AN ESTIMATE OF THE REGULARITY INDEX OF FAT POINTS IN SOME CASES

Phan Van Thien and Tran Thi Viet Trinh

(Hue City, Viet Nam)

Communicated by Bui Minh Phong

(Received January 28, 2019; accepted March 3, 2019)

Abstract. We estimate the regularity index of a set of fat points $Z = m_1P_1 + \cdots + m_sP_s$ in three cases: all points P_1, \ldots, P_s are on two lines; Z consists at most five fat points; $Z = m_1P_1 + \cdots + P_{n+3}P_{n+3}$ is non-degenerate in \mathbb{P}^n .

1. Introduction

Let $\mathbb{P}^n := \mathbb{P}^n_K$ be a *n*-dimensional projective space over an algebraically closed field K and $R := K[X_0, \ldots, X_n]$ be the polynomial ring in n+1 variables X_0, \ldots, X_n with coefficients in K. Let $P_1, \ldots, P_s \in \mathbb{P}^n$ be distinct points and denote by $\varphi_i \subset R$ the homogeneous prime ideal defining by the points P_i , $i = 1, \ldots, s$. Let m_1, \ldots, m_s be positive integers, it is well known that the ideal $I = \varphi_1^{m_1} \cap \cdots \cap \varphi_s^{m_s}$ consists all forms $f \in R$ vanishing at P_i with the multiplicity $\geq m_i, i = 1, \ldots, s$; we denote by Z the zero-scheme defined by Iand call

$$Z := m_1 P_1 + \dots + m_s P_s$$

a set of fat points in \mathbb{P}^n . In case $m_1 = \cdots = m_s = m$ the Z is called a set of equimultiple fat points.

Key words and phrases: Fat points, regularity index, Zero-scheme.

²⁰¹⁰ Mathematics Subject Classification: Primary 14C20, Secondary 13D40.

The homogeneous coordinate ring of Z is A := R/I. This is a graded ring, $A = \bigoplus_{t \ge 0} A_t$. For every $t \in \mathbb{N}$, the graded part A_t is a finite dimensional K-vector space. Then the function

$$H_Z(t) := \dim_K A_t$$

is called the Hilbert function of Z. This function allows us to estimate the size of all forms of degree t vanishing at every point P_i with multiplicity $\geq m_i$. In fact, our knowledge about $H_Z(t)$ is now very thin.

It is also well known that the number $e(A) = \sum_{i=1}^{s} \binom{m_i + n - 1}{n}$ is the mul-

tiplicity of the ring A and the Hilbert function $H_Z(t)$ strictly increases until it reaches the multiplicity e(A), at which it stabilizes. The regularity index of Z is defined to be

$$\operatorname{reg}(Z) := \min\{t \in \mathbb{N} \mid H_A(t) = e(A)\}.$$

So the vector space dimension of the degree t polynomials in I is known if $t \ge \operatorname{reg}(Z)$. In geometric language, the set of fat points Z imposes independent conditions on forms of degree at least to be $\operatorname{reg}(Z)$. In fact, the calculation $\operatorname{reg}(Z)$ is very difficult. So, instead of finding $\operatorname{reg}(Z)$, one gave upper bounds for the $\operatorname{reg}(Z)$. We can find different upper bounds for $\operatorname{reg}(Z)$ in [1], [2], [4], [6], [7].

For a set of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^n , we put

$$T_{jZ} = \max\left\{ \left\lfloor \frac{\sum_{l=1}^{q} m_{i_l} + j - 2}{j} \right\rfloor \mid P_{i_1}, \dots, P_{i_q} \text{ lie on a linear } j\text{-space} \right\}$$

and

$$T_Z = \max\{T_{jZ} \mid j = 1, \dots, n\}$$

A set of points $X = \{P_1, \ldots, P_s\}$ in \mathbb{P}^n is called a non-degenerate set if X does not lie on a hyperplane of \mathbb{P}^n . A set of fat points $Z = m_1P_1 + \cdots + m_sP_s$ is called to be non-degenerate if $X = \{P_1, \ldots, P_s\}$ is non-degenerate. In 2016, E. Ballico, O. Dumitrescu and E. Postinghel [1, Theorem 2.1] proved

$$\operatorname{reg}\left(Z\right) \leq T_Z$$

for $Z = m_1 P_1 + \cdots + m_{n+3} P_{n+3}$ is a set of non-degenerate fat points in \mathbb{P}^n . Recently, U. Nagel and B. Trok [5, Theorem 5.3] proved the above upper bound to be true for any set of fat points in \mathbb{P}^n .

Recall that the calculation of reg (Z) is very difficult. There were a few results on the calculation of reg (Z) which were published by prestigious journals as follows.

In 1984, E.D. Davis and A.V. Geramita [3, Corollary 2.3] successfully calculated the regularity of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in the case all points lie on a line in \mathbb{P}^n :

$$\operatorname{reg}\left(Z\right) = m_1 + \dots + m_s - 1.$$

A set of points $\{P_1, \ldots, P_s\}$ in \mathbb{P}^n is said in general position if no j + 2points of $\{P_1, \ldots, P_s\}$ lie on a *j*-plane for every j < n. A set of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ is called in general position in \mathbb{P}^n if the points P_1, \ldots, P_s are in general position. A rational normal curve in \mathbb{P}^n is a curve of degree *n* that may be given parametrically as the image of the map

$$\mathbb{P}^1 \to \mathbb{P}^n$$

(s,t) \mapsto (sⁿ, sⁿ⁻¹t, sⁿ⁻²t², ..., tⁿ).

In 1993, M.V. Catalisano, N.V. Trung and G. Valla [2] showed a formular to compute the regularity index of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^n , with $m_1 \geq \cdots \geq m_s$, in two following cases:

• If $s \ge 2$ and the points P_1, \ldots, P_s lie on a rational normal curve [2, Proposition 7], then

reg
$$(Z) = \max\left\{m_1 + m_2 - 1, \left\lfloor \left(\sum_{i=1}^{s} m_i + n - 2\right)/n \right\rfloor \right\}.$$

• If $n \ge 3$, $2 \le s \le n+2$, $2 \le m_1$ and P_1, \ldots, P_s are in general position in \mathbb{P}^n [2, Corllary 8], then

$$\operatorname{reg}(Z) = m_1 + m_2 - 1.$$

It is well known that if P_1, \ldots, P_s lie on a rational normal curve in \mathbb{P}^n , then they are in general position in \mathbb{P}^n . In above cases we have $T_{1Z} = m_1 + m_2 - 1 \ge T_{jZ}$ for $j = 2, \ldots, n-1$, and thus $T_Z = \max\{T_{1Z}, T_{nZ}\}$.

In 2012, P.V. Thien [8, Theorem 3.4] showed

$$\operatorname{reg}\left(Z\right) = T_Z$$

in the case the points P_1, \ldots, P_s are not on a linear (s-3)-space in \mathbb{P}^n . In 2017, P.V. Thien and T.N. Sinh [10, Theorem 4.6] showed

$$\operatorname{reg}\left(Z\right) = T_Z$$

in the case the points P_1, \ldots, P_s are not on a linear (r-1)-space in \mathbb{P}^n , $s \leq r+3$, and $m_1 = \cdots = m_s = m \neq 2$. The conjecture reg $(Z) = T_Z$ for a set of arbitrary fat points Z in \mathbb{P}^n is false because U. Nagel and B. Trok [5, Example 5.7] showed: if $Z = mP_1 + \cdots + mP_s$ is a set of fat points in \mathbb{P}^n , where $X = \{P_1, \ldots, P_s\}$ consisting of five arbitrary points and $\binom{d+n}{d}$ generic points for some $d \ge 5$, then

 $\operatorname{reg}\left(Z\right) < T_Z$

for sufficiently large d (or n).

In this paper we prove that

$$T_Z - 1 \le \operatorname{reg}\left(Z\right) \le T_Z$$

in the following cases:

- All P_1, \ldots, P_s are on two lines.
- \circ The scheme Z consists at most five fat points.
- $\circ Z = m_1 P_1 + \cdots + m_{n+3} P_{n+3}$ is a set of non-degenerate fat points in \mathbb{P}^n .

2. Preliminaries

It is well known that if R/I is the coordinate ring of a set of fat points Z, then the regularity index reg (Z) is equal to the Castelnuovo–Mumford regularity index reg (R/I).

We need use the following results for the next section.

Lemma 2.1. ([9, Proposition 6]) Let P_1, \ldots, P_s be distinct points in \mathbb{P}^n and m_1, \ldots, m_s be positive integers. Let n_1, \ldots, n_s be non-negative integers with $(n_1, \ldots, n_s) \neq (0, \ldots, 0)$ and $m_i \geq n_i$ for $i = 1, \ldots, s$. Put $I = \wp_1^{m_1} \cap \cdots \cap \wp_s^{m_s}$ and $J = \wp_1^{n_1} \cap \cdots \cap \wp_s^{n_s}$ ($\wp_i^{n_i} = R$ if $n_i = 0$). Then

$$\operatorname{reg}\left(R/J\right) \le \operatorname{reg}\left(R/I\right).$$

So, if $Y = n_1 P_1 + \dots + n_s P_s$ and $Z = m_1 P_1 + \dots + m_s P_s$, then ([5, Lemma 3.1(b)])

$$\operatorname{reg}(Y) \leq \operatorname{reg}(Z)$$

In 2000, P.V. Thien proved the following result.

Lemma 2.2. ([7, Theorem 1]) Let $Z = m_1P_1 + \cdots + m_sP_s$ be an arbitrary set of fat points in \mathbb{P}^3 . Then

$$\operatorname{reg}(Z) \le \max\{T_{1Z}, T_{3Z}, T_{3Z}\}.$$

Consider a set of fat points Z in \mathbb{P}^n . In 2012, B. Benedetti, G. Fatabbi and A. Lorenzini showed the following property when the support of Z is contained in a linear subspace of \mathbb{P}^n .

Lemma 2.3. ([1, Theorem 2.1]) Let $Z = m_1 P_1 + \cdots + m_s P_s$ be a set of fat points in \mathbb{P}^n such that $\{P_1, \ldots, P_s\}$ is contained in a linear r-space α . We may consider the linear r-space α as a r-dimensional projective space \mathbb{P}^r containing the points $P'_1 := P_1, \ldots, P'_s := P_s$, and $Z_\alpha = m_1 P'_1 + \cdots + m_s P'_s$ as a set of fat points in \mathbb{P}^r . If there is a non-negative integer t such that $\operatorname{reg}(Z_\alpha) \leq t$ in \mathbb{P}^r , then

$$\operatorname{reg}\left(Z\right) \leq t$$

in \mathbb{P}^n .

Recall that a set of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^n is called nondegenerate if all the points P_1, \ldots, P_s are not on a linear (n-1)-space of \mathbb{P}^n . In 2016, E. Ballico, O. Dumitrescu and E. Postinghel [1, Theorem 2.1] proved the following result.

Lemma 2.4. ([1, Theorem 2.1]) Let $Z = m_1P_1 + \cdots + m_{n+3}P_{n+3}$ be a set of non-degenerate fat points in \mathbb{P}^n . Then

$$\operatorname{reg}(Z) \leq T_Z.$$

The following result of E.D. Davis and A.V. Geramita help us to compute the regularity index of fat points with support on a line.

Lemma 2.5. ([3, Corollary 2.3]) Let $Z = m_1P_1 + \cdots + m_sP_s$ be a set of arbitrary fat points in \mathbb{P}^n . Then

$$\operatorname{reg}\left(Z\right) = m_1 + \dots + m_s - 1$$

if and only if the points P_1, \ldots, P_s lie on a line.

The points $P_1, \ldots, P_s \in \mathbb{P}^n$ is called to be in Rnc-j (see [9]) if there is a rational normal curve \mathcal{C} in \mathbb{P}^j and a monomorphism $\varphi : \mathbb{P}^j \to \mathbb{P}^n$ such that P_1, \ldots, P_s are on the image $\varphi(\mathcal{C})$. In 2016, P.V. Thien proved:

Lemma 2.6. ([9, Proposition 10]) Let $Z = m_1P_1 + \cdots + m_sP_s$ be a set of fat points in \mathbb{P}^n such that P_1, \ldots, P_s are in Rnc-j. Then

$$\operatorname{reg}\left(Z\right) = \max\{D_j \mid j = 1, \dots, t\},\$$

where

$$D_j = \max\left\{ \left\lfloor \frac{\sum_{l=1}^q m_{i_l} + j - 2}{j} \right\rfloor \mid P_{i_1}, \dots, P_{i_q} \text{ are in } Rnc - j \right\}.$$

3. Results

Let $X = \{P_1, \ldots, P_s\}$ be a set of distinct points in \mathbb{P}^n , $Z = m_1 P_1 + \cdots + m_s P_s$ be a set of fat points in \mathbb{P}^n and L be a linear space in \mathbb{P}^n . Assume that $L \cap X = \{P_{i_1}, \ldots, P_{i_r}\}$, we put

$$s(L \cap Z) := m_{i_1} P_{i_1} + \dots + m_{i_r} P_{i_r},$$

and

$$w_{s(L\cap Z)} := m_{i_1} + \dots + m_{i_r}.$$

From the Lemma 2.1 we get:

Remark 3.1. If $Z = m_1 P_1 + \cdots + m_s P_s$ is a set of fat points in \mathbb{P}^n and L is a linear space in \mathbb{P}^n , then

$$\operatorname{reg}\left(s(L \cap Z)\right) \le \operatorname{reg}\left(Z\right).$$

By using the above results we get:

Lemma 3.2. If $Z = m_1 P_1 + \cdots + m_s P_s$ is a set of fat points in \mathbb{P}^n , then

$$\operatorname{reg}\left(Z\right) \geq T_{1Z}.$$

Proof. By the definition of T_{1Z} , there is a linear 1-space l in \mathbb{P}^n such that

$$T_{1Z} = w_{s(l \cap Z)} - 1.$$

By Remark 3.1 and Lemma 2.5, we have

$$\operatorname{reg}\left(Z\right) \ge \operatorname{reg}\left(s(l \cap Z)\right) = w_{s(l \cap Z)} - 1.$$

Therefore

$$\operatorname{reg}\left(Z\right) \geq T_{1Z}.$$

Lemma 3.3. If $Z = m_1P_1 + \cdots + m_sP_s$ is a set of fat points in \mathbb{P}^n such that P_1, \ldots, P_s are on a linear 3-space, then

$$\operatorname{reg}(Z) \le \max\{T_{1Z}, T_{2Z}, T_{3Z}\} = T_Z$$

Proof. Assume that P_1, \ldots, P_s are on a linear 3-space, say α . Put $P'_1 := P_1, \ldots, P'_s := P_s$ and consider $Z_\alpha := m_1 P'_1 + \cdots + m_s P'_s$ as a set of fat points in $\mathbb{P}^3 \cong \alpha$. By the Lemma 2.2 we get

$$\operatorname{reg}\left(Z_{\alpha}\right) \leq \max\{T_{1Z_{\alpha}}, T_{2Z_{\alpha}}, T_{3Z_{\alpha}}\}.$$

By using Lemma 2.3 we get

$$\operatorname{reg}(Z) \le \max\{T_{1Z_{\alpha}}, T_{2Z_{\alpha}}, T_{3Z_{\alpha}}\}.$$

It is easy to see that

$$T_{iZ} = T_{iZ_{\alpha}}$$

for j = 1, 2, 3. So

$$\operatorname{reg}(Z) \le \max\{T_{1Z}, T_{2Z}, T_{3Z}\}.$$

Since all P_1, \ldots, P_s are on a linear 3-space, we get $T_{3Z} \ge T_{jZ}$ for $j = 4, \ldots, n$. We thus get

$$\max\{T_{1Z}, T_{2Z}, T_{3Z}\} = T_Z.$$

We now can estimate the regularity index of a set of fat points with support on two lines.

Theorem 3.4. Let $Z = m_1P_1 + \cdots + m_sP_s$ be a set of fat points in \mathbb{P}^n such that all P_1, \ldots, P_s are on two lines of \mathbb{P}^n . Then

$$T_Z - 1 \le \operatorname{reg}(Z) \le T_Z.$$

Proof. Assume that the points P_1, \ldots, P_s are on two lines, say l_1 and l_2 , in \mathbb{P}^n . Then $l_1 \cup l_2$ is on a linear 3-space in \mathbb{P}^n . We consider two following cases:

Case 1: $l_1 \cup l_2$ does not lie on any linear 2-space in \mathbb{P}^n . We consider two following cases.

Case 1.a: $w_{s(l_1 \cap Z} \neq w_{s(l_2 \cap Z)}$. Without loss of generality we can assume that $w_{s(l_1 \cap Z)} > m_{s(l_2 \cap Z)}$, then

$$w_{s(l_1 \cap Z)} - 1 \ge \left\lfloor \frac{w_{s(l_1 \cap Z)} + w_{s(l_2 \cap Z)}}{2} \right\rfloor \ge \left\lfloor \frac{m_1 + \dots + m_s}{2} \right\rfloor \ge \max\{T_{2Z}, T_{3Z}\}.$$

By the definition of T_{1Z} , we have $T_{1Z} \ge w_{s(l_1 \cap Z)} - 1$. It follows that

$$T_{1Z} = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}$$

Moreover, since P_1, \ldots, P_s are on a linear 3-space, from Lemma 3.2 and Lemma 3.3 we get in *Case 1.a*:

$$\operatorname{reg}\left(Z\right) = T_{1Z} = T_Z.$$

Case 1.b: $w_{s(l_1 \cap Z)} = w_{s(l_2 \cap Z)}$. Then

$$w_{s(l_1 \cap Z)} - 1 = \left\lfloor \frac{w_{s(l_1 \cap Z)} + w_{s(l_2 \cap Z)} - 1}{2} \right\rfloor.$$

Since $l_1 \cup l_2$ does not lie on a linear 2-space and lie on a linear 3-space, we have

$$\left[\frac{w_{s(l_1\cap Z)} + w_{s(l_2\cap Z)} - 1}{2}\right] \ge T_{2Z}$$

and

$$\left\lfloor \frac{w_{s(l_1 \cap Z)} + w_{s(l_2 \cap Z)} - 1}{2} \right\rfloor \ge \left\lfloor \frac{w_{s(l_1 \cap Z)} + w_{s(l_2 \cap Z)} + 1}{3} \right\rfloor = T_{3Z}.$$

Therefore,

$$w_{s(l_1 \cap Z)} - 1 \ge \max\{T_{2Z}, T_{3Z}\}.$$

But $T_{1Z} \ge w_{s(l_1 \cap Z)} - 1$, it follows that

$$T_{1Z} = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}.$$

Moreover, from Lemma 3.2 and Lemma 3.3 we get in *Case 1.b*:

$$\operatorname{reg}\left(Z\right) = T_{1Z} = T_Z.$$

Case 2: $l_1 \cup l_2$ lie on a linear 2-space, say $\beta \subset \mathbb{P}^n$. Then $T_{2Z} \geq T_{3Z}$, so $T_{2Z} = \max\{T_{2Z}, T_{3Z}\}$. We consider two following cases:

Case 2.a: $w_{s(l_1\cap Z)} \neq w_{s(l_2\cap Z)}$. Without loss of generality we can assume that $w_{s(l_1\cap Z)} > m_{s(l_2\cap Z)}$, then

$$w_{s(l_1 \cap Z)} - 1 \ge \left\lfloor \frac{w_{s(l_1 \cap Z)} + w_{s(l_2 \cap Z)}}{2} \right\rfloor \ge \left\lfloor \frac{m_1 + \dots + m_s}{2} \right\rfloor = T_{2Z} = \max\{T_{2Z}, T_{3Z}\}.$$

But $T_{1Z} \geq w_{s(l_1 \cap Z)} - 1$. Hence

$$T_{1Z} = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}$$

Moreover, from Lemma 3.2 and Lemma 3.3 we get in *Case 2.a*:

$$\operatorname{reg}\left(Z\right) = T_{1Z} = T_Z.$$

Case 2.b: $w_{s(l_1 \cap Z)} = w_{s(l_2 \cap Z)}$. Then

$$w_{s(l_1 \cap Z)} = \left\lfloor \frac{w_{s(l_1 \cap Z)} + w_{s(l_2 \cap Z)}}{2} \right\rfloor \ge T_{2Z}.$$

By defining of T_{1Z} , we have $w_{s(l_1 \cap Z)} - 1 \leq T_{1Z}$.

If either $w_{s(l_1 \cap Z)} - 1 < T_{1Z}$ or $w_{s(l_1 \cap Z)} - 1 = T_{1Z}$ and $l_1 \cap l_2 \cap \{P_1, \dots, P_s\} \neq \emptyset$, then $T_{1Z} \ge T_{2Z} = \max\{T_{2Z}, T_{3Z}\}$. So

$$T_{1Z} = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}.$$

Moreover, from Lemma 3.2 and Lemma 3.3 we get

$$\operatorname{reg}\left(Z\right) = T_{1Z} = T_Z$$

If $w_{s(l_1 \cap Z)} - 1 = T_{1Z}$ and $l_1 \cap l_2 \cap \{P_1, \dots, P_s\} = \emptyset$, then

$$T_{2Z} = T_{1Z} + 1 = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}.$$

Moreover, from Lemma 3.2 and Lemma 3.3 we get

$$T_Z - 1 = T_{1Z} \le \operatorname{reg}(Z) \le T_{2Z} = T_Z.$$

Hence in *Case 2.b* we get

$$T_Z - 1 \le \operatorname{reg}\left(Z\right) \le T_Z.$$

The proof of Theorem 3.4 is completed.

Next we also can estimate the regularity index of a set consisting at most five fat points.

Proposition 3.5. Let $Z = m_1P_1 + \cdots + m_sP_s$ be a set of fat points in \mathbb{P}^n , $s \leq 5$. Then

$$T_Z - 1 \le \operatorname{reg}\left(Z\right) \le T_Z.$$

Proof. If P_1, \ldots, P_s lie on two lines, then by the above theorem we get

$$T_Z - 1 \le \operatorname{reg}\left(Z\right) \le T_Z.$$

If P_1, \ldots, P_s do not lie on two lines, then s = 5 and there are two following cases for P_1, \ldots, P_5 :

Case 1: All P_1, \ldots, P_5 lie on a linear 2-space in \mathbb{P}^n . Then P_1, \ldots, P_5 are in Rnc-2 because P_1, \ldots, P_5 are not on two lines. By Lemma 2.6 we have

$$\operatorname{reg}\left(Z\right) = \max\{D_1, D_2\}.$$

Since $D_1 = T_{1Z}$ and $D_2 = T_{2Z} \ge T_{jZ}$ for $j = 3, \ldots, n$, we get

$$\operatorname{reg}\left(Z\right) = T_Z$$

Case 2: P_1, \ldots, P_5 do not lie on a linear 2-space in \mathbb{P}^n . Then by [8, Theorem 3.4] we get

$$\operatorname{reg}\left(Z\right) = T_Z.$$

For $Z = m_1 P_1 + \cdots + m_{n+3} P_{n+3}$ is a set of non-degenerate fat points in \mathbb{P}^n , E. Ballico, O. Dumitrescu and E. Postinghel [1] proved reg $(Z) \leq T_Z$. We now prove that reg(Z) is bounded lowerly by $T_Z - 1$.

Theorem 3.6. Let $Z = m_1P_1 + \cdots + m_{n+3}P_{n+3}$ be a set of non-degenerate fat points in \mathbb{P}^n . Then

$$T_Z - 1 \le \operatorname{reg}\left(Z\right) \le T_Z.$$

Proof. Without loss of generality, we can assume that $m_1 \ge m_2 \ge \cdots \ge m_{n+3}$. By Lemma 2.4 we have

$$\operatorname{reg}(Z) \leq T_Z$$

with

$$T_Z = \max\{T_{jZ} \mid j = 1, \dots, n\}$$

and

$$T_{jZ} = \max\left\{ \left\lfloor \frac{\sum_{l=1}^{q} m_{i_l} + j - 2}{j} \right\rfloor \mid P_{i_1}, \dots, P_{i_q} \text{ lie on a linear } j\text{-space} \right\}.$$

So, in the remainder we only need prove that $\operatorname{reg}(Z) \geq T_Z - 1$.

Since P_1, \ldots, P_{n+3} are in non-degenerate in \mathbb{P}^n , there are at most j+3 points of them are on a linear *j*-space for $j = 1, \ldots, n-1$. This implies

$$m_1 + m_2 \ge T_{jZ}$$

for j = 3, ..., n. So

$$T_Z = \max\{T_{1Z}, T_{2Z}\}$$

We consider two following cases:

Case 1: $T_{2Z} \leq T_{1Z}$. Then $T_Z = T_{1Z}$, by Lemma 3.2 we get

$$\operatorname{reg}\left(Z\right) \ge T_{1Z} = T_Z.$$

Case 2: $T_{2Z} > T_{1Z}$. Since P_1 and P_2 are on a line, we have $T_{1Z} \ge m_1 + m_2 - 1$ by defining of T_{1Z} . So, $T_{2Z} \ge m_1 + m_2$. On the other hand, by defining of T_{2Z} there is a linear 2-space, say α , such that

$$T_{2Z} = \left\lfloor \frac{w_{s(\alpha \cap Z)}}{2} \right\rfloor.$$

Suppose that $\alpha \cap Z = m_{i_1}P_{i_1} + \cdots + m_{i_q}P_{i_q}$, then

$$\left\lfloor \frac{\sum_{l=1}^{q} m_{i_l}}{2} \right\rfloor = \left\lfloor \frac{w_{s(\alpha \cap Z)}}{2} \right\rfloor \ge m_1 + m_2.$$

Since $m_1 \ge m_2 \ge m_3 \ge \cdots \ge m_{n+3}$, we have $q \ge 4$. We consider two following cases for q.

Case q = 4: Then $m_1 = m_2 = m_{i_1} = m_{i_2} = m_{i_3} = m_{i_4} = m$ and $T_{2Z} = 2m = T_Z = T_{1Z} + 1$. By Lemma 3.2 we get

$$\operatorname{reg}\left(Z\right) \ge T_{1Z} = T_Z - 1.$$

Case $q \ge 5$: Since P_1, \ldots, P_{n+3} are in non-degenerate in \mathbb{P}^n , there are at most five points on the linear 2-space. Thus q = 5 because α is a linear 2-space. By using Proposition 3.5 we get

$$\operatorname{reg}\left(Z\right) \geq T_Z - 1.$$

References

- [1] Ballico, E., O. Dumitrescu and E. Postinghel, On Segre's bound for fat points in \mathbb{P}^n , J. Pure Appl. Algebra, **220**, (2016), 2307–2323.
- [2] Cataliano, M.V., N.V. Trung and G. Valla, A sharp bound for the regularity index of fat points in general position, *Proc. Amer. Math. Soc.*, 118 (1993), 717–724.
- [3] Davis, E.D. and A.V. Geramita, The Hilbert function of a special class of 1-dimensional Cohen–Macaulay graded algebras, The Curves Seminar at Queen's, *Queen's Papers in Pure and Appl. Math.*, 67 (1984), 1–29.
- [4] Fatabbi, G. and A. Lorenzini, On a sharp bound for the regularity index of any set of fat points, J. Pure Appl. Algebra, 161 (2001), 91–111.
- [5] Nagel, U. and B. Trok, Segre's regularity bound for fat point schemes, https://arxiv.org/abs/1611.06279v1 (2016).
- [6] Segre, B., Alcune questioni su insiemi finiti di punti in geometria algebrica, Atti. Convergno. Intern. di Torino, 20 (1961), 67–85.
- [7] Thien, P.V., Segre bound for the regularity index of fat points in P³, J. Pure Appl. Algebra, 151 (2000), 197–214.
- [8] Thien, P.V., Regularity index of s + 2 fat points not on a linear (s 1)-space, Comm. Algebra, 40 (2012), 3704–3715.

- [9] Thien, P.V., Lower bound for the regularity index of fat points, *IJPAM*, 105 (2016), 745–755.
- [10] Thien, P.V. and T.N. Sinh, On the regularity index of s fat points not on a linear (r-1)-space, $s \leq r+3$, Comm. Algebra, 45 (2017), 4123–4138.

P.V. Thien and T.T.V. Trinh Department of Mathematics College of Education Hue University 34 Le Loi, Hue City Viet Nam tphanvannl@yahoo.com trinhtran221093@gmail.com