SOME DIFFERENTIAL PROPERTIES OF A HOPF-TYPE FORMULA FOR HAMILTON -JACOBI EQUATIONS

Nguyen Hoang

Department of Mathematics, College of Education Hue University, 32 Le Loi, Hue, Vietnam e-mail: nguyenhoanghue@gmail.com or: nguyenhoang@hueuni.edu.vn

Abstract

A Hopf-type formula of the Cauchy problem for Hamilton - Jacobi equations (H, σ) is defined by $u(t, x) = \max_{q \in \mathbb{R}^n} \{ \langle x, q \rangle - \sigma^*(q) - \int_0^t H(\tau, q) d\tau \}$. We investigate the points on the domain Ω where the function u(t, x) is differentiable, and the strip of the form $(0, t_0) \times \mathbb{R}^n$ of Ω where the function u(t, x) is continuously differentiable. Moreover, we present a simple propagation of singularity in forward of u(t, x).

1 Introduction

Consider the Cauchy problem for Hamilton - Jacobi equation (H, σ)

$$\frac{\partial u}{\partial t} + H(t, D_x u) = 0, \ (t, x) \in \Omega = (0, T) \times \mathbb{R}^n,$$
(1.1)

$$u(0,x) = \sigma(x), \ x \in \mathbb{R}^n.$$
(1.2)

If the Hamiltonian H = H(p) is convex and superlinear, σ is Lipschitz on \mathbb{R}^n , then the function

$$u(t,x) = \min_{y \in \mathbb{R}^n} \left\{ \sigma(y) + tH^*\left(\frac{x-y}{t}\right) \right\},\tag{1.3}$$

is called the Hopf-Lax formula for the problem (H, σ) .

Key words: Hamilton - Jacobi equation, Hopf-type formula, regular, singular, characteristics, strip of differentiability.

 $^{2010~\}mathrm{AMS}$ Mathematics classification: $35\mathrm{F}21,\,35\mathrm{D}40,\,35\mathrm{B}65,\,35\mathrm{A}21.$

If H = H(p) is only a continuous function, $\sigma(x)$ is a convex and Lipschitz function, then the Hopf formula of the problem (H, σ) is

$$u(t,x) = \max_{q \in \mathbb{R}^n} \{ \langle x, q \rangle - \sigma^*(q) - tH(q) \},$$
(1.4)

see [1, 4, 5]. Here * denotes the Fenchel conjugate.

It is well-known that both formulas (1.3) and (1.4) are Lipschitz solutions as well as viscosity solutions of the problem (H, σ) where H = H(p) under the corresponding assumptions stated as above, see [1, 2, 4].

If H = H(t, p) is continuous and σ is convex, then a generalization of formula (1.4) called Hopf-type formula is

$$u(t,x) = \max_{q \in \mathbb{R}^n} \{ \langle x,q \rangle - \sigma^*(q) - \int_0^t H(\tau,q) d\tau \}.$$
 (1.5)

Ones prove that u(t, x) is a locally Lipschitz continuous function satisfying the initial condition (1.2) in \mathbb{R}^n , and equation (1.1) at almost all points in the domain Ω , i.e. a Lipschitz solution, but in general, it is not a viscosity solution, see [5, 10]. Recently, in [7] we prove that the formula (1.5) defines a viscosity solution of the problem for a specific class of Hamiltonians H = H(t, p).

In this paper we first analyze properties of characteristics of the Cauchy problem in connection with formula (1.5) where H = H(t, p). We introduce a classification of characteristic curves at each point of the domain and then study differential properties of Hopf-type formula u(t, x) on these curves. Next, we present various conditions based on the characteristics so that u(t, x) defined by (1.5) is continuously differentiable on the strip $(0, t_0) \times \mathbb{R}^n$. Finally, we show that the singularities of the solution u(t, x) may propagate forward from t-time t_0 to the boundary of the domain.

This paper can be considered as a continuation of [6] to the case where dimension of state variable n is greater than 1, see also [8]. Our method is to exploit the relationship between Hopf-type formula and characteristics where the role of the set of maximizers is essential.

We use the following notations. For a positive number T, denote $\Omega = (0,T) \times \mathbb{R}^n$. Let |.| and $\langle ., . \rangle$ be the Euclidean norm and the scalar product in \mathbb{R}^n , respectively. For a function $u : \Omega \to \mathbb{R}$, we denote by $D_x u$ the gradient of u with respect to variable x, i.e., $D_x u = (u_{x_1}, \ldots, u_{x_n})$, and let $B'(x_0, r)$ be the closed ball centered at x_0 with radius r.

2 The differentiability of Hopf-type formula and Characteristics

We now consider the Cauchy problem for Hamilton - Jacobi equation of the form:

$$\frac{\partial u}{\partial t} + H(t, D_x u) = 0, \ (t, x) \in \Omega = (0, T) \times \mathbb{R}^n,$$
(2.1)

$$u(0,x) = \sigma(x), \ x \in \mathbb{R}^n, \tag{2.2}$$

where the Hamiltonian H(t, p) is of class $C([0, T] \times \mathbb{R}^n)$, and $\sigma(x) \in C(\mathbb{R}^n)$ is a convex function.

Let σ^* be the Fenchel conjugate of σ , i.e., $\sigma^*(y) = \max_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - \sigma(x) \}$. We denote by $D = \operatorname{dom} \sigma^* = \{ y \in \mathbb{R}^n \mid \sigma^*(y) < +\infty \}$ the effective domain of the convex function σ^* .

In [10] we assumed a compatible condition for H(t, p) and $\sigma(x)$ as follows.

(A1): For every $(t_0, x_0) \in [0, T) \times \mathbb{R}^n$, there exist positive constants r and N such that

$$\langle x,p\rangle - \sigma^*(p) - \int_0^t H(\tau,p)d\tau < \max_{|q| \le N} \{\langle x,q\rangle - \sigma^*(q) - \int_0^t H(\tau,q)d\tau\},$$

whenever $(t, x) \in [0, T) \times \mathbb{R}^n$, $|t - t_0| + |x - x_0| < r$ and |p| > N.

From now on, we denote

$$u(t,x) = \max_{q \in \mathbb{R}^n} \{ \langle x,q \rangle - \sigma^*(q) - \int_0^t H(\tau,q) d\tau \}.$$
 (2.3)

and

$$\varphi(t, x, q) = \langle x, q \rangle - \sigma^*(q) - \int_0^t H(\tau, q) d\tau, \ (t, x) \in \Omega, \ q \in \mathbb{R}^n.$$
(2.4)

For each $(t, x) \in \Omega$, let $\ell(t, x)$ be the set of all $p \in \mathbb{R}^n$ at which the maximum of the function $\varphi(t, x, \cdot)$ is attained. In virtue of (A1), $\ell(t, x) \neq \emptyset$.

Remark. If $\sigma(x)$ is convex and Lipschitz on \mathbb{R}^n then dom σ^* is bounded, hence condition (A1) is clearly satisfied. Thus (A1) can be considered as a generalization of the hypotheses used earlier, see [1, 4].

The following theorem is necessary for further presentation.

Theorem 2.1. [10] Assume (A1). Then the function u(t, x) defined by (2.3) is a locally Lipschitz function satisfying equation (2.1) a.e. in Ω and $u(0, x) = \sigma(x)$, $x \in \mathbb{R}^n$. Furthermore, u(t, x) is of class $C^1(V)$ in some open $V \subset \Omega$ if and only if, for every $(t, x) \in V$, $\ell(t, x)$ is a singleton.

Remark 2.2. If $\ell(t_0, x_0) = \{p\}$ is a singleton, then all partial derivatives of u(t, x) at (t_0, x_0) exist and $u_x(t_0, x_0) = p$, $u_t(t_0, x_0) = -H(t_0, p)$ see ([11], p. 112). Moreover, we have:

Theorem 2.3. Assume (A1). Let $(t_0, x_0) \in \Omega$ such that $\ell(t_0, x_0)$ is a singleton. Then the function u(t, x) defined by (2.3) is differentiable at (t_0, x_0) .

Proof. By assumption, $\ell(t_0, x_0) = \{p\}$, put $p_t = -H(t_0, p)$. For $(h, k) \in \mathbb{R} \times \mathbb{R}^n$ let

$$\alpha = \limsup_{(h,k)\to(0,0)} \frac{u(t_0+h, x_0+k) - u(t_0, x_0) - p_t h - \langle p, k \rangle}{\sqrt{h^2 + |k|^2}}.$$

Then there exists a sequence $(h_m, k_m)_m \to 0$ such that $\lim_{m \to \infty} \Phi_m = \alpha$, where

$$\Phi_m = \frac{u(t_0 + h_m, x_0 + k_m) - u(t_0, x_0) - p_t h_m - \langle p, k_m \rangle}{\sqrt{h_m^2 + |k_m|^2}}.$$

For each $m \in \mathbb{N}$, we choose $p_m \in \ell(t_0 + h_m, x_0 + k_m)$ then

$$\Phi_m \leq \frac{\varphi(t_0 + h_m, x_0 + k_m, p_m) - \varphi(t_0, x_0, p_m) - p_t h_m - \langle p, k_m \rangle}{\sqrt{h_m^2 + |k_m|^2}} \\
\leq \frac{-h_m(p_t + H(\tau_m, p_m)) - \langle p_m - p, k_m \rangle}{\sqrt{h_m^2 + |k_m|^2}},$$

for some τ_m lying between t_0 and $t_0 + h_m$; $\varphi(t, x, p)$ is given by (2.4).

Taking into account the assumption (A1), it is easy to see that, for (h_m, k_m) small enough, the sequence $(p_m)_m$ is bounded, then we can choose a subsequence also denoted by $(p_m)_m$ such that $p_m \to p_0$ as $m \to \infty$. Since the set-valued mapping $(t, x) \mapsto \ell(t, x)$ is upper semicontinuous, see [10], then $p_0 \in \ell(t_0, x_0)$, that is $p_0 = p$.

Now, letting $m \to \infty$ we have

$$\alpha = \lim_{m \to \infty} \Phi_m \le \lim_{m \to \infty} \frac{-h_m(p_t + H(\tau_m, p_m)) - \langle p_m - p, k_m \rangle}{\sqrt{h_m^2 + |k_m|^2}} = 0.$$

On the other hand, let

$$\beta = \liminf_{(h,k) \to (0,0)} \frac{u(t_0 + h, x_0 + k) - u(t_0, x_0) - p_t h - \langle p, k \rangle}{\sqrt{h^2 + |k|^2}}$$

We have, for $p \in \ell(t_0, x_0)$

$$u(t_0 + h, x_0 + k) - u(t_0, x_0) \ge \varphi(t_0 + h, x_0 + k, p) - \varphi(t_0, x_0, p)$$
$$\ge -hH(\tau^*, p) + \langle p, k \rangle,$$

where τ^* lies between t_0 and $t_0 + h$. Therefore

$$\beta \ge \liminf_{(h,k)\to(0,0)} \frac{-h(-p_t - H(\tau^*, p))}{\sqrt{h^2 + |k|^2}} = 0.$$

Thus,

$$\lim_{(h,k)\to(0,0)}\frac{u(t_0+h,x_0+k)-u(t_0,x_0)-p_th-\langle p,k\rangle}{\sqrt{h^2+|k|^2}}=0,$$

which shows that u(t, x) is differentiable at (t_0, x_0) .

The proof of the theorem is then complete.

Next, we investigate the differentiability of Hopf-type formula u(t, x) on the characteristics. First, let us recall the Cauchy method of characteristics for Problem (2.1) - (2.2). Note that, to use the method of characteristics, the given data are assumed at least to be of class C^1 .

From now on, we thus suppose that H(t, p) and $\sigma(x)$ are of class C^1 .

The characteristic differential equations of Problem (2.1) - (2.2) is as follows

$$\dot{x} = H_p$$
; $\dot{v} = \langle H_p, p \rangle - H$; $\dot{p} = 0,$ (2.5)

with initial conditions

$$x(0) = y ;$$
 $v(0) = \sigma(y) ;$ $p(0) = \sigma_y(y) ;$ $y \in \mathbb{R}^n.$ (2.6)

A solution of the system of differential equations (2.5) - (2.6) is defined by

$$\begin{cases} x = x(t,y) = y + \int_0^t H_p(\tau,\sigma_y(y))d\tau, \\ v = v(t,y) = \sigma(y) + \int_0^t \langle H_p(\tau,\sigma_y(y)),\sigma_y(y)\rangle d\tau - \int_0^t H(\tau,\sigma_y(y))d\tau, \\ p = p(t,y) = \sigma_y(y). \end{cases}$$
(2.7)

This solution is called a characteristic strip of Problem (2.1) - (2.2).

The first component of solution (2.7) is called a characteristic curve (briefly, characteristics) emanating from (0, y) i.e. the curve defined by

$$\mathcal{C}: \ x = x(t, y) = y + \int_0^t H_p(\tau, \sigma_y(y)) d\tau, \ t \in [0, T].$$
(2.8)

Let $(t_0, x_0) \in \Omega$. Denote by $\ell^*(t_0, x_0)$ the set of all $y \in \mathbb{R}^n$ such that there is a characteristic curve emanating from (0, y) and passing the point (t_0, x_0) . We have $\ell(t_0, x_0) \subset \sigma_y(\ell^*(t_0, x_0))$, see [6]. Therefore $\ell^*(t_0, x_0) \neq \emptyset$.

Proposition 2.4. Let $(t_0, x_0) \in \Omega$. Then a characteristic curve passing (t_0, x_0) has form

$$x = x(t, y) = x_0 + \int_{t_0}^t H_p(\tau, \sigma_y(y)) d\tau, \ t \in [0, T],$$
(2.9)

for some $y \in \ell^*(t_0, x_0)$.

Proof. Take $y \in \ell^*(t_0, x_0)$ and let \mathcal{C} : $x = x(t, y) = y + \int_0^t H_p(\tau, \sigma_y(y)) d\tau$ be a characteristic curve emanating from (0, y). Since \mathcal{C} goes through (t_0, x_0) we have

$$x_0 = y + \int_0^{t_0} H_p(\tau, \sigma_y(y)) d\tau$$
 (2.10)

Therefore, the equation of \mathcal{C} can be written as

$$x = x_0 - \int_0^{t_0} H_p(\tau, \sigma_y(y)) d\tau + \int_0^t H_p(\tau, \sigma_y(y)) d\tau = x_0 + \int_{t_0}^t H_p(\tau, \sigma_y(y)) d\tau.$$

Conversely, let $C_1 : x = x(t, y) = x_0 + \int_{t_0}^t H_p(\tau, \sigma_y(y)) d\tau$ where $y \in \ell^*(t_0, x_0)$ be some curve passing (t_0, x_0) . Then we can rewrite C_1 as:

$$x = x_0 - \int_0^{t_0} H_p(\tau, \sigma_y(y)) d\tau + \int_0^t H_p(\tau, \sigma_y(y)) d\tau.$$

On the other hand, let C_2 defined by (2.8)

$$x = y + \int_0^t H_p(\tau, \sigma_y(y)) d\tau$$

be a characteristic curve also passing (t_0, x_0) . Besides that, both C_1 , C_2 are integral curves of the ODE $\dot{x} = H_p(t, \sigma_y(y))$, thus they must coincide. This proves the proposition.

Remark 2.5. Suppose that $p_0 = \sigma_y(y) \in \ell(t_0, x_0)$ for some $y \in \ell^*(t_0, x_0)$. Then y is in the subgradient of convex function σ^* at p_0 , i.e., $y \in \partial \sigma^*(p_0)$. Moreover, from (2.8) and (2.10), we have $y = x_0 - \int_0^{t_0} H_p(\tau, p_0) d\tau$.

Now, let \mathcal{C} be a characteristic curve passing (t_0, x_0) that is written as

$$x = x(t, y) = x_0 + \int_{t_0}^t H_p(\tau, \sigma_y(y)) d\tau$$

We say that the characteristic curve C is of the type (I) at the point $(t_0, x_0) \in \Omega$, if $\sigma_y(y) = p \in \ell(t_0, x_0)$. If $\sigma_y(y) \in \sigma_y(\ell^*(t_0, x_0)) \setminus \ell(t_0, x_0)$ then C is said to be of type (II) at this point.

In the sequel, we need an additional condition for the Hamiltonian H =H(t, p).

(A2): The Hamiltonian H(t, p) has one of the following forms:

a) H(t,p) = g(t)h(p) + k(t) for some functions g, h, k where g(t) does not change its sign for all $t \in (0, T)$.

b) $H(t, \cdot)$ is a convex function for all $t \in (0, T)$.

c) $H(t, \cdot)$ is a concave function for all $t \in (0, T)$.

Remark 2.6. 1. In particular, if H(t, p) = H(p) then the condition (A2) - a) is obviously satisfied.

2. In [7] we proved that if the assumptions (A1) and (A2) are satisfied, then the function u(t, x) defined by Hopf-type formula (2.3) is a viscosity solution of Problem (2.1) - (2.2). Moreover, if $\sigma(x)$ is Lipschitz on \mathbb{R}^n then u(t, x) is a semiconvex function.

We introduce the following lemma which is necessary in the sequel, see [8].

Lemma 2.7. Let $v : \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $D = \operatorname{dom} v \subset \mathbb{R}^n$. Suppose that there exist $p, p_0 \in D, p \neq p_0$ and $y \in \partial v(p_0)$ such that

$$\langle y, p - p_0 \rangle = v(p) - v(p_0)$$

Then for all z in the straight line segment $[p, p_0]$ we have

$$v(z) = \langle y, z \rangle - \langle y, p_0 \rangle + v(p_0).$$

Moreover, $y \in \partial v(z)$ for all $z \in [p, p_0]$.

Now some properties of characteristic curves passing a point (t_0, x_0) are given by the following theorems.

Theorem 2.8. Assume (A1) and (A2). Let $(t_0, x_0) \in (0, T) \times \mathbb{R}^n$, $p_0 =$ $\sigma_u(y) \in \ell(t_0, x_0)$ and let

$$\mathcal{C}: x = x(t) = x_0 + \int_{t_0}^t H_p(\tau, p_0) d\tau, \ t \in [0, T],$$
(2.11)

be a characteristic curve of type (I) at (t_0, x_0) . Then for all $(t_1, x_1) \in C$, $0 \leq C$ $t_1 \leq t_0 \text{ one has } p_0 \in \ell(t_1, x_1).$ Moreover, $\ell(t_1, x_1) \subset \ell(t_0, x_0).$

Proof. Fix $(t_1, x_1) \in \mathcal{C}, 0 \leq t_1 \leq t_0$. Take an arbitrary element $p \in \mathbb{R}^n$. Let

$$\eta(t,p) = \varphi(t,x,p) - \varphi(t,x,p_0), \ (t,x) \in \mathcal{C}, \ t \in [0,t_0],$$
(2.12)

where $\varphi(t, x, p) = \langle x, p \rangle - \sigma^*(p) - \int_0^t H(\tau, p) d\tau$. To prove that $p_0 \in \ell(t_1, x_1)$ it suffices to show that $\eta(t_1, p) \leq 0$.

It is obviously that, $\eta(t_0, p) \leq 0$. We rewrite $\eta(t, p)$ to obtain

$$\eta(t,p) = \langle x(t), p - p_0 \rangle - (\sigma^*(p) - \sigma^*(p_0)) - \int_0^t (H(\tau,p) - H(\tau,p_0)) d\tau \quad (2.13)$$

for $(t, x) \in \mathcal{C}$.

By Remark 2.5, $x(0)=y\in\partial\sigma^*(p_0)$ and a property of subgradient of convex function, we have

$$\eta(0,p) = \langle y, p - p_0 \rangle - (\sigma^*(p) - \sigma^*(p_0)) \le 0.$$
(2.14)

As a result, we have $\eta(0, p) \leq 0$ and $\eta(t_0, p) \leq 0$. From (2.11)-(2.13) we also have

$$\eta'(t,p) = \langle H_p(t,p_0), p - p_0 \rangle - (H(t,p) - H(t,p_0)), \ t \in [0,t_0].$$

Next, we consider the following cases:

Case 1. Assume H(t,p) = g(t)h(p) + k(t), and g(t) does not change its sign in (0,T). Then

$$\eta'(t,p) = \langle g(t)h_p(p_0), p - p_0 \rangle - g(t)(h(p) - h(p_0)) = (\langle h_p(p_0), p - p_0 \rangle - (h(p) - h(p_0)))g(t) = \lambda g(t)$$

where $\lambda = \langle h_p(p_0), p - p_0 \rangle - (h(p) - h(p_0))$ is a constant. Therefore, $\eta'(t, p)$ does not change its sign on $[0, t_0]$.

Case 2. Assume $H(t, \cdot)$ is convex. By a property of convex function, we have

$$\langle H_p(t, p_0), p - p_0 \rangle \le H(t, p) - H(t, p_0).$$

Therefore $\eta'(t, p) \leq 0$, for all $t \in [0, t_0]$.

Case 3. Assume $H(t, \cdot)$ is concave. Then $-H(t, \cdot)$ is convex. Arguing as in Case 2, we have $\eta'(t, p) \ge 0$, for all $t \in [0, t_0]$.

Combining the three cases above, we have, for all $t \in [0, t_0]$, $\eta'(t, p)$ does not change its sign on $[0, t_0]$. Thus,

(i) If $\eta'(t,p) \ge 0, t \in [0, t_0]$, then $\eta(t_1, p) \le \eta(t_0, p) \le 0$.

(ii) If $\eta'(t,p) \le 0, t \in [0, t_0]$, then $\eta(t_1, p) \le \eta(0, p) \le 0$.

Consequently, we obtain $\varphi(t_1, x_1, p) \leq \varphi(t_1, x_1, p_0)$. This is true for all $p \in \mathbb{R}^n$. As a result, $p_0 \in \ell(t_1, x_1)$ for any $(t_1, x_1) \in \mathcal{C}$, $t_1 \in [0, t_0]$ and the first assertion has been proved.

Next, let $p \notin \ell(t_0, x_0)$. Then $\eta(t_0, p) < 0$. If (i) holds, i.e. $\eta'(t, p) \ge 0$ then $\eta(t_1, p) \le \eta(t_0, p) < 0$.

Otherwise, if (ii) holds, i.e. $\eta'(t, p) \leq 0$, we have

$$\eta(t,p) \le \eta(0,p) = \langle y, p - p_0 \rangle - (\sigma^*(p) - \sigma^*(p_0)), \ t \in [0,t_0).$$

Since $p \neq p_0$, then $\eta(0, p) < 0$. Actually, if it is false, i.e. $\langle y, p - p_0 \rangle = (\sigma^*(p) - \sigma^*(p_0))$, then applying Lemma 2.7, we see that $[p, p_0]$ is contained in $\mathcal{D} = \{z \in \text{dom}\sigma^* \mid \partial\sigma^*(z) \neq \emptyset\}$ and σ^* is not strictly convex on the straight line segment $[p, p_0]$. This is a contradiction, since $\sigma(x)$ is of $C^1(\mathbb{R}^n)$, then it is essentially strictly convex on \mathcal{D} . In particular, σ^* is strictly convex on $[p, p_0]$, see ([9], Thm. 26.3). This implies $\eta(t_1, p) < 0$.

Therefore, in any case, if $p \notin \ell(t_0, x_0)$ then $\eta(t_1, p) < 0$. Thus $p \notin \ell(t_1, x_1)$. The proof is then complete.

We have seen that, if the characteristic curve C is of type (I) at (t_0, x_0) then it is of the type (I) at any point $(t, x) \in C$, $0 \leq t \leq t_0$. Nevertheless, for the characteristic curve of type (II), we have the following result which is somewhat different.

Theorem 2.9. Assume (A1) and (A2). In addition, suppose that H, σ are of class C^2 . Let $C : x = x(t) = x_0 + \int_{t_0}^t H_p(\tau, \sigma_y(y_0))d\tau$ be a characteristic curve of type (II) at some $(t_0, x_0) \in \Omega$. Then there exists $\theta \in (0, t_0)$ such that C is of type (I) at $(\theta, x(\theta))$ and C is of type (II) for all point $(t, x) \in C$, $t \in (\theta, t_0]$.

Proof. Let $C: x = x_0 + \int_{t_0}^t H_p(\tau, \sigma_y(y_0)) d\tau$ be the characteristic curve of type (II) at (t_0, x_0) emanating from $(0, y_0)$. Then $\sigma_y(y_0) \in \sigma_y(\ell^*(t_0, x_0)) \setminus \ell(t_0, x_0)$.

By the Cauchy method of characteristics, the function defined by Hopf-type formula u(t, x) coincides with the local C^2 solution of Problem (2.1) - (2.2), see [2, 11]. Then there exists $t_1 \in (0, t_0)$ such that u(t, x) is differentiable at any point $(t, x(t)) \in \mathcal{C}$, $u_x(t, x) = \sigma_y(y_0)$ and $\ell(t, x) = \{\sigma_y(y_0)\}, 0 \le t \le t_1$. Let

$$\theta = \sup\{t_1 \in [0, t_0) \mid \ell(s, x(s)) = \{\sigma_y(y_0)\}, \ 0 \le s \le t_1\}.$$

Since the multivalued mapping $(t, x) \mapsto \ell(t, x)$ is upper semicontinuous, we get that $\sigma_y(y_0) \in \ell(\theta, x(\theta))$. It is obvious that, $\theta < t_0$ since $\sigma_y(y_0) \notin \ell(t_0, x_0)$ and \mathcal{C} is of type (I) at $(\theta, x(\theta))$. On the other hand, for $t \in (\theta, t_0]$, \mathcal{C} is of type (II) at (t, x(t)) by the definition of θ and Theorem 2.8.

3 Strip of differentiability of Hopf-type formula

In this section we will study the strips of the form $V = (0, t_*) \times \mathbb{R}^n \subset \Omega$ so that the Hopf-type formula u(t, x) is continuously differentiable on them.

Theorem 3.1. Assume (A1) and (A2). Let u(t, x) be the Hopf-type formula of Problem (2.1) - (2.2) defined by (2.3). Suppose that there exists $t_0 \in (0, T)$ such that the mapping: $\mathbb{R}^n \ni y \mapsto x(t_0, y) = y + \int_0^{t_0} H_p(\tau, \sigma_y(y)) d\tau$ is injective. Then u(t, x) is continuously differentiable in the open strip $(0, t_0) \times \mathbb{R}^n$.

Proof. Let $(t_1, x_1) \in (0, t_0) \times \mathbb{R}^n$ and let \mathcal{C} :

$$x = x_1 + \int_{t_1}^t H_p(\tau, p_1) d\tau,$$

where $p_1 = \sigma_y(y_1) \in \ell(t_1, x_1)$ be the characteristic curve going through (t_1, x_1) defined as in Proposition 2.4.

Let (t_0, x_0) be the intersection point of \mathcal{C} and plane $\Delta^{t_0} = \{(t_0, x) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n\}$. Since the mapping $y \mapsto x(t_0, y)$ is injective and $\ell(t_0, x_0) \neq \emptyset$, thus $\ell^*(t_0, x_0)$ is a singleton. Hence there is a unique characteristic curve passing (t_0, x_0) . This characteristic curve is exactly \mathcal{C} . Therefore, we can rewrite \mathcal{C} as follows:

$$x = x_0 + \int_{t_0}^t H_p(\tau, p_0) d\tau$$

where $p_0 \in \ell(t_0, x_0)$.

Since $\ell(t_0, x_0) \subset \sigma_y(\ell^*(t_0, x_0))$ and $\ell^*(t_0, x_0)$ is a singleton, so is $\ell(t_0, x_0)$. Consequently, by Theorem 2.8, for all $(t, x) \in \mathcal{C}$, $0 < t < t_0$, the curve \mathcal{C} is of type (I) at (t, x) and $\ell(t, x) = \{p_0\}$ particularly, it holds at (t_1, x_1) and then, $p_0 = p_1$. Applying Theorem 2.1 we see that u(t, x) is of class C^1 in $(0, t_0) \times \mathbb{R}^n$. \Box

Note that at some point $(t_0, x_0) \in \Omega$ where u(t, x) is differentiable there may be more than one characteristic curve goes through, that is $\ell^*(t_0, x_0)$ may not be a singleton. Next, we have:

Theorem 3.2. Assume (A1) and (A2). Moreover, let σ be Lipschitz on \mathbb{R}^n . Take $t_0 \in (0,T]$ and suppose that for every point of the plane $\Delta^{t_0} = \{(t_0, x) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n\}$, the set $\ell(t_0, x)$ is a singleton. Then the Hopf-type formula u(t, x) of Problem (2.1) - (2.2) defined by (2.3) is continuously differentiable in the open strip $(0, t_0) \times \mathbb{R}^n$.

Proof. By assumption, the function $\sigma(x)$ is convex and Lipschitz on \mathbb{R}^n , then $D = \text{dom } \sigma^* = \{q \in \mathbb{R}^n \mid \sigma^*(q) < +\infty\}$ is a bounded (and convex) subset in \mathbb{R}^n . We thus have $\ell(t, x) \subset D$ for all $(t, x) \in \Omega$.

Let $(t_1, x_1) \in (0, t_0) \times \mathbb{R}^n$. We will check that $\ell(t_1, x_1)$ is a singleton. For each $y \in \mathbb{R}^n$, we put

$$\Lambda(y) = x_1 - \int_{t_0}^{t_1} H_p(\tau, p(y)) d\tau,$$

where $p(y) \in \ell(t_0, y) \in D$. Since the multi-valued function $y \mapsto \ell(t_0, y)$ is u.s.c, see [10], and by the hypothesis, $\ell(t_0, y) = \{p(y)\}$ is a singleton for all $y \in \mathbb{R}^n$, we deduce that the single-valued function $y \mapsto p(y)$ is continuous. Therefore the function $\Lambda : \mathbb{R}^n \to \mathbb{R}^n$, defined by $y \mapsto \Lambda(y)$ is also continuous on \mathbb{R}^n . Since p(y) is in the bounded set D and $H_p(t, p)$ is continuous, there exists M > 0 such that

$$|\Lambda(y) - x_1| \le \int_{t_1}^{t_0} |H_p(\tau, p(y))| d\tau \le M.$$

Therefore Λ is a continuous function from the closed ball $B'(x_1, M)$ into itself. By Brouwer theorem, Λ has a fixed point $x_0 \in B'(x_1, M)$, i.e., $\Lambda(x_0) = x_0$, hence

$$x_1 = x_0 + \int_{t_0}^{t_1} H_p(\tau, p(x_0)) d\tau.$$

In other words, there exists a characteristic curve C of the type (I) at (t_0, x_0) described as in Theorem 2.8 passing (t_1, x_1) . Since $\ell(t_0, x_0)$ is a singleton, so is $\ell(t_1, x_1)$. Applying Theorem 2.1, we see that u(t, x) is continuously differentiable in $(0, t_0) \times \mathbb{R}^n$.

We note that, the solution u(t, x) is differentiable at (t_0, x_0) if and only if, $\ell(t_0, x_0)$ is a singleton. Thus we have the following corollary.

Corollary 3.3. Assume (A1) and (A2). Moreover, let σ be Lipschitz on \mathbb{R}^n . Suppose that the Hopf-type formula u(t,x) of Problem (2.1) - (2.2) defined by (2.3) is differentiable at every point of the plane $\Delta^{t_0} = \{(t_0,x) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n\}, 0 < t_0 \leq T$. Then u(t,x) is continuously differentiable in the strip $(0,t_0) \times \mathbb{R}^n$.

Definition 3.4. We call a point $(t_0, x_0) \in \Omega$ regular for u(t, x) if the function is differentiable at this point. If u(t, x) is not differentiable at $(t_1, x_1) \in \Omega$ then this point is said to be a singular point or singularity of the function.

We study a simple propagation of singularities of viscosity solution u(t, x) of the Cauchy problem (2.1) - (2.2) defined by the Hopf-type formula. Under minimum assumption we show that, if (t_0, x_0) is a singular point of u(t, x), then there exists another singular one (t, x) for $t > t_0$ and x is near to x_0 . It is worth noticing that, a comprehensive study of singularities of semiconcave/semiconvex functions is presented in [2].

Theorem 3.5. Assume (A1) and (A2). Let $(t_0, x_0) \in \Omega$ be a singular point of the function u(t, x) defined by the Hopf-type formula (2.3). Then for each $\epsilon > 0$ there exists $\delta > 0$ such that for any $t_* > t_0$, $|t_* - t_0| \leq \delta$, there exists $x_* \in B'(x_0, \epsilon)$ such that (t_*, x_*) is also a singular point.

Proof. We use an idea of the proof of Lemma 6.5.1 in [2] with an appropriate adjustment. Let $(t_0, x_0) \in \Omega$ and let $\epsilon > 0$. Under assumption (A1), for all $(t, x) \in E = [t_0, T] \times B'(x_0, \epsilon)$, there exist positive numbers r_{tx} and N_{tx} such that for all (t', x') satisfying $|t' - t| + |x' - x| < r_{tx}$ then $\ell(t', x') \subset B'(0, N_{tx})$. Hence, we can cover the compact set E by a finite number balls centered

at (t_i, x_i) with radii $r_{(tx)_i}$, i = 1, ..., k. We take the positive number $M = \max\{N_{(tx)_i}, i = 1, ..., k\}$, then for all $(t, x) \in E$ we get $\ell(t, x) \subset B'(0, M)$. Now we choose $\delta \in (0, T - t_0]$ satisfying

$$\delta \sup_{|t-t_0| \le T - t_0, |p| \le M} |H_p(t, p)| \le \epsilon$$

and fix a $t_* > t_0$ so that $t_* - t_0 \leq \delta$.

By contradiction, if every point (t_*, y) where $y \in B'(x_0, \epsilon)$ is regular, then $\ell(t_*, y) = \{p(y)\}$ is a singleton. Since the multi-valued function $y \mapsto \ell(t_*, y)$ is u.s.c, then $y \mapsto p(y)$ is continuous on $B'(x_0, \epsilon)$. Thus, as in the proof of Theorem 3.2, we see that the function $\mathbb{R}^n \ni y \mapsto \Lambda(y) = x_0 - \int_{t_*}^{t_0} H_p(\tau, p(y)) d\tau$ is also continuous.

Note that, if $y \in B'(x_0, \epsilon)$ then

$$|\Lambda(y) - x| \le \int_{t_0}^{t_*} |H_p(\tau, p(y)| d\tau \le \delta \sup_{|t - t_0| \le T - t_0, |p| \le M} |H_p(t, p)| \le \epsilon$$

Therefore Λ is a continuous function from the closed ball $B'(x_0, \epsilon)$ into itself. By Brouwer theorem, Λ has a fixed point $x_* \in B'(x_0, \epsilon)$, i.e., $\Lambda(x_*) = x_*$, hence,

$$x_0 = x_* + \int_{t_*}^{t_0} H_p(\tau, p(x_*)) d\tau.$$

In other words, there exists a characteristic curve C of the type (I) at (t_*, x_*) described as in Theorem 2.8 passing (t_0, x_0) . Since $\ell(t_*, x_*)$ is a singleton, so is $\ell(t_0, x_0)$. This contradicts to the hypothesis.

Remark 3.6. If $(t_0, x_0) \in \Omega$ is a singular point for u(t, x) and $\epsilon > 0$, by the previous theorem, there exists $\delta > 0$ such that for any $t \in [t_0, t_0 + \delta]$ we can pick out $x = x(t) \in B'(x_0, \epsilon)$ so that (t, x) is singular. Put $\delta_1 = \delta$, $t_1 = t_0 + \delta_1$ and $x_1 = x(t_1)$. By induction, we can find $(\delta_k)_k$ and $x_k = x(t_k)$, $t_k = t_{k-1} + \delta_k$ so that (t_k, x_k) is singular. Since δ_k is dependent on (t_k, x_k) there are two possibilities:

$$\sum_{k=1}^{\infty} \delta_k < T \quad \text{or} \quad \sum_{k=1}^{\infty} \delta_k \ge T.$$

In the first case, the singularities of u(t, x) constructed by this way may not propagate to the boundary t = T, otherwise the singularities of u(t, x) exist at some points (T, x_*) . Nevertheless, if we assume $\sigma(x)$ is Lipschitz on \mathbb{R}^n as an additional condition, then the number $\delta > 0$ in the proof of Theorem 3.5 can be chosen independently of (t_i, x_i) , i = 1, 2, ...

We have the following:

Theorem 3.7. Assume (A1) and (A2). Moreover, let $\sigma(x)$ be a Lipschitz function on \mathbb{R}^n and let (t_0, x_0) be a singular point for the Hopf-type formula u(t, x) defined by (2.3). Then for each $\epsilon > 0$ there exists $\delta > 0$ such that for any $t_1 \in [t_0, t_0 + \delta]$ we can find $x_1 \in B'(x_0, \epsilon)$ such that (t_1, x_1) is also a singular point for u(t, x).

Proof. Since $\sigma(x)$ is convex and Lipschitz, then $D = \text{dom}\sigma^*$ is bounded. Hence, $D \subset B'(0, M)$ for some positive number M. Choose a fixed number $\delta > 0$ such that

$$\delta \sup_{0 \le t \le T, |p| \le M} |H_p(t, p)| \le \epsilon.$$

We argue similarly to the proof of Theorem 3.5. Let (t_0, x_0) be a singular point for u(t, x). If there is $t_* \in (t_0, t_0 + \delta]$ such that (t_*, y) is regular for all $y \in B'(x_0, \epsilon)$ then the mapping

$$y \mapsto \Lambda(y) = x_0 - \int_{t_*}^t H_p(\tau, p(y)) d\tau$$

is continuous from $B'(x_0, \epsilon)$ into itself. Thus, the mapping has a fixed point $x_* \in B'(x_0, \epsilon)$. This implies that there is a characteristics C of type (I) at (t_*, x_*) passing (t_0, x_0) and so (t_0, x_0) is regular. This is a contradiction. \Box

Corollary 3.8. Assume (A1) and (A2) and let $\sigma(x)$ be a Lipschitz function on \mathbb{R}^n . If the Hopf-type formula u(t, x) defined by (2.3) has a singular point $(t_0, x_0) \in \Omega$, then for any $\epsilon > 0$ and $t > t_0$, we can find another singular point (t, x) such that $|x - x_0| \leq m\epsilon$, for some $m \in \mathbb{N}$. Therefore the singular points of u(t, x) propagate with respect to t as t tends to T.

Proof. Arguing as in Remark 3.6, we see that for $\epsilon > 0$ and $t_0 < t \leq T$, there is $m \in \mathbb{N}$ such that $m\delta < t \leq (m+1)\delta$, where $\delta > 0$ is defined as in Theorm 3.7. Let $t_i = i\delta$, $i = 0, \ldots, m$. After m steps, we can take $x_m \in B'(x_{m-1}, \epsilon)$ such that (t, x_m) is singular and then

$$|x_m - x_0| \le |x_m - x_{m-1}| + \dots + |x_1 - x_0| \le m\epsilon.$$

The proof is thus complete.

Acknowledgments. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number: 101.02-2013.09.

References

- Bardi M. and L.C. Evans, On Hopf's formulas for solutions of Hamilton-Jacobi equations, Nonlinear. Anal. TMA, 8(1984), No 11, pp. 1373-1381.
- [2] Cannarsa P. & Sinestrari C., "Semiconcave functions, Hamilton-Jacobi equations and optimal control", Birkhauser, Boston 2004.

- [3] Crandall M.G. and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.
- [4] Hopf E., Generalized solutions of non-linear equations of first order, J. Math. Mech. 14 (1965), 951-973.
- [5] Lions, J. P., Rochet Hopf formula and multitime Hamilton-Jacobi equation, Proc. AMS. (96), 1, 1986.
- [6] Nguyen Hoang, Regularity of generalized solutions of Hamilton-Jacobi equations, Nonlinear Anal. 59 (2004), 745-757
- [7] Nguyen Hoang, Hopf-type formula defines viscosity solution for Hamilton-Jacobi equations with t-dependence Hamiltonian, Nonlinear Anal., TMA, 75 (2012), No. 8, 3543-3551.
- [8] Nguyen Hoang, Hopf-Lax formula and generalized characteristics, Applicable Analysis 96.2 (2017), 261-277.
- [9] Rockafellar T., "Convex Analysis", Princeton Univ. Press, 1970.
- [10] Tran Duc Van, Nguyen Hoang and Tsuji M., On Hopf's formula for Lipschitz solutions of the Cauchy problem for Hamilton-Jacobi equations, Nonlinear Anal. 29(1997), No 10, 1145-1159.
- [11] Tran Duc Van, Mikio Tsuji, Nguyen Duy Thai Son, "The characteristic method and its generalizations for first order nonlinear PDEs", Chapman & Hall/CRC, 2000.