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Abstract

A Hopf-type formula of the Cauchy problem for Hamilton - Jacobi
equations (H,σ) is defined by u(t, x) = maxq∈Rn{〈x, q〉−σ∗(q)−

∫ t

0
H(τ, q)dτ}.

We investigate the points on the domain Ω where the function u(t, x) is
differentiable, and the strip of the form (0, t0)×Rn of Ω where the func-
tion u(t, x) is continuously differentiable. Moreover, we present a simple
propagation of singularity in forward of u(t, x).

1 Introduction

Consider the Cauchy problem for Hamilton - Jacobi equation (H, σ)

∂u

∂t
+ H(t, Dxu) = 0 , (t, x) ∈ Ω = (0, T ) × Rn, (1.1)

u(0, x) = σ(x) , x ∈ Rn. (1.2)

If the Hamiltonian H = H(p) is convex and superlinear, σ is Lipschitz on
Rn, then the function

u(t, x) = min
y∈Rn

{
σ(y) + tH∗(x − y

t

)}
, (1.3)

is called the Hopf-Lax formula for the problem (H, σ).

Key words: Hamilton - Jacobi equation, Hopf-type formula, regular, singular, characteris-
tics, strip of differentiability.
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If H = H(p) is only a continuous function, σ(x) is a convex and Lipschitz
function, then the Hopf formula of the problem (H, σ) is

u(t, x) = max
q∈Rn

{〈x, q〉 − σ∗(q) − tH(q)}, (1.4)

see [1, 4, 5]. Here * denotes the Fenchel conjugate.

It is well-known that both formulas (1.3) and (1.4) are Lipschitz solutions
as well as viscosity solutions of the problem (H, σ) where H = H(p) under the
corresponding assumptions stated as above, see [1, 2, 4].

If H = H(t, p) is continuous and σ is convex, then a generalization of
formula (1.4) called Hopf-type formula is

u(t, x) = max
q∈Rn

{〈x, q〉 − σ∗(q) −
∫ t

0

H(τ, q)dτ}. (1.5)

Ones prove that u(t, x) is a locally Lipschitz continuous function satisfying
the initial condition (1.2) in Rn, and equation (1.1) at almost all points in the
domain Ω, i.e. a Lipschitz solution, but in general, it is not a viscosity solution,
see [5, 10]. Recently, in [7] we prove that the formula (1.5) defines a viscosity
solution of the problem for a specific class of Hamiltonians H = H(t, p).

In this paper we first analyze properties of characteristics of the Cauchy
problem in connection with formula (1.5) where H = H(t, p). We introduce
a classification of characteristic curves at each point of the domain and then
study differential properties of Hopf-type formula u(t, x) on these curves. Next,
we present various conditions based on the characteristics so that u(t, x) defined
by (1.5) is continuously differentiable on the strip (0, t0)×Rn. Finally, we show
that the singularities of the solution u(t, x) may propagate forward from t-time
t0 to the boundary of the domain.

This paper can be considered as a continuation of [6] to the case where
dimension of state variable n is greater than 1, see also [8]. Our method is to
exploit the relationship between Hopf-type formula and characteristics where
the role of the set of maximizers is essential.

We use the following notations. For a positive number T , denote Ω =
(0, T )×Rn. Let | . | and 〈., .〉 be the Euclidean norm and the scalar product in
Rn, respectively. For a function u : Ω → R, we denote by Dxu the gradient
of u with respect to variable x, i.e., Dxu = (ux1 , . . . , uxn), and let B′(x0, r) be
the closed ball centered at x0 with radius r.



Nguyen Hoang 11

2 The differentiability of Hopf-type formula and

Characteristics

We now consider the Cauchy problem for Hamilton - Jacobi equation of the
form:

∂u

∂t
+ H(t, Dxu) = 0 , (t, x) ∈ Ω = (0, T ) × Rn, (2.1)

u(0, x) = σ(x) , x ∈ Rn, (2.2)

where the Hamiltonian H(t, p) is of class C([0, T ]× Rn), and σ(x) ∈ C(Rn) is
a convex function.

Let σ∗ be the Fenchel conjugate of σ, i.e., σ∗(y) = maxx∈Rn{〈x, y〉− σ(x)}.
We denote by D = dom σ∗ = {y ∈ Rn |σ∗(y) < +∞} the effective domain of
the convex function σ∗.

In [10] we assumed a compatible condition for H(t, p) and σ(x) as follows.

(A1): For every (t0, x0) ∈ [0, T ) × Rn, there exist positive constants r and
N such that

〈x, p〉 − σ∗(p) −
∫ t

0

H(τ, p)dτ < max
|q|≤N

{〈x, q〉 − σ∗(q) −
∫ t

0

H(τ, q)dτ},

whenever (t, x) ∈ [0, T )× Rn, |t − t0| + |x− x0| < r and |p| > N.

From now on, we denote

u(t, x) = max
q∈Rn

{〈x, q〉 − σ∗(q) −
∫ t

0

H(τ, q)dτ}. (2.3)

and

ϕ(t, x, q) = 〈x, q〉 − σ∗(q) −
∫ t

0

H(τ, q)dτ, (t, x) ∈ Ω, q ∈ Rn. (2.4)

For each (t, x) ∈ Ω, let `(t, x) be the set of all p ∈ Rn at which the maximum
of the function ϕ(t, x, ·) is attained. In virtue of (A1), `(t, x) 6= ∅.

Remark. If σ(x) is convex and Lipschitz on Rn then dom σ∗ is bounded,
hence condition (A1) is clearly satisfied. Thus (A1) can be considered as a
generalization of the hypotheses used earlier, see [1, 4].

The following theorem is necessary for further presentation.

Theorem 2.1. [10] Assume (A1). Then the function u(t, x) defined by (2.3)
is a locally Lipschitz function satisfying equation (2.1) a.e. in Ω and u(0, x) =
σ(x), x ∈ Rn. Furthermore, u(t, x) is of class C1(V ) in some open V ⊂ Ω if
and only if, for every (t, x) ∈ V, `(t, x) is a singleton.
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Remark 2.2. If `(t0, x0) = {p} is a singleton, then all partial derivatives of
u(t, x) at (t0, x0) exist and ux(t0, x0) = p, ut(t0, x0) = −H(t0, p) see ([11], p.
112). Moreover, we have:

Theorem 2.3. Assume (A1). Let (t0, x0) ∈ Ω such that `(t0, x0) is a singleton.
Then the function u(t, x) defined by (2.3) is differentiable at (t0, x0).

Proof. By assumption, `(t0, x0) = {p}, put pt = −H(t0, p). For (h, k) ∈ R×Rn

let

α = lim sup
(h,k)→(0,0)

u(t0 + h, x0 + k) − u(t0, x0) − pth − 〈p, k〉√
h2 + |k|2

.

Then there exists a sequence (hm, km)m → 0 such that limm→∞ Φm = α,
where

Φm =
u(t0 + hm, x0 + km) − u(t0, x0) − pthm − 〈p, km〉√

h2
m + |km|2

.

For each m ∈ N, we choose pm ∈ `(t0 + hm, x0 + km) then

Φm ≤ ϕ(t0 + hm, x0 + km, pm) − ϕ(t0, x0, pm) − pthm − 〈p, km〉√
h2

m + |km|2

≤ −hm(pt + H(τm, pm)) − 〈pm − p, km〉√
h2

m + |km|2
,

for some τm lying between t0 and t0 + hm; ϕ(t, x, p) is given by (2.4).

Taking into account the assumption (A1), it is easy to see that, for (hm, km)
small enough, the sequence (pm)m is bounded, then we can choose a subse-
quence also denoted by (pm)m such that pm → p0 as m → ∞. Since the
set-valued mapping (t, x) 7→ `(t, x) is upper semicontinuous, see [10], then
p0 ∈ `(t0, x0), that is p0 = p.

Now, letting m → ∞ we have

α = lim
m→∞

Φm ≤ lim
m→∞

−hm(pt + H(τm, pm)) − 〈pm − p, km〉√
h2

m + |km|2
= 0.

On the other hand, let

β = lim inf
(h,k)→(0,0)

u(t0 + h, x0 + k) − u(t0, x0) − pth − 〈p, k〉√
h2 + |k|2

.

We have, for p ∈ `(t0, x0)

u(t0 + h, x0 + k) − u(t0, x0) ≥ ϕ(t0 + h, x0 + k, p) − ϕ(t0, x0, p)
≥ −hH(τ∗, p) + 〈p, k〉,
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where τ∗ lies between t0 and t0 + h. Therefore

β ≥ lim inf
(h,k)→(0,0)

−h(−pt − H(τ∗, p))√
h2 + |k|2

= 0.

Thus,

lim
(h,k)→(0,0)

u(t0 + h, x0 + k) − u(t0, x0) − pth − 〈p, k〉√
h2 + |k|2

= 0,

which shows that u(t, x) is differentiable at (t0, x0).
The proof of the theorem is then complete. �

Next, we investigate the differentiability of Hopf-type formula u(t, x) on
the characteristics. First, let us recall the Cauchy method of characteristics
for Problem (2.1) - (2.2). Note that, to use the method of characteristics, the
given data are assumed at least to be of class C1.

From now on, we thus suppose that H(t, p) and σ(x) are of class C1.

The characteristic differential equations of Problem (2.1) - (2.2) is as follows

ẋ = Hp ; v̇ = 〈Hp, p〉 − H ; ṗ = 0, (2.5)

with initial conditions

x(0) = y ; v(0) = σ(y) ; p(0) = σy(y) ; y ∈ Rn. (2.6)

A solution of the system of differential equations (2.5) - (2.6) is defined by




x = x(t, y) = y +
∫ t

0

Hp(τ, σy(y))dτ,

v = v(t, y) = σ(y) +
∫ t

0

〈Hp(τ, σy(y)), σy(y)〉dτ −
∫ t

0

H(τ, σy(y))dτ,

p = p(t, y) = σy(y).

(2.7)

This solution is called a characteristic strip of Problem (2.1) - (2.2).
The first component of solution (2.7) is called a characteristic curve (briefly,

characteristics) emanating from (0, y) i.e. the curve defined by

C : x = x(t, y) = y +
∫ t

0

Hp(τ, σy(y))dτ, t ∈ [0, T ]. (2.8)

Let (t0, x0) ∈ Ω. Denote by `∗(t0, x0) the set of all y ∈ Rn such that there
is a characteristic curve emanating from (0, y) and passing the point (t0, x0).
We have `(t0, x0) ⊂ σy(`∗(t0, x0)), see [6]. Therefore `∗(t0, x0) 6= ∅.
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Proposition 2.4. Let (t0, x0) ∈ Ω. Then a characteristic curve passing (t0, x0)
has form

x = x(t, y) = x0 +
∫ t

t0

Hp(τ, σy(y))dτ, t ∈ [0, T ], (2.9)

for some y ∈ `∗(t0, x0).

Proof. Take y ∈ `∗(t0, x0) and let C : x = x(t, y) = y +
∫ t

0
Hp(τ, σy(y))dτ be

a characteristic curve emanating from (0, y). Since C goes through (t0, x0) we
have

x0 = y +
∫ t0

0

Hp(τ, σy(y))dτ (2.10)

Therefore, the equation of C can be written as

x = x0 −
∫ t0

0

Hp(τ, σy(y))dτ +
∫ t

0

Hp(τ, σy(y))dτ = x0 +
∫ t

t0

Hp(τ, σy(y))dτ.

Conversely, let C1 : x = x(t, y) = x0+
∫ t

t0
Hp(τ, σy(y))dτ where y ∈ `∗(t0, x0)

be some curve passing (t0, x0). Then we can rewrite C1 as:

x = x0 −
∫ t0

0

Hp(τ, σy(y))dτ +
∫ t

0

Hp(τ, σy(y))dτ.

On the other hand, let C2 defined by (2.8)

x = y +
∫ t

0

Hp(τ, σy(y))dτ

be a characteristic curve also passing (t0, x0). Besides that, both C1, C2 are
integral curves of the ODE ẋ = Hp(t, σy(y)), thus they must coincide. This
proves the proposition. �
Remark 2.5. Suppose that p0 = σy(y) ∈ `(t0, x0) for some y ∈ `∗(t0, x0). Then
y is in the subgradient of convex function σ∗ at p0, i.e., y ∈ ∂σ∗(p0). Moreover,
from (2.8) and (2.10), we have y = x0 −

∫ t0
0

Hp(τ, p0)dτ.

Now, let C be a characteristic curve passing (t0, x0) that is written as

x = x(t, y) = x0 +
∫ t

t0

Hp(τ, σy(y))dτ

We say that the characteristic curve C is of the type (I) at the point
(t0, x0) ∈ Ω, if σy(y) = p ∈ `(t0, x0). If σy(y) ∈ σy(`∗(t0, x0)) \ `(t0, x0) then C
is said to be of type (II) at this point.
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In the sequel, we need an additional condition for the Hamiltonian H =
H(t, p).

(A2): The Hamiltonian H(t, p) has one of the following forms:
a) H(t, p) = g(t)h(p) + k(t) for some functions g, h, k where g(t) does not

change its sign for all t ∈ (0, T ).
b) H(t, ·) is a convex function for all t ∈ (0, T ).
c) H(t, ·) is a concave function for all t ∈ (0, T ).

Remark 2.6. 1. In particular, if H(t, p) = H(p) then the condition (A2) - a) is
obviously satisfied.

2. In [7] we proved that if the assumptions (A1) and (A2) are satisfied, then
the function u(t, x) defined by Hopf-type formula (2.3) is a viscosity solution
of Problem (2.1) - (2.2). Moreover, if σ(x) is Lipschitz on Rn then u(t, x) is a
semiconvex function.

We introduce the following lemma which is necessary in the sequel, see [8].

Lemma 2.7. Let v : Rn → R be a convex function and let D = domv ⊂ Rn.
Suppose that there exist p, p0 ∈ D, p 6= p0 and y ∈ ∂v(p0) such that

〈y, p − p0〉 = v(p) − v(p0).

Then for all z in the straight line segment [p, p0] we have

v(z) = 〈y, z〉 − 〈y, p0〉 + v(p0).

Moreover, y ∈ ∂v(z) for all z ∈ [p, p0].

Now some properties of characteristic curves passing a point (t0, x0) are
given by the following theorems.

Theorem 2.8. Assume (A1) and (A2). Let (t0, x0) ∈ (0, T ) × Rn, p0 =
σy(y) ∈ `(t0, x0) and let

C : x = x(t) = x0 +
∫ t

t0

Hp(τ, p0)dτ, t ∈ [0, T ], (2.11)

be a characteristic curve of type (I) at (t0, x0). Then for all (t1, x1) ∈ C, 0 ≤
t1 ≤ t0 one has p0 ∈ `(t1, x1). Moreover, `(t1, x1) ⊂ `(t0, x0).

Proof. Fix (t1, x1) ∈ C, 0 ≤ t1 ≤ t0. Take an arbitrary element p ∈ Rn. Let

η(t, p) = ϕ(t, x, p)− ϕ(t, x, p0), (t, x) ∈ C, t ∈ [0, t0], (2.12)

where ϕ(t, x, p) = 〈x, p〉 − σ∗(p) −
∫ t

0
H(τ, p)dτ.

To prove that p0 ∈ `(t1, x1) it suffices to show that η(t1, p) ≤ 0.



16 Some differential properties of a Hopf-type formula for...

It is obviously that, η(t0, p) ≤ 0. We rewrite η(t, p) to obtain

η(t, p) = 〈x(t), p − p0〉 − (σ∗(p) − σ∗(p0)) −
∫ t

0

(H(τ, p) − H(τ, p0))dτ (2.13)

for (t, x) ∈ C.

By Remark 2.5, x(0) = y ∈ ∂σ∗(p0) and a property of subgradient of convex
function, we have

η(0, p) = 〈y, p − p0〉 − (σ∗(p) − σ∗(p0)) ≤ 0. (2.14)

As a result, we have η(0, p) ≤ 0 and η(t0, p) ≤ 0.

From (2.11)-(2.13) we also have

η′(t, p) = 〈Hp(t, p0), p − p0〉 − (H(t, p) − H(t, p0)), t ∈ [0, t0].

Next, we consider the following cases:
Case 1. Assume H(t, p) = g(t)h(p)+k(t), and g(t) does not change its sign

in (0, T ). Then

η′(t, p) =〈g(t)hp(p0), p− p0〉 − g(t)(h(p) − h(p0))

=
(
〈hp(p0), p − p0〉 − (h(p) − h(p0))

)
g(t) = λg(t),

where λ = 〈hp(p0), p − p0〉 − (h(p) − h(p0)) is a constant. Therefore, η′(t, p)
does not change its sign on [0, t0].

Case 2. Assume H(t, ·) is convex. By a property of convex function, we
have

〈Hp(t, p0), p − p0〉 ≤ H(t, p)− H(t, p0).

Therefore η′(t, p) ≤ 0, for all t ∈ [0, t0].
Case 3. Assume H(t, ·) is concave. Then −H(t, ·) is convex. Arguing as in

Case 2, we have η′(t, p) ≥ 0, for all t ∈ [0, t0].
Combining the three cases above, we have, for all t ∈ [0, t0], η′(t, p) does

not change its sign on [0, t0]. Thus,
(i) If η′(t, p) ≥ 0, t ∈ [0, t0], then η(t1, p) ≤ η(t0, p) ≤ 0.

(ii) If η′(t, p) ≤ 0, t ∈ [0, t0], then η(t1, p) ≤ η(0, p) ≤ 0.

Consequently, we obtain ϕ(t1, x1, p) ≤ ϕ(t1, x1, p0). This is true for all p ∈
Rn. As a result, p0 ∈ `(t1, x1) for any (t1, x1) ∈ C, t1 ∈ [0, t0] and the first
assertion has been proved.

Next, let p /∈ `(t0, x0). Then η(t0, p) < 0. If (i) holds, i.e. η′(t, p) ≥ 0 then
η(t1, p) ≤ η(t0, p) < 0.
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Otherwise, if (ii) holds, i.e. η′(t, p) ≤ 0, we have

η(t, p) ≤ η(0, p) = 〈y, p − p0〉 − (σ∗(p) − σ∗(p0)), t ∈ [0, t0).

Since p 6= p0, then η(0, p) < 0. Actually, if it is false, i.e. 〈y, p − p0〉 =
(σ∗(p) − σ∗(p0)), then applying Lemma 2.7, we see that [p, p0] is contained in
D = {z ∈ domσ∗ | ∂σ∗(z) 6= ∅} and σ∗ is not strictly convex on the straight
line segment [p, p0]. This is a contradiction, since σ(x) is of C1(Rn), then it is
essentially strictly convex on D. In particular, σ∗ is stricly convex on [p, p0],
see ([9], Thm. 26.3). This implies η(t1, p) < 0.

Therefore, in any case, if p /∈ `(t0, x0) then η(t1, p) < 0. Thus p /∈ `(t1, x1).
The proof is then complete. �

We have seen that, if the characteristic curve C is of type (I) at (t0, x0)
then it is of the type (I) at any point (t, x) ∈ C, 0 ≤ t ≤ t0. Nevertheless,
for the characteristic curve of type (II), we have the following result which is
somewhat different.

Theorem 2.9. Assume (A1) and (A2). In addition, suppose that H, σ are of
class C2. Let C : x = x(t) = x0 +

∫ t

t0
Hp(τ, σy(y0))dτ be a characteristic curve

of type (II) at some (t0, x0) ∈ Ω. Then there exists θ ∈ (0, t0) such that C is of
type (I) at (θ, x(θ)) and C is of type (II) for all point (t, x) ∈ C, t ∈ (θ, t0].

Proof. Let C : x = x0 +
∫ t

t0
Hp(τ, σy(y0))dτ be the characteristic curve of type

(II) at (t0, x0) emanating from (0, y0). Then σy(y0) ∈ σy(`∗(t0, x0)) \ `(t0, x0).
By the Cauchy method of characteristics, the function defined by Hopf-type

formula u(t, x) coincides with the local C2 solution of Problem (2.1) - (2.2), see
[2, 11]. Then there exists t1 ∈ (0, t0) such that u(t, x) is differentiable at any
point (t, x(t)) ∈ C, ux(t, x) = σy(y0) and `(t, x) = {σy(y0)}, 0 ≤ t ≤ t1. Let

θ = sup{t1 ∈ [0, t0) | `(s, x(s)) = {σy(y0)}, 0 ≤ s ≤ t1}.

Since the multivalued mapping (t, x) 7→ `(t, x) is upper semicontinuous, we
get that σy(y0) ∈ `(θ, x(θ)). It is obvious that, θ < t0 since σy(y0) /∈ `(t0, x0)
and C is of type (I) at (θ, x(θ)). On the other hand, for t ∈ (θ, t0], C is of type
(II) at (t, x(t)) by the definition of θ and Theorem 2.8. �

3 Strip of differentiability of Hopf-type formula

In this section we will study the strips of the form V = (0, t∗) × Rn ⊂ Ω so
that the Hopf-type formula u(t, x) is continuously differentiable on them.

Theorem 3.1. Assume (A1) and (A2). Let u(t, x) be the Hopf-type formula
of Problem (2.1) - (2.2) defined by (2.3). Suppose that there exists t0 ∈ (0, T )
such that the mapping: Rn 3 y 7→ x(t0, y) = y +

∫ t0
0

Hp(τ, σy(y))dτ is injective.
Then u(t, x) is continuously differentiable in the open strip (0, t0) × Rn.
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Proof. Let (t1, x1) ∈ (0, t0) × Rn and let C :

x = x1 +
∫ t

t1

Hp(τ, p1)dτ,

where p1 = σy(y1) ∈ `(t1, x1) be the characteristic curve going through (t1, x1)
defined as in Proposition 2.4.

Let (t0, x0) be the intersection point of C and plane ∆t0 = {(t0, x) ∈ Rn+1 :
x ∈ Rn}. Since the mapping y 7→ x(t0, y) is injective and `(t0, x0) 6= ∅, thus
`∗(t0, x0) is a singleton. Hence there is a unique characteristic curve passing
(t0, x0). This characteristic curve is exactly C. Therefore, we can rewrite C as
follows:

x = x0 +
∫ t

t0

Hp(τ, p0)dτ

where p0 ∈ `(t0, x0).
Since `(t0, x0) ⊂ σy(`∗(t0, x0)) and `∗(t0, x0) is a singleton, so is `(t0, x0).

Consequently, by Theorem 2.8, for all (t, x) ∈ C, 0 < t < t0, the curve C is of
type (I) at (t, x) and `(t, x) = {p0} particularly, it holds at (t1, x1) and then,
p0 = p1. Applying Theorem 2.1 we see that u(t, x) is of class C1 in (0, t0)×Rn.
�

Note that at some point (t0, x0) ∈ Ω where u(t, x) is differentiable there
may be more than one characteristic curve goes through, that is `∗(t0, x0) may
not be a singleton. Next, we have:

Theorem 3.2. Assume (A1) and (A2). Moreover, let σ be Lipschitz on Rn.
Take t0 ∈ (0, T ] and suppose that for every point of the plane ∆t0 = {(t0, x) ∈
Rn+1 : x ∈ Rn}, the set `(t0, x) is a singleton. Then the Hopf-type formula
u(t, x) of Problem (2.1) - (2.2) defined by (2.3) is continuously differentiable
in the open strip (0, t0) × Rn.

Proof. By assumption, the function σ(x) is convex and Lipschitz on Rn, then
D = dom σ∗ = {q ∈ Rn | σ∗(q) < +∞} is a bounded (and convex) subset in
Rn. We thus have `(t, x) ⊂ D for all (t, x) ∈ Ω.

Let (t1, x1) ∈ (0, t0) × Rn. We will check that `(t1, x1) is a singleton.
For each y ∈ Rn, we put

Λ(y) = x1 −
∫ t1

t0

Hp(τ, p(y))dτ,

where p(y) ∈ `(t0, y) ∈ D. Since the multi-valued function y 7→ `(t0, y) is u.s.c,
see [10], and by the hypothesis, `(t0, y) = {p(y)} is a singleton for all y ∈ Rn,
we deduce that the single-valued function y 7→ p(y) is continuous. Therefore
the function Λ : Rn → Rn, defined by y 7→ Λ(y) is also continuous on Rn.
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Since p(y) is in the bounded set D and Hp(t, p) is continuous, there exists
M > 0 such that

|Λ(y) − x1| ≤
∫ t0

t1

|Hp(τ, p(y)|dτ ≤ M.

Therefore Λ is a continuous function from the closed ball B′(x1, M ) into itself.
By Brouwer theorem, Λ has a fixed point x0 ∈ B′(x1, M ), i.e., Λ(x0) = x0,
hence

x1 = x0 +
∫ t1

t0

Hp(τ, p(x0))dτ.

In other words, there exists a characteristic curve C of the type (I) at (t0, x0)
described as in Theorem 2.8 passing (t1, x1). Since `(t0, x0) is a singleton, so
is `(t1, x1). Applying Theorem 2.1, we see that u(t, x) is continuously differen-
tiable in (0, t0) × Rn. �

We note that, the solution u(t, x) is differentiable at (t0, x0) if and only if,
`(t0, x0) is a singleton. Thus we have the following corollary.

Corollary 3.3. Assume (A1) and (A2). Moreover, let σ be Lipschitz on Rn.
Suppose that the Hopf-type formula u(t, x) of Problem (2.1) - (2.2) defined
by (2.3) is differentiable at every point of the plane ∆t0 = {(t0, x) ∈ Rn+1 :
x ∈ Rn}, 0 < t0 ≤ T. Then u(t, x) is continuously differentiable in the strip
(0, t0) × Rn.

Definition 3.4. We call a point (t0, x0) ∈ Ω regular for u(t, x) if the function
is differentiable at this point. If u(t, x) is not differentiable at (t1, x1) ∈ Ω then
this point is said to be a singular point or singularity of the function.

We study a simple propagation of singularities of viscosity solution u(t, x)
of the Cauchy problem (2.1) - (2.2) defined by the Hopf-type formula. Under
minimum assumption we show that, if (t0, x0) is a singular point of u(t, x),
then there exists another singular one (t, x) for t > t0 and x is near to x0.
It is worth noticing that, a comprehensive study of singularities of semicon-
cave/semiconvex functions is presented in [2].

Theorem 3.5. Assume (A1) and (A2). Let (t0, x0) ∈ Ω be a singular point
of the function u(t, x) defined by the Hopf-type formula (2.3). Then for each
ε > 0 there exists δ > 0 such that for any t∗ > t0, |t∗ − t0| ≤ δ, there exists
x∗ ∈ B′(x0, ε) such that (t∗, x∗) is also a singular point.

Proof. We use an idea of the proof of Lemma 6.5.1 in [2] with an appropriate
adjustment. Let (t0, x0) ∈ Ω and let ε > 0. Under assumption (A1), for all
(t, x) ∈ E = [t0, T ] × B′(x0, ε), there exist positive numbers rtx and Ntx such
that for all (t′, x′) satisfying |t′ − t| + |x′ − x| < rtx then `(t′, x′) ⊂ B′(0, Ntx).
Hence, we can cover the compact set E by a finite number balls centered
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at (ti, xi) with radii r(tx)i
, i = 1, . . . , k. We take the positive number M =

max{N(tx)i
, i = 1, . . . , k}, then for all (t, x) ∈ E we get `(t, x) ⊂ B′(0, M ).

Now we choose δ ∈ (0, T − t0] satisfying

δ sup
|t−t0|≤T−t0,|p|≤M

|Hp(t, p)| ≤ ε

and fix a t∗ > t0 so that t∗ − t0 ≤ δ.

By contradiction, if every point (t∗, y) where y ∈ B′(x0, ε) is regular, then
`(t∗, y) = {p(y)} is a singleton. Since the multi-valued function y 7→ `(t∗, y)
is u.s.c, then y 7→ p(y) is continuous on B′(x0, ε). Thus, as in the proof of
Theorem 3.2, we see that the function Rn 3 y 7→ Λ(y) = x0−

∫ t0
t∗

Hp(τ, p(y))dτ
is also continuous.

Note that, if y ∈ B′(x0, ε) then

|Λ(y) − x| ≤
∫ t∗

t0

|Hp(τ, p(y)|dτ ≤ δ sup
|t−t0|≤T−t0,|p|≤M

|Hp(t, p)| ≤ ε.

Therefore Λ is a continuous function from the closed ball B′(x0, ε) into itself.
By Brouwer theorem, Λ has a fixed point x∗ ∈ B′(x0, ε), i.e., Λ(x∗) = x∗,
hence,

x0 = x∗ +
∫ t0

t∗

Hp(τ, p(x∗))dτ.

In other words, there exists a characteristic curve C of the type (I) at (t∗, x∗)
described as in Theorem 2.8 passing (t0, x0). Since `(t∗, x∗) is a singleton, so
is `(t0, x0). This contradicts to the hypothesis. �
Remark 3.6. If (t0, x0) ∈ Ω is a singular point for u(t, x) and ε > 0, by the
previous theorem, there exists δ > 0 such that for any t ∈ [t0, t0 + δ] we can
pick out x = x(t) ∈ B′(x0, ε) so that (t, x) is singular. Put δ1 = δ, t1 = t0 + δ1

and x1 = x(t1). By induction, we can find (δk)k and xk = x(tk), tk = tk−1+ δk

so that (tk, xk) is singular. Since δk is dependent on (tk, xk) there are two
possibilities:

∞∑

k=1

δk < T or
∞∑

k=1

δk ≥ T.

In the first case, the singularities of u(t, x) constructed by this way may not
propagate to the boundary t = T, otherwise the singularities of u(t, x) exist at
some points (T, x∗). Nevertheless, if we assume σ(x) is Lipschitz on Rn as an
additional condition, then the number δ > 0 in the proof of Theorem 3.5 can
be chosen independently of (ti, xi), i = 1, 2, . . .

We have the following:



Nguyen Hoang 21

Theorem 3.7. Assume (A1) and (A2). Moreover, let σ(x) be a Lipschitz
function on Rn and let (t0, x0) be a singular point for the Hopf-type formula
u(t, x) defined by (2.3). Then for each ε > 0 there exists δ > 0 such that for any
t1 ∈ [t0, t0 + δ] we can find x1 ∈ B′(x0, ε) such that (t1, x1) is also a singular
point for u(t, x)..

Proof. Since σ(x) is convex and Lipschitz, then D = domσ∗ is bounded. Hence,
D ⊂ B′(0, M ) for some positive number M. Choose a fixed number δ > 0 such
that

δ sup
0≤t≤T,|p|≤M

|Hp(t, p)| ≤ ε.

We argue similarly to the proof of Theorem 3.5. Let (t0, x0) be a singular
point for u(t, x). If there is t∗ ∈ (t0, t0 + δ] such that (t∗, y) is regular for all
y ∈ B′(x0, ε) then the mapping

y 7→ Λ(y) = x0 −
∫ t

t∗

Hp(τ, p(y))dτ

is continuous from B′(x0, ε) into itself. Thus, the mapping has a fixed point
x∗ ∈ B′(x0, ε). This implies that there is a characteristics C of type (I) at
(t∗, x∗) passing (t0, x0) and so (t0, x0) is regular. This is a contradiction. �

Corollary 3.8. Assume (A1) and (A2) and let σ(x) be a Lipschitz function
on Rn. If the Hopf-type formula u(t, x) defined by (2.3) has a singular point
(t0, x0) ∈ Ω, then for any ε > 0 and t > t0, we can find another singular point
(t, x) such that |x − x0| ≤ mε, for some m ∈ N. Therefore the singular points
of u(t, x) propagate with respect to t as t tends to T.

Proof. Arguing as in Remark 3.6, we see that for ε > 0 and t0 < t ≤ T, there
is m ∈ N such that mδ < t ≤ (m + 1)δ, where δ > 0 is defined as in Theorm
3.7. Let ti = iδ, i = 0, . . . , m. After m steps, we can take xm ∈ B′(xm−1, ε)
such that (t, xm) is singular and then

|xm − x0| ≤ |xm − xm−1| + · · ·+ |x1 − x0| ≤ mε.

The proof is thus complete. �
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