2.3) is continuously differentiable in the open strip $\left(0, t_{0}\right) \times \mathbb{R}^{n}$.

Proof. By assumption, the function $\sigma(x)$ is convex and Lipschitz on \mathbb{R}^{n}, then $D=\operatorname{dom} \sigma^{*}=\left\{q \in \mathbb{R}^{n} \mid \sigma^{*}(q)<+\infty\right\}$ is a bounded (and convex) subset in \mathbb{R}^{n}. We thus have $\ell(t, x) \subset D$ for all $(t, x) \in \Omega$.

Let $\left(t_{1}, x_{1}\right) \in\left(0, t_{0}\right) \times \mathbb{R}^{n}$. We will check that $\ell\left(t_{1}, x_{1}\right)$ is a singleton.
For each $y \in \mathbb{R}^{n}$, we put

$$
\Lambda(y)=x_{1}-\int_{t_{0}}^{t_{1}} H_{p}(\tau, p(y)) d \tau
$$

where $p(y) \in \ell\left(t_{0}, y\right) \in D$. Since the multi-valued function $y \mapsto \ell\left(t_{0}, y\right)$ is u.s.c, see [10], and by the hypothesis, $\ell\left(t_{0}, y\right)=\{p(y)\}$ is a singleton for all $y \in \mathbb{R}^{n}$, we deduce that the single-valued function $y \mapsto p(y)$ is continuous. Therefore the function $\Lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, defined by $y \mapsto \Lambda(y)$ is also continuous on \mathbb{R}^{n}.

Since $p(y)$ is in the bounded set D and $H_{p}(t, p)$ is continuous, there exists $M>0$ such that

$$
\left|\Lambda(y)-x_{1}\right| \leq \int_{t_{1}}^{t_{0}} \mid H_{p}(\tau, p(y) \mid d \tau \leq M
$$

Therefore Λ is a continuous function from the closed ball $B^{\prime}\left(x_{1}, M\right)$ into itself. By Brouwer theorem, Λ has a fixed point $x_{0} \in B^{\prime}\left(x_{1}, M\right)$, i.e., $\Lambda\left(x_{0}\right)=x_{0}$, hence

$$
x_{1}=x_{0}+\int_{t_{0}}^{t_{1}} H_{p}\left(\tau, p\left(x_{0}\right)\right) d \tau
$$

In other words, there exists a characteristic curve \mathcal{C} of the type (I) at $\left(t_{0}, x_{0}\right)$ described as in Theorem 2.8 passing $\left(t_{1}, x_{1}\right)$. Since $\ell\left(t_{0}, x_{0}\right)$ is a singleton, so is $\ell\left(t_{1}, x_{1}\right)$. Applying Theorem 2.1, we see that $u(t, x)$ is continuously differentiable in $\left(0, t_{0}\right) \times \mathbb{R}^{n}$.

We note that, the solution $u(t, x)$ is differentiable at $\left(t_{0}, x_{0}\right)$ if and only if, $\ell\left(t_{0}, x_{0}\right)$ is a singleton. Thus we have the following corollary.

Corollary 3.3. Assume (A1) and (A2). Moreover, let σ be Lipschitz on \mathbb{R}^{n}. Suppose that the Hopf-type formula $u(t, x)$ of Problem (2.1) - (2.2) defined by (2.3) is differentiable at every point of the plane $\Delta^{t_{0}}=\left\{\left(t_{0}, x\right) \in \mathbb{R}^{n+1}\right.$: $\left.x \in \mathbb{R}^{n}\right\}, 0<t_{0} \leq T$. Then $u(t, x)$ is continuously differentiable in the strip $\left(0, t_{0}\right) \times \mathbb{R}^{n}$.

Definition 3.4. We call a point $\left(t_{0}, x_{0}\right) \in \Omega$ regular for $u(t, x)$ if the function is differentiable at this point. If $u(t, x)$ is not differentiable at $\left(t_{1}, x_{1}\right) \in \Omega$ then this point is said to be a singular point or singularity of the function.

We study a simple propagation of singularities of viscosity solution $u(t, x)$ of the Cauchy problem (2.1) - (2.2) defined by the Hopf-type formula. Under minimum assumption we show that, if $\left(t_{0}, x_{0}\right)$ is a singular point of $u(t, x)$, then there exists another singular one (t, x) for $t>t_{0}$ and x is near to x_{0}. It is worth noticing that, a comprehensive study of singularities of semiconcave/semiconvex functions is presented in [2].

Theorem 3.5. Assume (A1) and (A2). Let $\left(t_{0}, x_{0}\right) \in \Omega$ be a singular point of the function $u(t, x)$ defined by the Hopf-type formula (2.3). Then for each $\epsilon>0$ there exists $\delta>0$ such that for any $t_{*}>t_{0},\left|t_{*}-t_{0}\right| \leq \delta$, there exists $x_{*} \in B^{\prime}\left(x_{0}, \epsilon\right)$ such that $\left(t_{*}, x_{*}\right)$ is also a singular point.

Proof. We use an idea of the proof of Lemma 6.5.1 in [2] with an appropriate adjustment. Let $\left(t_{0}, x_{0}\right) \in \Omega$ and let $\epsilon>0$. Under assumption (A1), for all $(t, x) \in E=\left[t_{0}, T\right] \times B^{\prime}\left(x_{0}, \epsilon\right)$, there exist positive numbers $r_{t x}$ and $N_{t x}$ such that for all $\left(t^{\prime}, x^{\prime}\right)$ satisfying $\left|t^{\prime}-t\right|+\left|x^{\prime}-x\right|<r_{t x}$ then $\ell\left(t^{\prime}, x^{\prime}\right) \subset B^{\prime}\left(0, N_{t x}\right)$. Hence, we can cover the compact set E by a finite number balls centered
at $\left(t_{i}, x_{i}\right)$ with radii $r_{(t x)_{i}}, i=1, \ldots, k$. We take the positive number $M=$ $\max \left\{N_{(t x)_{i}}, i=1, \ldots, k\right\}$, then for all $(t, x) \in E$ we get $\ell(t, x) \subset B^{\prime}(0, M)$. Now we choose $\delta \in\left(0, T-t_{0}\right]$ satisfying

$$
\delta_{\left|t-t_{0}\right| \leq T-t_{0},|p| \leq M}\left|H_{p}(t, p)\right| \leq \epsilon
$$

and fix a $t_{*}>t_{0}$ so that $t_{*}-t_{0} \leq \delta$.
By contradiction, if every point $\left(t_{*}, y\right)$ where $y \in B^{\prime}\left(x_{0}, \epsilon\right)$ is regular, then $\ell\left(t_{*}, y\right)=\{p(y)\}$ is a singleton. Since the multi-valued function $y \mapsto \ell\left(t_{*}, y\right)$ is u.s.c, then $y \mapsto p(y)$ is continuous on $B^{\prime}\left(x_{0}, \epsilon\right)$. Thus, as in the proof of Theorem 3.2, we see that the function $\mathbb{R}^{n} \ni y \mapsto \Lambda(y)=x_{0}-\int_{t_{*}}^{t_{0}} H_{p}(\tau, p(y)) d \tau$ is also continuous.

Note that, if $y \in B^{\prime}\left(x_{0}, \epsilon\right)$ then

$$
|\Lambda(y)-x| \leq \int_{t_{0}}^{t_{*}} \mid H_{p}\left(\tau, p(y)\left|d \tau \leq \delta \sup _{\left|t-t_{0}\right| \leq T-t_{0},|p| \leq M}\right| H_{p}(t, p) \mid \leq \epsilon\right.
$$

Therefore Λ is a continuous function from the closed ball $B^{\prime}\left(x_{0}, \epsilon\right)$ into itself. By Brouwer theorem, Λ has a fixed point $x_{*} \in B^{\prime}\left(x_{0}, \epsilon\right)$, i.e., $\Lambda\left(x_{*}\right)=x_{*}$, hence,

$$
x_{0}=x_{*}+\int_{t_{*}}^{t_{0}} H_{p}\left(\tau, p\left(x_{*}\right)\right) d \tau
$$

In other words, there exists a characteristic curve \mathcal{C} of the type (I) at $\left(t_{*}, x_{*}\right)$ described as in Theorem 2.8 passing $\left(t_{0}, x_{0}\right)$. Since $\ell\left(t_{*}, x_{*}\right)$ is a singleton, so is $\ell\left(t_{0}, x_{0}\right)$. This contradicts to the hypothesis.
Remark 3.6. If $\left(t_{0}, x_{0}\right) \in \Omega$ is a singular point for $u(t, x)$ and $\epsilon>0$, by the previous theorem, there exists $\delta>0$ such that for any $t \in\left[t_{0}, t_{0}+\delta\right]$ we can pick out $x=x(t) \in B^{\prime}\left(x_{0}, \epsilon\right)$ so that (t, x) is singular. Put $\delta_{1}=\delta, t_{1}=t_{0}+\delta_{1}$ and $x_{1}=x\left(t_{1}\right)$. By induction, we can find $\left(\delta_{k}\right)_{k}$ and $x_{k}=x\left(t_{k}\right), t_{k}=t_{k-1}+\delta_{k}$ so that $\left(t_{k}, x_{k}\right)$ is singular. Since δ_{k} is dependent on $\left(t_{k}, x_{k}\right)$ there are two possibilities:

$$
\sum_{k=1}^{\infty} \delta_{k}<T \quad \text { or } \quad \sum_{k=1}^{\infty} \delta_{k} \geq T
$$

In the first case, the singularities of $u(t, x)$ constructed by this way may not propagate to the boundary $t=T$, otherwise the singularities of $u(t, x)$ exist at some points $\left(T, x_{*}\right)$. Nevertheless, if we assume $\sigma(x)$ is Lipschitz on \mathbb{R}^{n} as an additional condition, then the number $\delta>0$ in the proof of Theorem 3.5 can be chosen independently of $\left(t_{i}, x_{i}\right), i=1,2, \ldots$

We have the following:

Theorem 3.7. Assume (A1) and (A2). Moreover, let $\sigma(x)$ be a Lipschitz function on \mathbb{R}^{n} and let $\left(t_{0}, x_{0}\right)$ be a singular point for the Hopf-type formula $u(t, x)$ defined by (2.3). Then for each $\epsilon>0$ there exists $\delta>0$ such that for any $t_{1} \in\left[t_{0}, t_{0}+\delta\right]$ we can find $x_{1} \in B^{\prime}\left(x_{0}, \epsilon\right)$ such that $\left(t_{1}, x_{1}\right)$ is also a singular point for $u(t, x)$..

Proof. Since $\sigma(x)$ is convex and Lipschitz, then $D=\operatorname{dom} \sigma^{*}$ is bounded. Hence, $D \subset B^{\prime}(0, M)$ for some positive number M. Choose a fixed number $\delta>0$ such that

$$
\delta \sup _{0 \leq t \leq T,|p| \leq M}\left|H_{p}(t, p)\right| \leq \epsilon
$$

We argue similarly to the proof of Theorem 3.5. Let $\left(t_{0}, x_{0}\right)$ be a singular point for $u(t, x)$. If there is $t_{*} \in\left(t_{0}, t_{0}+\delta\right]$ such that $\left(t_{*}, y\right)$ is regular for all $y \in B^{\prime}\left(x_{0}, \epsilon\right)$ then the mapping

$$
y \mapsto \Lambda(y)=x_{0}-\int_{t_{*}}^{t} H_{p}(\tau, p(y)) d \tau
$$

is continuous from $B^{\prime}\left(x_{0}, \epsilon\right)$ into itself. Thus, the mapping has a fixed point $x_{*} \in B^{\prime}\left(x_{0}, \epsilon\right)$. This implies that there is a characteristics \mathcal{C} of type (I) at $\left(t_{*}, x_{*}\right)$ passing $\left(t_{0}, x_{0}\right)$ and so $\left(t_{0}, x_{0}\right)$ is regular. This is a contradiction.
Corollary 3.8. Assume (A1) and (A2) and let $\sigma(x)$ be a Lipschitz function on \mathbb{R}^{n}. If the Hopf-type formula $u(t, x)$ defined by (2.3) has a singular point $\left(t_{0}, x_{0}\right) \in \Omega$, then for any $\epsilon>0$ and $t>t_{0}$, we can find another singular point (t, x) such that $\left|x-x_{0}\right| \leq m \epsilon$, for some $m \in \mathbb{N}$. Therefore the singular points of $u(t, x)$ propagate with respect to t as t tends to T.

Proof. Arguing as in Remark 3.6, we see that for $\epsilon>0$ and $t_{0}<t \leq T$, there is $m \in \mathbb{N}$ such that $m \delta<t \leq(m+1) \delta$, where $\delta>0$ is defined as in Theorm 3.7. Let $t_{i}=i \delta, i=0, \ldots, m$. After m steps, we can take $x_{m} \in B^{\prime}\left(x_{m-1}, \epsilon\right)$ such that $\left(t, x_{m}\right)$ is singular and then

$$
\left|x_{m}-x_{0}\right| \leq\left|x_{m}-x_{m-1}\right|+\cdots+\left|x_{1}-x_{0}\right| \leq m \epsilon
$$

The proof is thus complete.
Acknowledgments. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number: 101.02-2013.09.

References

[1] Bardi M. and L.C. Evans, On Hopf's formulas for solutions of Hamilton-Jacobi equations, Nonlinear. Anal. TMA, 8(1984), No 11, pp. 1373-1381.
[2] Cannarsa P. \& Sinestrari C., "Semiconcave functions, Hamilton-Jacobi equations and optimal control", Birkhauser, Boston 2004.
[3] Crandall M.G. and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.
[4] Hopf E., Generalized solutions of non-linear equations of first order, J. Math. Mech. 14 (1965), 951-973.
[5] Lions, J. P., Rochet Hopf formula and multitime Hamilton-Jacobi equation, Proc. AMS. (96), 1, 1986.
[6] Nguyen Hoang, Regularity of generalized solutions of Hamilton-Jacobi equations, Nonlinear Anal. 59 (2004), 745-757
[7] Nguyen Hoang, Hopf-type formula defines viscosity solution for Hamilton-Jacobi equations with t-dependence Hamiltonian, Nonlinear Anal., TMA, 75 (2012), No. 8, 35433551.
[8] Nguyen Hoang, Hopf-Lax formula and generalized characteristics, Applicable Analysis 96.2 (2017), 261-277.
[9] Rockafellar T., "Convex Analysis", Princeton Univ. Press, 1970.
[10] Tran Duc Van, Nguyen Hoang and Tsuji M., On Hopf's formula for Lipschitz solutions of the Cauchy problem for Hamilton-Jacobi equations, Nonlinear Anal. 29(1997), No 10, 1145-1159.
[11] Tran Duc Van, Mikio Tsuji, Nguyen Duy Thai Son, "The characteristic method and its generalizations for first order nonlinear PDEs", Chapman \& Hall/CRC, 2000.

