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Abstract
In this paper, we investigate the non-positivity for the Hilbert coefficients of parameter
ideals. Moreover, we establish a relationship between the vanishing of Hilbert coefficients
and the depth of associated graded rings with respect to parameter ideals in the case of small
regularity.
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1 Introduction

Let (A,m) be a Noetherian local ring, I ⊂ A an m-primary ideal and M a finitely generated
A-module of dimension d. Denote by GI (A) = ⊕n≥0I

n/In+1 the associated graded ring
of A with respect to I . Let �(·) denote the length of an A-module. The Hilbert–Samuel
function of M with respect to I is the function HM : Z −→ N0 given by

HM(n) =
{

�(M/InM) if n ≥ 0,
0 if n < 0.
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Samuel showed that there exists a unique polynomial PM(x) ∈ Q[x] (called the Hilbert–
Samuel polynomial) of degree d such that HM(n) = PM(n) for n � 0. We can always
write PM(n) of the form

PM(n) =
d∑

i=0

(−1)i
(

n + d − i − 1

d − i

)
ei(I,M).

Then, the integers ei(I,M)′s, i = 0, . . . , d, are calledHilbert coefficients ofM with respect
to I .

The aim of this paper is to study the non-positivity of the Hilbert coefficients and estab-
lish a relationship between the vanishing of Hilbert coefficients and the depth of associated
graded rings.

The Hilbert coefficients give us structural information of rings and modules; so, they
have been attracted attention of many mathematicians. In 2008, Vasconcelos [14] named
e1(I,M) Chern number. Concerning Chern number, it is well known that e1(q,M) ≤ 0
for every parameter ideal q of M (see Mandal et al. [7]), while other Hilbert coefficients
of parameter ideal would be positive. However, if depth(A) ≥ dim(A) − 1, McCune [9]
showed that e2(q, A) ≤ 0. With the hypothesis depth(A) ≥ dim(A) − 1, Saikia and Salony
[11] proved that e3(q, A) ≤ 0. In [9], McCune also proved that if q is a parameter ideal such
that depth(Gq(A)) ≥ dim(A) − 1 then ei(q, A) ≤ 0 for i = 1, . . . , d .

The first main result of this paper is an improvement of the McCune’s result with a
weaker assumption that depth(Gq(A)) ≥ d − 2.

Theorem 1 Let (A,m) be a Noetherian local ring with dim(A) = d ≥ 2 and depthA ≥
d − 1. Let q be a parameter ideal of A such that depthGq(A) ≥ d − 2. Then

ei(q) ≤ 0 for all i = 1, . . . d .

Next, we discuss on a relationship between the vanishing of Hilbert coefficients and the
depth of the associated graded ring with respect to parameter ideals. In case A is unmixed,
Ghezzi et al. [4] proved that e1(q) = 0 if and only if A is Cohen–Macaulay. Lori Mccune
[9] showed that e2(q) = 0 if and only if depth(Gq(A)) ≥ d − 1. If q is a parameter ideal
generated by a d-sequence of an unmixed Noetherian local ring A, we get the following
theorem.

Theorem 2 Let (A,m) be a Noetherian unmixed local ring of dimension d ≥ 2 and q a
parameter ideal of A generated by a d-sequence x1, . . . , xd . For each 1 ≤ i ≤ d, we have

ei(q) = 0 if and only if depthGq(A) ≥ d − i + 1.

It is well known that if q is a parameter ideal of A generated by a d-sequence, then
reg(Gq(A)) = 0. More generally, if q is a parameter ideal of A such that reg(Gq(A)) ≤ 1,
we obtain the following result.

Theorem 3 Let (A,m) be a Noetherian local ring of dimension d ≥ 3 and depth(A) ≥ k,
for 2 ≤ k ≤ d − 1. Let q be a parameter ideal of A such that reg(Gq(A)) ≤ 1. Then

(i) depth(Gq(A)) ≥ k;
(ii) ed−k+2(q) = ed−k+3(q) = · · · = ed(q) = 0.
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The paper is divided into three sections. In Section 2, we prepare some facts related to
Hilbert coefficients. In Section 3, we prove the non-positivity for Hilbert coefficients of
parameter ideals. In Section 4, we discuss the relationship between the vanishing of Hilbert
coefficients and the depth of associated graded rings.

2 Preliminary

Let R = ⊕n≥0Rn be a finitely generated standard graded algebra over a Noetherian com-
mutative ring R0. Let R+ be the ideal of R generated by the elements of positive degrees of
R. Let E be a finitely generated graded R-module with dim(E) = d. Denote by Hi

R+(E)

the ith local cohomological module of E with support ideal R+. Define

ai(E) :=
{
max{n | Hi

R+(E)n 
= 0} if Hi
R+(E) 
= 0,

−∞ if Hi
R+(E) = 0.

The Castelnuovo–Mumford regularity of E is the number

reg(E) := max{ai(E) + i | i ≥ 0}.
If the basic ring R0 of R is artinian, hE(n) := �(En) denote the Hilbert function of E.

The unique polynomial pE(X) for which hE(n) = pE(n) for n � 0 is called the Hilbert
polynomial of E. It is written in the form

pE(n) =
d−1∑
i=0

(−1)i
(

n + d − i − 1

d − i − 1

)
ei(E),

where ei(E) for i = 0, 1, . . . , d − 1 are integers, called the Hilbert coefficients of E. The
postulation number p(E) of E is defined to be the integer number

p(E) = max{n | hE(n) 
= pE(n)}.
The relationship between Hilbert function and Hilbert polynomial is given by the following
formula (see [8, Lemma 1.3] or [1, Theorem 17.1.7]):

hE(n) − pE(n) =
d∑

i=0

(−1)i�(H i
R+(E)n).

From this, we have the following property.

Lemma 1

p(E) ≤ max{a0(E), . . . , ad(E)} ≤ reg(E).

Now, let (A,m) be a local Noetherian ring and I an m-primary ideal of A. Let M be a
finitely generated A-module of dimension d. A numerical function

HM : Z −→ N0

n �−→ HM(n) =
{

�(M/InM) if n ≥ 0;
0 if n < 0.

is said to be a Hilbert–Samuel function of M with respect to the ideal I . Samuel showed that
there exists a polynomial PM ∈ Q[x] of degree d such that HM(n) = PM(n) for n � 0.
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The polynomial PM is called the Hilbert–Samuel polynomial of M with respect to the ideal
I and it is written in the form

PM(n) =
d∑

i=0

(−1)i
(

n + d − i − 1

d − i

)
ei(I,M),

where ei(I,M) for i = 0, . . . , d are integers, called Hilbert coefficients of M with respect
to I . In particular, e0(I,M) and e1(I,M) are called the multiplicity and Chern coefficient,
respectively. Denote

nM(I) = max{n | HM(n) 
= PM(n)}.

If M = A, we write ei(I ) for ei(I, A) and n(I) for nA(I).
Let GI (M) = ⊕n≥0I

nM/In+1M denote the associated graded module of M with
respect to I . Then,

ei(GI (M)) = ei(I,M) for i = 0, . . . , d − 1.

Lemma 2 [2, Lemma 3.5]

n(I) = p(GI (A)).

Suppose that L = H 0
m(M) and M = M/L. A relationship between ei(I,M) and

ei(I,M) is given by the following lemma.

Lemma 3 [3, Lemma 3.4] If d = dim(M) ≥ 1, then

(i) ei(I,M) = ei(I,M) for i = 0, . . . , d − 1;
(ii) ed(I,M) = ed(I,M) + (−1)d�(L).

If d = 1 and I = q is a parameter ideal of M , then M is Cohen–Macaulay. This implies
that e1(q,M) = 0. We get the following corollary.

Corollary 1 If dim(M) = 1 and q is a parameter ideal of M , then

e1(q,M) = −�(L).

An element x ∈ I\mI is said to be superficial for I with respect to M if there exists
a number c ∈ N such that (InM : x) ∩ I cM = In−1M for n > c. If A/m is infinite,
then a superficial element for I always exists. Elements x1, . . . , xr ∈ I\mI is said to be a
superficial sequence for I with respect to M if xi is superficial for I/(x1, . . . , xi−1) with
respect to M/(x1, . . . , xi−1M), i = 1, . . . , r .

Suppose that x is a superficial element for I with respect to M and N := M/xM . The
following lemma gives a relationship between ei(I,M) and ei(I,N).

Lemma 4 [10, 22.6] Let M be a finitely generated A-module of dimension d ≥ 2 and I an
m-primary ideal of A. Let x ∈ I\mI be a superficial element for I with respect to M . Then

(i) ei(I,M) = ei(I,N) for i = 0, . . . , d − 2;
(ii) ed−1(I,M) = ed−1(I,N) + (−1)d�(0 :M x).
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3 Non-positivity of Hilbert Coefficients with Respect to Parameter
Ideals

Let (A,m) be a Noetherian local ring and M a finitely generated A-module of dimension
d ≥ 1. Let q be a parameter ideal of M . We begin with the non-positivity of the first Hilbert
coefficient e1(q,M).

Proposition 1 [7, Theorem 3.5] Let (A,m) be a Noetherian local ring and M a finitely
generated A-module of dimension d ≥ 1. If q is a parameter ideal of M , then e1(q,M) ≤ 0.

The above proposition gives us the non-positivity of the Hilbert coefficient e1(q,M)

of any parameter ideal. However, other Hilbert coefficients of parameter ideal would be
positive. In [9], Lori McCune gave the following example to show that the second coefficient
e2(q) of a parameter ideal q would be positive.

Example 1 Let A = k[x, y, z, u, v, w]/I , where I = (x + y, z − u, w) ∩ (z, u − v, y) ∩
(x, u, w) and q = (u − y, z + w, x − v). Then, A is an unmixed ring of dimension three
and depth one and q is a parameter ideal with

Pq(n) = 3

(
n + 2

3

)
+ 2

(
n + 1

2

)
+ n.

In particular, e2(q) = 1 > 0.

Definition 1 Let f : Z −→ Z be a function. The i-difference function, �if , is defined by

�1f (n) = f (n + 1) − f (n);
and

�if = �(�i−1f ) if i ≥ 2.

For convenience, we write f = �0f and �f = �1f .

Remark 1 If f (n) = 0 for n � 0 and �f (n) ≥ 0 (respectively �f (n) ≤ 0) for all n ≥ k,
then f (n) ≤ 0 (respectively f (n) ≥ 0) for all n ≥ k.

In the case of dimA = 1, McCune [9, Proposition 2.2 (2)] provided the following
property.

Lemma 5 Let (A,m) be a Noetherian local ring of dimension one and q a parameter ideal
of A. Then

Pq(n) − Hq(n) ≥ 0 and �(Pq − Hq)(n) ≤ 0 for all n ≥ −1.

The following lemma is a generalization of above lemma and that is a key point to prove
the main result of this section.

Lemma 6 Let (A,m) be a Noetherian local ring of dimension d > 0 and depthA ≥ d − 1.
Let q be a parameter ideal of A such that depthGq(A) ≥ d − 2. Then,

(i) (−1)d+1[Pq(n) − Hq(n)] ≥ 0 for all n ≥ −d;
(ii) (−1)d�(Pq − Hq)(n) ≥ 0 for all n ≥ −d.
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Proof We will prove by induction on d.
In case d = 1, the lemma holds from Lemma 5.
In case d ≥ 2, we have depthA ≥ d −1 ≥ 1. We can choose a regular element x ∈ q\mq

of A such that x is superficial for q. Denote Ā = A/(x) and q̄ = q/(x). Then, q̄ is also a
parameter ideal of Ā and dim(Ā) ≥ 1. From the following exact sequence

0 −→ (qn+1 : x)/qn −→ A/qn x−→ A/qn+1 −→ A/(qn+1, x) −→ 0,

we get
�(A/(qn+1, x)) = �(A/qn+1) − �(A/qn) + �((qn+1 : x)/qn).

Hence,
Hq̄(n + 1) = Hq(n + 1) − Hq(n) + �((qn+1 : x)/qn). (1)

Since x is regular, �((qn+1 : x)/qn) = �(0 : x) = 0, for n � 0. From (1), we have

Pq̄(n + 1) = Pq(n + 1) − Pq(n). (2)

By subtracting (1) from (2), we obtain

�(Pq − Hq)(n) = Pq̄(n + 1) − Hq̄(n + 1) + �((qn+1 : x)/qn) (3)

for all n ∈ Z.
If d = 2, then dim(Ā) = 1. By Lemma 5,

Pq̄(n + 1) − Hq̄(n + 1) ≥ 0 for all n ≥ −2.

From (3), it follows that

�(Pq − Hq)(n) ≥ 0 for all n ≥ −2.

By Remark 1, we have

Pq(n) − Hq(n) ≤ 0 for all n ≥ −2.

So, the lemma holds for the case d = 2.
If d ≥ 3, depthGq(A) ≥ d − 2 ≥ 1. Thus,

�((qn+1 : x)/qn) = 0 for all n ≥ 0.

Then, (1) becomes

Hq̄(n + 1) = Hq(n + 1) − Hq(n) for all n ∈ Z. (4)

Subtracting (4) from (2) and multiplying both sides by (−1)d , we get

(−1)d�(Pq − Hq)(n) = (−1)d(Pq̄(n + 1) − Hq̄(n + 1)), (5)

for all n ∈ Z. Since dim Ā = d − 1 and q̄ is a parameter ideal of Ā, depthGq̄(Ā) ≥ d − 3.
By induction on d, we may assume that

(−1)d−1�(Pq̄ − Hq̄)(n) ≥ 0 for all n ≥ −(d − 1).

From Remark 1, we obtain

(−1)d−1(Pq̄(n) − Hq̄(n)) ≤ 0 for all n ≥ −(d − 1).

Hence,
(−1)d [Pq̄(n + 1) − Hq̄(n + 1)] ≥ 0 for all n ≥ −d.

Thus, from (5), we have

(−1)d�(Pq − Hq)(n) ≥ 0 for all n ≥ −d.

By Remark 1,
(−1)d+1[Pq(n) − Hq(n)] ≥ 0 for all n ≥ −d.
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Remark 2 Let (A,m) be a Noetherian local ring of dimension d > 0 and q a parameter
ideal of A. If n(q) < i − d for some i ∈ {1, 2, . . . , d}, then

ei(q) = ei+1(q) = · · · = ed(q) = 0.

Proof Since n(q) < i − d ≤ 0, Pq(n) = 0 for all n = i − d, i − d + 1, . . . , 0. Plugging the
values n = 0, −1, . . . , i − d successively into Pq(n), one can see that

ed(q) = ed−1(q) = · · · = ei(q) = 0.

The following theorem is a main result of this section.

Theorem 1 Let (A,m) be a Noetherian local ring with dim(A) = d ≥ 2 and depthA ≥
d − 1. Let q be a parameter ideal of A such that depthGq(A) ≥ d − 2. Then,

ei(q) ≤ 0 for all i = 1, . . . d .

Proof First, we prove that ed(q) ≤ 0. By Lemma 6 (i),

(−1)d+1[Pq(n) − Hq(n)] ≥ 0 for all n ≥ −d.

Then, the above inequality holds for n = 0. Therefore,

(−1)d+1[(−1)ded(q) − Hq(0)] ≥ 0.

This implies that ed(q) ≤ 0. So, the theorem is proved for i = d.
Now, we need to show ei(q) ≤ 0 for 1 ≤ i < d . From Proposition 1, e1(q) ≤ 0. So, the

theorem holds for d = 2.
If d ≥ 3, then depthGq(A) ≥ d − 2 ≥ 1. We can choose a regular element x ∈ q\mq of

A such that x is superficial for q. Set Ā = A/(x) and q̄ = q/(x). We have q̄ is a parameter
ideal of Ā. Since dim(Ā) = d − 1, by induction on d, we may assume that ei(q̄) ≤ 0 for all
i ∈ {1, . . . , d−1}. From Lemma 4, we have ei(q) = ei(q) ≤ 0 for all i ∈ {1, . . . , d−1}.

Notice that McCune ([9, Corollary 4.5]) proved that ei(q) ≤ 0 under stronger assump-
tion, that is depth(Gq(A)) ≥ d − 1. In [11], Saikia and Salony used a different method to
prove this result. Theorem 4 also implies a result of McCune ([9, Theorem 3.5]).

Corollary 2 Let (A,m) be a Noetherian local ring with dim(A) = d ≥ 2. Let q be a
parameter ideal of A. If depthA ≥ d − 1, then e2(q) ≤ 0.

Proof If d = 2, it is obvious from Theorem 4. If d > 2, without loss of generality, we may
assume that x1, . . . , xd−2 is a superficial sequence for q. Set Ā := A/(x1, . . . , xd−2) and
q̄ := qĀ. Then, dim(Ā) = 2 and depth(Ā) ≥ 1. Applying Lemma 4 and Theorem 4, we
obtain

e2(q) = e2(q̄) ≤ 0.

From Lemma 6, we get the following corollary.

Corollary 3 Let (A,m) be a Noetherian local ring with dim(A) = d ≥ 2 and depthA ≥
d − 1. Let q be a parameter ideal of A such that depthGq(A) ≥ d − 2. If ei(q) = 0 for
some i ∈ {1, . . . , d − 1}, then ei+1(q) = · · · = ed(q) = 0.
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Proof Suppose that e1(q) = 0. By [7, Proposition 3.4], A is Cohen–Macaulay. It follows
that e2(q) = · · · = ed(q) = 0.

Suppose that d ≥ 3 and q = (x1, . . . , xd). It is sufficient to prove for i = d − 1. Without
loss of generality, assume that x = x1 is superficial for q. Set Ā = A/(x) and q̄ = qĀ. By
Lemma 4, ed−1(q̄) = ed−1(q) = 0. Hence, Pq̄(0) = 0. By applying Lemma 6 for the ring
Ā, we have

(−1)d−1�(Pq̄ − Hq̄)(n) ≥ 0 for all n ≥ 1 − d.

This implies

(−1)d−1[Pq̄(n + 1) − Hq̄(n + 1)] ≥ (−1)d−1[Pq̄(n) − Hq̄(n)] for all n ≥ 1 − d.

In particular, we have

0 = (−1)d−1[Pq̄(0) − Hq̄(0)] ≤ (−1)d−1[Pq̄(n) − Hq̄(n)] ≤ 0 for all n ≥ 0.

It follows that
Hq̄(n) = Pq̄(n) for all n ≥ 0.

This gives n(q̄) ≤ −1. Since depthGq(A) ≥ d − 2 ≥ 1, n(q̄) = n(q) + 1. Therefore,
n(q) = n(q̄) − 1 ≤ −2. By Remark 2, we get ed(q) = 0.

4 Hilbert Coefficients and the Depth of Associated Graded Ring

In this section, we study a relationship between the vanishing of Hilbert coefficients ei(q)

and the depth of Gq(A). Recall that a sequence x1, . . . , xs of A is said to be d-sequence if
it satisfies one of the following two equivalent conditions:

(a) (x1, . . . , xi−1) : xixk = (x1, . . . , xi−1) : xk for 1 ≤ i ≤ k ≤ s;
(b) [(x1, . . . , xi−1) : xi] ∩ q = (x1, . . . , xi−1) for 1 ≤ i ≤ s, and q = (x1, . . . , xs).

Let q be a parameter ideal of A generated by a d-sequence x1, . . . , xd . Without loss
of generality, assume that the residue field A/m is infinite and x1, . . . , xd is a superficial
sequence for q. By [12, Theoerem 1.1], H 0

m(A/(x1, . . . , xi−1)) = (0A/(x1,...,xi−1) : xi).
Applying [12, Theorem 4.1], we obtain

(−1)ded(q) = �(H 0(A)) (6)

and

(−1)d−ied−i (q) = �(H 0(A/(x1, . . . , xi))) − �(H 0(A/(x1, . . . , xi−1))) ≥ 0 (7)

for i = 1, . . . , d − 1. As a consequence of [12, Theorem 4.1], the following proposition
gives the sign of Hilbert coefficients.

Proposition 2 Let (A,m) be a Noetherian local ring of dimension d ≥ 1. If q is a parameter
ideal of A generated by a d-sequence x1, . . . , xd , then

(−1)iei(q) ≥ 0 for all i = 1, . . . , d .

From (6) and (7), we get the following corollary.

Corollary 4 Let (A,m) be a Noetherian local ring of dimension d ≥ 1 and q a parameter
ideal of A generated by a d-sequence x1, . . . , xd . For each 1 ≤ i ≤ d,

ej (q) = 0 for all j ≥ i if and only if depthA ≥ d − i + 1.
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Lemma 7 Let (A,m) be a Noetherian local ring of dimension d ≥ 1 with infinite residue
field. Let q be a parameter ideal of A generated by a superficial sequence x1, . . . , xd for q.
The following conditions are equivalent:

(i) x1, . . . , xd is a d-sequence;
(ii) reg(Gq(A)) = 0.

Proof See [13, Corollary 5.2].

A Noetherian local ring (A,m) of dimension d is called unmixed if dim(Â/p) = d, for
every p ∈ Ass(Â), where Â denotes the m-adic completion of A. If A is an unmixed ring,
then we obtain a relationship between the vanishing of Hilbert coefficients and the depth of A.

Lemma 8 Let (A,m) be a Noetherian unmixed local ring of dimension d ≥ 2 and q a
parameter ideal of A generated by a d-sequence. Then for each 1 ≤ i ≤ d, we have

ei(q) = 0 if and only if depthA ≥ d − i + 1.

Proof By Lemma 4, the lemma holds for i = d. So, we need only to prove for the case
i < d.

For i ≤ d − 1, without loss of generality we may assume that the residue field of A is
infinite. We can choose an element x ∈ q/mq such that x is superficial for q. Since A is
unmixed, we may assume that x is a regular element of A. Set Ā := A/(x) and q̄ := qĀ.
From Lemma 4, we have

ed−1(q̄, Ā) = ed−1(q, A).

Then, ed−1(q̄, Ā) = 0 if and only if depth Ā ≥ 1, from Lemma 4. This is equivalent to
depthA = depth Ā + 1 ≥ 2. So, the lemma holds for i = d − 1.

If d = 2, the proof of the lemma is completed. If d > 2, by induction, we may assume
that the lemma holds for i = d − k, k = 1, . . . , d − 2. We need to prove that it holds for
i = d − k − 1. By [4, Proposition 2.2], we may choose a superficial a ∈ q/mq such that

Ass(A/(a)) ⊆ Assh(A/(a)) ∪ m,

where Assh(A) = {p ∈ Ass(A) | dim(A/p) = dim(A)}. Rewrite S = A/(a) and Q = qS.
Since reg(GQ(S)) ≤ reg(Gq(A)) = 0, reg(GQ(S)) = 0. By Lemma 7, Q is a parameter
ideal generated by a d-sequence of S (note that S is not necessary unmixed). Denote U =
US(0) the unmixed component of (0) in A and S = S/U , Q = QS. By arguing as in the
proof of [4, Theorem 2.1], we have S is an unmixed ring of dimension d − 1 and Q is a
parameter ideal of S generated by a d-sequence.

To prove the lemma holds for i = d − k − 1, first suppose that ed−k−1(q, A) = 0. Then,
we have

ed−k−1(Q, S) = ed−k−1(Q, S) = ed−k−1(q, A) = 0.

It follows, by inductive hypothesis, that depth S ≥ (d − 1) − (d − k − 1) + 1 = k + 1.
Therefore, Hi

m(S) = 0 ∀i = 0, 1, · · · , k. From a short exact sequence

0 −→ U −→ S −→ S −→ 0,

we get a long exact sequence of local cohomology

0 −→ H 0
m(U) −→ H 0

m(S) −→ H 0
m(S) −→ H 1

m(U) −→ H 1
m(S) −→ H 1

m(S) −→ · · ·
−→ Hk

m(U) −→ Hk
m(S) −→ Hk

m(S) −→ · · ·
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Since Ass(S) ⊆ Assh(S) ∪ m, H 0
m(S) = U . Hence Hi

m(U) = 0 for all i ≥ 1. From the
above exact sequence, we have Hi

m(S) = 0 for all i = 1, . . . , k. Now, consider the short
exact sequence

0 −→ A
a−→ A −→ S −→ 0,

we get

0 −→ H 0
m(A)

a−→ H 0
m(A) −→ H 0

m(S) −→ H 1
m(A)

a−→ H 1
m(A) −→ 0.

As A is unmixed, H 1
m(A) is finitely generated. On the other hand, from above exact

sequence, we have H 1
m(A) = aH 1

m(A). By applying Nakayama Lemma, we obtain
H 1

m(A) = 0. This implies that Hi
m(S) = 0 for all i = 0, 1, . . . , k. Hence, depth S ≥ k + 1

and depthA = depth S + 1 ≥ k + 2 = d − (d − k − 1) + 1.
Conversely, suppose that depth(A) ≥ d − (d − k − 1) + 1 = k + 2. Assume that

q = (x1, . . . , xd) and x1, . . . , xk+1 is a regular sequence of A. From depth(A) ≥ k + 2, we
have depth(A/(x1, . . . , xi)) ≥ 1 for i = 1, . . . , k + 1. It follows that

H 0
m(A/(x1, . . . , xi)) = 0 for i = 0, . . . , k + 1.

From (6) and (7), we get ed−k−1(q) = 0.

Now, we continue to study a relationship between the vanishing of Hilbert coefficients
and the depth of the associated graded ring Gq(A).

Lemma 9 Let (A,m) be a Noetherian local ring of dimension d ≥ 1 and q a parameter
ideal of A generated by a d-sequence. Then,

ed(q) = 0 if and only if depth(Gq(A)) ≥ 1.

Proof Suppose that depthGq(A) ≥ 1. Then, depthA ≥ 1. It follows that L = H 0
m(A) = 0.

From (6), we have ed(q) = 0.
Conversely, assume that ed(q) = 0. Since q is an ideal generated by a d-sequence,

reg(Gq(A)) = 0. By the definition of Castelnuovo–Mumford regularity,

reg(Gq(A)) = max{ai(Gq(A)) + i|i = 0, . . . , d}.
Hence, ai(Gq(A)) + i ≤ 0 for all i ≥ 0. On the other hand, from Lemma 4, we get
depthA > 0. Thus, a0(Gq(A)) < a1(Gq(A)) < 0, by [5, Theorem 5.2]. This implies that
H 0

G+(Gq(A)) = 0 and hence depth(Gq(A)) ≥ 1.

Lemma 10 [6, Lemma 2.2] Let (A,m) be a Noetherian local ring and I an m-primary
ideal of A. Let x1, . . . , xk be a superficial sequence for I . Denote Ī = I/(x1, . . . , xk) and
Ā = A/(x1, . . . , xk). If depth(GĪ (Ā)) ≥ 1, then depth(GI (A)) ≥ k + 1.

The following theorem is a main result of this section.

Theorem 2 Let (A,m) be a Noetherian unmixed local ring of dimension d ≥ 2 and q a
parameter ideal of A generated by a d-sequence x1, . . . , xd . Then for each 1 ≤ i ≤ d, we
have

ei(q) = 0 if and only if depthGq(A) ≥ d − i + 1.

Proof Suppose that depthGq(A) ≥ d − i + 1. This implies that depthA ≥ d − i + 1. By
Lemma 8, ei(q) = 0.
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Conversely, suppose that ei(q) = 0. By Lemma 9, the theorem holds for i = d. By
induction on i, we may assume that the lemma holds for i = d−k, for some k ∈ {1, . . . , d−
2}, and need to prove it holds for i = d − k − 1. From ed−k−1(q) = 0 and by Lemma 8, we
have depthA ≥ k + 2. Without loss of generality, assume that x1, . . . , xk+1 is a superficial
sequence for q. Set Ā = A/(x1, . . . , xk+1) and q̄ = qĀ. Then,

0 ≤ reg(Gq̄(Ā)) ≤ reg(Gq(A)) = 0.

Hence, reg(Gq̄(Ā)) = 0. By Lemma 7, q̄ is the parameter ideal generated by a d-sequence.
Notice that dim(Ā) = d − k − 1, depth(Ā) ≥ 1 and ed−k−1(q̄) = ed−k−1(q) = 0. Applying
Lemma 9, we obtain depthGq̄(Ā) ≥ 1. From Lemma 10, we get depthGq(A) ≥ 1 + (k +
1) = k + 2.

If q is a parameter ideal generated by a d-sequence and depth(A) ≥ d − 1, by applying
Theorem 5, we obtain the following corollary.

Corollary 5 Let (A,m) be a Noetherian local ring of dimension d ≥ 2 and depth(A) ≥
d − 1. Let q be a parameter ideal of A generated by a d-sequence x1, . . . , xd . Then

(i) depth(Gq(A)) ≥ d − 1;
(ii) e2(q) = e3(q) = · · · = ed(q) = 0.

It is well known that if q is an ideal generated by a d-sequence, then reg(Gq(A)) = 0.
More generally, we consider parameter ideals q such that reg(Gq(A)) ≤ 1.

Theorem 3 Let (A,m) be a Noetherian local ring of dimension d ≥ 3 and depth(A) ≥ k

for 2 ≤ k ≤ d − 1. Let q be a parameter ideal of A such that reg(Gq(A)) ≤ 1. Then,

(i) depth(Gq(A)) ≥ k;
(ii) ed−k+2(q) = ed−k+3(q) = · · · = ed(q) = 0.

Proof (i) Suppose that q = (x1, . . . , xd). Without loss of generality, we assume that
x1, . . . , xk−1 is a superficial sequence for q. Set Ā := A/(x1, . . . , xk−1) and q̄ := qĀ.
Then, dim(Ā) = d − k + 1 and depth(Ā) ≥ 1. By [5, Theorem 5.2], a0(Gq̄(Ā)) <

a1(Gq̄(Ā)). Therefore,

reg(Gq̄(Ā)) = max{a1(Gq̄(Ā)) + 1, . . . , ad(Gq̄(Ā)) + d} ≤ reg(Gq(A)) ≤ 1.

Hence, a0(Gq̄(Ā)) < a1(Gq̄(Ā)) ≤ 0. Thus, H 0
G+(Gq̄(Ā)) = 0. It follows that

depth(Gq̄(Ā)) ≥ 1. By Lemma 10, we get depth(Gq(A)) ≥ 1 + (k − 1) = k.
(ii) Since depth(Gq(A)) ≥ k,

reg(Gq(A)) = max{ak(Gq(A)) + k, . . . , ad(Gq(A)) + d} ≤ 1.

Hence, ai(Gq(A)) ≤ 1 − k for all i ≥ 0. By Lemma 1 and Lemma 2,

n(q) ≤ 1 − k < 2 − k.

From hypothesis 2 ≤ k ≤ d − 1 and Remark 2, we get

ed−k+2(q) = ed−k+3(q) = · · · = ed(q) = 0.

Author's personal copy



442 C.H. Linh, V.D. Trung

Corollary 6 Let (A,m) be a Noetherian local ring of dimension d ≥ 3 and depth(A) ≥
d − 1. Let q be a parameter ideal of A such that reg(Gq(A)) ≤ 1. Then,

(i) depth(Gq(A)) ≥ d − 1;
(ii) e3(q) = e4(q) = · · · = ed(q) = 0.
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