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a b s t r a c t

Hyperplanes, hyperspheres and hypercylinders in Rn with suitable densities are proved to
be weighted area-minimizing by a calibration argument.
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1. Introduction

Amanifold with density is a Riemannian manifoldM endowed with a positive function (density) eψ used to weight both
volume and perimeter. The weighted volume and perimeter elements are defined as eψdV and eψdA, where dV and dA are
the Riemannian volume and perimeter elements.

A typical example of such manifolds is Gauss space Gn, that is Rn with Gaussian probability density (2π)−
n
2 e−

r2
2 . Gauss

space has many applications to probability and statistics. For more details about manifolds with density, we refer the reader
to [1–3] and the entry ‘‘Manifolds with density’’ at Morgan’s blog http://blogs.williams.edu/Morgan/.

Manifolds with density are a good setting to extend some variational problems in geometry such as isoperimetric
problems, minimizing networks, minimizing surfaces. . . . It is also good to consider some problems concerned with notions
of curvature.

Following Gromov [4, p. 213], the natural generalization of the mean curvature, called weighted mean curvature, of a
hypersurface in a manifold with density eψ is defined as

Hψ = H −
1

n − 1
dψ
dn
, (1)

where H is the classical mean curvature and n is the unit normal vector field to the hypersurface. The definition of the
weighted mean curvature is fit for the first variation of the weighted perimeter of a smooth region (see [5,3]).

For a stationary (i.e. with vanishing first variation of perimeter) smooth open setΩ ⊂ Rn endowedwith a smooth density
eψ , let N be the inward unit normal vector toΣ = ∂Ω , and Hψ be the constant weighted mean curvature ofΣ with respect
to N . Consider a variation ofΩ with associated vector field X = uN onΣ .
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Bayle [6] computed the second variation formula of the functional P − HψV for any variation of a stationary set and
obtained the following formula

(P − HψV )′′ = Qψ (u, u) =

∫
Σ

eψ (|∇Σu|2 − |σ |
2u2)da +

∫
Σ

eψu2(∇2ψ)(N,N)da, (2)

where ∇Σu is the gradient of u relative toΣ, |σ |
2 is the squared sum of the principal curvatures ofΣ,∇2ψ is the Euclidean

Hessian of ψ and da is the Euclidean area element.
The situation is the same as in the Euclidean case, Ω is stable (P ′′(0) ≥ 0) if and only if Qψ (u, u) ≥ 0 for a variation

satisfying the condition

eψudA = 0. This condition means that u is orthogonal to eψ in L2(Σ) and it is proved that any

such u is the normal component of a vector field associated to a volume-preserving variation ofΩ (see [7,3]).
In Rn with a log-convex spherical density, balls about the origin are stable and it is conjectured that they are the only

isoperimetric regions (see [3,8]).
We are interested in the question of what conditions on density make some constant weighted mean curvature

hypersurfaces stable andweighted area-minimizing.Weighted area-minimizingmeans having the leastweighted perimeter
in a homology class (Section 2) or under compact, weighted-volume-preserving deformations (Sections 3–5). We consider
three cases: hyperplanes inRn with a smooth density δ = eϕ(x)+ψ(xn), where x = (x1, x2, . . . , xn−1); hyperspheres inRn

−{O}

with a smooth spherical density and hypercylinders in Rn
− {O} × Rk with a smooth cylindrical density. The proofs are

applications of Stokes’ theorem as in the calibration method.
We begin, in Section 2, with The Fundamental Theorem of Weighted Calibrations and some applications including a

proof that a weighted minimal hypergraph in Rn with a non-dependence on the last coordinate density is weighted area-
minimizing in its homology class. Some other examples of weighted calibrated submanifolds are also presented in this
section.

2. Calibrations on manifolds with density

LetM be a Riemannianmanifoldwith a smooth density eψ andΦ is a k-differential form.We define theweighted exterior
derivative with density dψ as follows

dψ (Φ) := e−ψdeψΦ.

The definition of dψ appeared first in [9,10]. A k-differential formΦ is called dψ -closed if dψ (Φ) = 0 and this is equivalent to
deψΦ = 0. A dψ -closed differential form is called aweighted calibration if it has comass one. For the definition of the comass
of a k-differential form, and calibrated geometry we refer to [11–13]. A k-submanifold N ofM is called a weighted calibrated
submanifold, calibrated by the weighted calibrationΦ , ifΦ attains its maximum on tangent planes ofN almost everywhere.
Here the Riemannian volume and the weighted volume (denoted by Volψ ) of N are


N Φ and


N eψΦ , respectively. By a

similar proof as that of The Fundamental Theorem of Calibrations with density 1 (see [11], [2, Sections 6.4, 6.5]), we have

Theorem 2.1. Every weighted calibrated submanifold with or without boundary is weighted area-minimizing in its homology
class.

Proof. Let N and N be k-submanifolds in the same homology class, i.e. ∂N = ∂N and N − N = ∂A for some (k + 1)-chain
A. Suppose that N is calibrated by weighted calibrationΦ . Then

Volψ (N)− VolψN ≤

∫
N
eψΦ −

∫
N
eψΦ =

∫
N−N

eψΦ =

∫
∂A

eψΦ. (3)

BecauseΦ is dψ -closed, by Stokes’ theorem the last term vanishes and the theorem is proved. �

The following examples illustrate some applications of Theorem 2.1.

Example 1. It is well known that in Rn with a constant density, minimal hypersurfaces are area-minimizing locally (see
also [14]). We will show that the result is also true in some cases of non-constant density.

Suppose S is the minimal hypergraph defined by xn = f (x1, x2, . . . , xn−1) in Rn
= Rn−1

× R over the domain U ⊂ Rn−1,
where Rn−1 and R are endowed with densities eψ and 1, respectively. Let n is its unit normal field and consider the smooth
extension of n by the translation along xn-axis, also denoted by n, in the cylinder U × R.

It is not difficult to see that the (n − 1)-differential form defined by

w(X1, X2, . . . , Xn−1) = det(X1, X2, . . . , Xn−1,n)

where Xi, i = 1, 2, . . . , n − 1 are smooth vector fields on S, has comass 1.
Moreover,

d(eψw) = div(eψn)dVM

= (eψdiv(n)+ eψ ⟨∇ψ,n⟩)dVM (4)

= (−eψ (n − 1)H + eψ ⟨∇ψ,n⟩)dVM = 0, (5)
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because S is weighted minimal. Thus,w is a weighted calibration in U × R and obviously,w calibrates S.

Example 2. Consider a product M × M ′, where M is a Riemannian n-manifold with density 1 and M ′ is another
m-manifoldwith density eψ . Denote bydVM ′ the Riemannian volumeelement onM ′. LetΦ be a k-calibration onM calibrating
k-submanifoldN ⊂ M . ThenΦ∧dV ′

M is aweighted (n+k)-calibration inM×M ′ calibratingN×M ′. Below are some concrete
examples
1. LetΦ = 1; then dVM ′ calibrates {x} × M ′ for any x ∈ M .
2. InRn with density independent ofm last coordinates xn−m+1, . . . , xn,Φ = dx1∧dx2∧. . .∧dxn−m is aweighted calibration

calibrating every (n − m)-plane {xi = const., i = n − m + 1, . . . , n} (see also [15], Section 2.1).
3. The 3-covectorΦ = (e∗

1∧e∗

2+e∗

3∧e∗

4)∧e∗

5 is a calibration inR5 with density 1.With complex structure Je1 = e2, Je3 = e4
on R4,Φ calibrates every complex curve in R4 times R.Φ is also a weighted calibration on R5 with a density depending
only on the last coordinate x5 and calibrates the same 3-submanifolds as in the case with density 1.

Example 3. Consider the cylindrical coordinate system (ρ, ϕ, z) on R2
− O × R (see Section 4) with density ρ−1. The area

element dA = ρdϕ ∧ dz, is a weighted calibration. It calibrates every cylinder about the z-axis.

Example 4. Consider the spherical coordinate system (r, ϕ) on Rn
− {O} (see Section 3) with density r1−n. The perimeter

element dA = rn−1dω, is a weighted calibration calibrating every hypersphere about the origin.

3. Weighted minimizing hyperspheres

Consider Rn with a spherical density eψ(r). If the density is log-convex, hyperspheres about the origin are stable and it
is conjectured that they are the only isoperimetric regions. This conjecture was proved in the real line, in Rn with specific
density er

2
and in R2 with density er

p
, p ≥ 2. The conjecture is still open in general (see [16,3,17] and the entry ‘‘The

Log-Convex Density Conjecture’’ at Morgan’s blog http://blogs.williams.edu/Morgan/).
We consider in Rn

− {O} the spherical coordinates (r, ϕ), where ϕ = (ϕ1, . . . , ϕn−1) and
r = |x|,
x1 = r cosϕ1,

xk = r sinϕ1 sinϕ2 . . . sinϕk−1 cosϕk, for k = 2, . . . , n − 1, (6)
xn = r sinϕ1 sinϕ2 . . . sinϕn−2 sinϕn−1.

Let dV = rn−1dΩ be the volume element and dA = rn−1dω be the perimeter element, where dΩ and dω are the volume
element for the unit ball and the perimeter element for the unit hypersphere, respectively.

Taking the exterior derivative of the differential formΦ = eψ(r)dA, we get

dΦ =


ψ ′

+
n − 1

r


eψdV .

In the rest of our paper, ‘‘weighted area-minimizing’’ means ‘‘weighted area-minimizing under a weighted-volume
constraint’’. Denote by B(r) and S(r) the ball and hypersphere about the origin with radius r . We have

Theorem 3.1. In B(r1)− B(r0), r1 > r0, with spherical density eψ , if rn−1eψ(r) is log-convex, every hypersphere about the origin
is weighted area-minimizing.

Proof. Because [log(rn−1eψ(r))]′′ =

ψ ′

+
n−1
r

′
= ψ ′′

−
n−1
r2

≥ 0, we see that

ψ ′(r)+

n−1
r


is increasing in B(r1)− B(r0).

Consider a hypersphere S(r) in B(r1) − B(r0) and let S be a competitor of S(r) under a compact, weighted-volume-
preserving deformation. Denote by R+ and R− the regions bounded by S(r) and S lying outside and inside the ball B(r),
respectively, and set R = R+

∪ R−.
Because the enclosed weighted volume is preserved∫

R+

eψdVRn =

∫
R−

eψdVRn .

Thus, we have

Areaψ (S)− Areaψ (S(r)) ≥

∫
S
Φ −

∫
S(r)

Φ =

∫
S−S(r)

Φ =

∫
R
dΦ

=

∫
R+

dΦ −

∫
R−

dΦ

>


ψ ′(r)+

n − 1
r

 ∫
R+

eψdVRn −

∫
R−

eψdVRn


= 0.

(7)

The theorem is proved. �
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Corollary 3.2. In Rn
−{O} with log-convex spherical density eψ(r), if ψ ′′(r0)− n−1

r20
> 0, then the hypersphere S(r0) is weighted

area-minimizing.

Proof. Since ψ ′′(r0) −
n−1
r20

> 0, there exists ϵ > 0, such that ψ ′′(r) −
n−1
r2

> 0 (or equivalently, ψ ′
+

n−1
r is strictly

increasing) in (r0 − ϵ, r0 + ϵ). �

Corollary 3.3. In Rn
− {O} with a strongly log-convex spherical density, there exists r0 > 0, such that every hypersphere about

the origin in Rn
− B(r0) is weighted area-minimizing.

Proof. Since the density is strongly log-convex, there exists r0 > 0 such that if r > r0, ψ ′′(r) > M > n−1
r2

. Thus, for
r > r0, ψ ′′(r)−

n−1
r2
> 0. By Theorem 3.1 we have the proof. �

In the case of r0 = 0 and r1 = ∞, we get

Corollary 3.4. In Rn
− {O}, with spherical density eψ (r), if rn−1eψ(r) is log-convex, then every hypersphere about the origin is

weighted area-minimizing.

4. Weighted minimizing k-hypercylinders

Consider the product Rn
− {O} × Rk, where Rn

− {O} endowed with a smooth spherical density eψ(r) and Rk has density
1. We call C(r) = S(r)× Rk a k-hypercylinder. The k-hypercylinder C(r) has constant weighted mean curvature because it
has Euclidean constant mean curvature and dψ/dn is constant in C(r).

The second variation formula (2) for k-hypercylinders is

Qψ (u, u) =

∫
C
|∇Cu|2eψda +


ψ ′′

−
n − 1
r2

 ∫
C
u2eψda. (8)

Let dV be the weighted volume element and dA be the weighted perimeter element in Rn as in Section 3. The weighted
volume and weighted perimeter elements in Rn

− {O} × Rk, are dV ∧ dVRk and dA ∧ dVRk , respectively.
We have d(dA ∧ dVRk) =


ψ ′

+
n−1
r


dV ∧ dVRk , and by a proof as that in Section 3, we get

Theorem 4.1. In C(r1) − C(r0), r1 > r0, with cylindrical density eψ(r), if rn−1eψ(r) is log-convex, then every hypercylinder is
weighted area-minimizing.

Corollary 4.2. In Rn
− {O} × Rk with cylindrical density eψ(r),

1. if ψ ′′(r0)−
n−1
r20
> 0, then the k-hypercylinder C(r0) is weighted area-minimizing;

2. if ψ is strongly convex, there exists r0 > 0 such that in Rn
− B(r0)× Rk, every k-hypercylinder is weighted area-minimizing;

3. if rn−1eψ(r) is log-convex, then every k-hypercylinder is weighted area-minimizing.

5. Weighted minimizing hyperplanes

Let x = (x1, x2, . . . , xn−1) and considerRn endowedwith smooth density δ = eϕ(x)+ψ(xn), which can be viewed as product
space Rn−1

×R, where Rn−1 has smooth density eϕ(x) and R has smooth density eψ(xn). LetΣ be the hyperplane determined
by the equation xn = a ∈ R. It is easy to see that Σ has constant mean curvature, (∇2ψ)(N,N) = ψ ′′(a) and the second
variation formula (2) forΣ is

Qψ (u, u) =

∫
Σ

|∇Σu|2eψ(a)eϕda + ψ ′′(a)
∫
Σ

u2eψ(a)eϕda. (9)

Therefore, Qψ (u, u) ≥ 0 for every volume-preserving variation with compact support if and only if ψ ′′(a) ≥ −λΣ :=

− inf

Σ |∇u|2eϕda
Σ u2eϕda

. Thus,

Theorem 5.1. InRn with smooth density δ = eϕ(x)+ψ(xn), the horizontal hyperplane xn = a is stable if and only if ψ ′′(a) ≥ −λΣ .

By the same arguments as that of Section 3, we have

Theorem 5.2. In Rn−1
× (a, b), where (a, b) is an interval in R, with smooth density δ = eϕ(x)+ψ(xn), if ψ is convex, then

horizontal hyperplanes are weighted area-minimizing.

Corollary 5.3. In Rn with density δ = eϕ(x)+ψ(xn), if ψ ′′(a) > 0, then the horizontal hyperplane {xn = a} is weighted area-
minimizing.
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Corollary 5.4. In Rn with density er
2
, where r is the distance from point to the origin, every hyperplane is weighted area-

minimizing.

Proof. By virtue of Theorem 5.2, hyperplanes perpendicular to any axis are weighted area-minimizing. Since orthogonal
transformations (fixing the origin) preserve r , every hyperplane is weighted area-minimizing. �

Remark 5.5. In Rn with density ecr
2
, c > 0, hyperspheres are uniquely isoperimetric ([18, Theorem 4.1], [3, Theorem 5.2]).

This does not contradict our Corollary 5.4, in which the behavior at infinity is fixed. Also note that hyperplanes enclose
infinite weighted volumes.
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