SEGRE'S UPPER BOUND FOR THE REGULARITY INDEX OF 2n + 2 NON-DEGENERATE DOUBLE POINTS IN \mathbb{P}^n

Tran Nam Sinh and Phan Van Thien

(Hue City, Viet Nam)

Communicated by Bui Minh Phong

(Received May 20, 2017; accepted August 6, 2017)

Abstract. We prove the Segre's upper bound for the regularity index of 2n+2 non-degenerate double points that do not exist n+1 points lying on a (n-2)-plane in \mathbb{P}^n .

1. Introduction

Let $P_1, ..., P_s$ be a set of distinct points in a projective space with *n*dimension $\mathbb{P}^n := \mathbb{P}^n_k$, with *k* as an algebraically closed field. Let $\wp_1, ..., \wp_s$ be the homogeneous prime ideals of the polynomial ring $R := k[x_0, ..., x_n]$ corresponding to the points $P_1, ..., P_s$. Let $m_1, ..., m_s$ be positive integers and $I = \wp_1^{m_1} \cap \cdots \cap \wp_1^{m_1}$. Denote $Z = m_1 P_1 + \cdots + m_s P_s$ the zero-scheme defined by *I*, and we call *Z* a set of *s* fat points in \mathbb{P}^n .

The homogeneous coordinate ring of Z is

$$A = R/(\wp_1^{m_1} \cap \dots \cap \wp_s^{m_s}).$$

The ring $A = \bigoplus_{t \ge 0} A_t$ is a one-dimension Cohen-Macaulay k-graded algebra whose multiplicity is $e(A) = \sum_{i=1}^{s} {\binom{m_i+n-1}{n}}$. The Hilbert function $H_A(t) =$

Key words and phrases: Fat points, regularity index, zero-scheme.

²⁰¹⁰ Mathematics Subject Classification: Primary 14C20, Secondary 13D40.

= dim_k A_t increases strictly until it reaches the multiplicity e(A), at which it stabilizes. The regularity index of Z is defined to be the least integer t such that $H_A(t) = e(A)$, and we denote it by reg(Z) (or reg(A)).

In 1961, Segre (see [10]) showed the upper bound for regularity index of generic fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^2 :

$$\operatorname{reg}(Z) \le \max\left\{m_1 + m_2 - 1, \left[\frac{m_1 + \dots + m_s}{2}\right]\right\}$$

with $m_1 \geq \cdots \geq m_s$.

For arbitrary fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^2 , in 1969 Fulton (see [9]) gave the following upper bound:

$$\operatorname{reg}(Z) \le m_1 + \dots + m_s - 1.$$

This bound was later extended to arbitrary fat points in \mathbb{P}^n by Davis and Geramita (see [6]). They also showed that this bound is attained if and only if points $P_1, ..., P_s$ lie on a line in \mathbb{P}^n .

A set of fat points $Z = m_1P_1 + \cdots + m_sP_s$ in \mathbb{P}^n is said to be in general position if no j + 2 of the points P_1, \ldots, P_s are on any j-plane for j < n. A set of fat points $Z = m_1P_1 + \cdots + m_sP_s$ of \mathbb{P}^n is said to be non-degenerate if all points P_1, \ldots, P_s do not lie on a hyperplane of \mathbb{P}^n . In 1991, Catalisano (see [3], [4]) extended Segre's result to fat points in general position in \mathbb{P}^2 , and later Catalisano, Trung and Valla (see [5]) extended the result to fat points in general position in \mathbb{P}^n , they proved:

$$\operatorname{reg}(Z) \le \max\left\{m_1 + m_2 - 1, \left[\frac{m_1 + \dots + m_s + n - 2}{n}\right]\right\}.$$

In 1996, N.V. Trung gave the following conjecture: Let $Z = m_1 P_1 + \cdots + m_s P_s$ be arbitrary fat points in \mathbb{P}^n . Then

$$\operatorname{reg}(Z) \le \max\Big\{T_j \mid j = 1, ..., n\Big\},\$$

where

$$T_{j} = \max\left\{ \left[\frac{\sum_{l=1}^{q} m_{i_{l}} + j - 2}{j} \right] \mid P_{i_{1}}, ..., P_{i_{q}} \text{ lie on a } j\text{-plane} \right\}.$$

This upper bound nowadays is called the Segre's upper bound.

The Segre's upper bound is proved right in projective spaces with n = 2, n = 3 (see [12], [13]), for the case of double points $Z = 2P_1 + \cdots + 2P_s$ in \mathbb{P}^n with n = 4 (see [14]) by Thien; also for case n = 2, n = 3, independently by Fatabbi and Lorenzini (see [7], [8]).

In 2012, Benedetti, Fatabbi and Lorenzini proved the Segre's bound for any set of n + 2 non-degenerate fat points $Z = m_1 P_1 + \cdots + m_{n+2} P_{n+2}$ of \mathbb{P}^n (see [1]), and independently Thien also proved the Segre's bound for a set of s + 2fat points which is not on a (s - 1)-space in \mathbb{P}^n , $s \leq n$ (see [15]).

Recently, Ballico, Dumitrescu and Postinghen proved the Segre's upper bound for the case n+3 non-degenerate fat points $Z = m_1 P_1 + \cdots + m_{n+3} P_{n+3}$ in \mathbb{P}^n (see [2]) and Sinh proved the Segre's upper bound for the regularity index of 2n + 1 double points $Z = 2P_1 + \cdots + 2P_{2n+1}$ that do not exist n + 1 points lying on a (n-2)-plane in \mathbb{P}^n (see [11]). Up to now, there have not been any other result of Trung's conjecture published yet.

In this article, we prove the Segre's upper bound in the case 2n + 2 nondegenerate double points $Z = 2P_1 + \cdots + 2P_{2n+2}$ that do not exist n+1 points lying on a (n-2)-plane in \mathbb{P}^n .

2. Preliminaries

We will use the following lemmas which have been proved. The first lemma allows us to compute the regularity index by induction.

Lemma 2.1. [5, Lemma 1]. Let $P_1, ..., P_r, P$ be distinct points in \mathbb{P}^n , and let \wp be the defining ideal of P. If $m_1, ..., m_r$ and a are positive integers, $J = \wp_1^{m_1} \cap \cdots \cap \wp_r^{m_r}$, and $I = J \cap \wp^a$, then

$$\operatorname{reg}(R/I) = \max\left\{a - 1, \operatorname{reg}(R/J), \operatorname{reg}(R/(J + \wp^a))\right\}.$$

To compute $\operatorname{reg}(R/(J + \wp^a))$, we need the following lemma.

Lemma 2.2. [5, Lemma 3]. Let $P_1, ..., P_r$ be distinct points in \mathbb{P}^n and $a, m_1, ..., m_r$ positive integers. Put $J = \wp_1^{m_1} \cap \cdots \cap \wp_r^{m_r}$ and $\wp = (x_1, ..., x_n)$. Then

$$\operatorname{reg}(R/(J+\wp^a)) \le b$$

if and only if $x_0^{b-i}M \in J + \wp^{i+1}$ for every monomial M of degree i in $x_1, ..., x_n$, i = 0, ..., a - 1.

To find such a number b, we will find t hyperplanes $L_1, ..., L_t$ avoiding P such that $L_1 \cdots L_t M \in J$. For j = 1, ..., t, since we can write $L_j = x_0 + G_j$ for some linear form $G_j \in \wp$, we get $x_0^t M \in J + \wp^{i+1}$. Therefore, if we put

$$\delta = \max\left\{t+i|M \text{ is a monomial of degree } i, 0 \le i \le a-1\right\}$$

then

$$\operatorname{reg}(R/(J+\wp^a)) \le \delta.$$

The hyperplanes $L_1, ..., L_t$ will be constructed by the help of the following lemma.

Lemma 2.3. [5, Lemma 4]. Let $P_1, ..., P_r, P$ be distinct points in general position in \mathbb{P}^n , let $m_1 \ge \cdots \ge m_r$ be positive ingeters, and let $J = \wp_1^{m_1} \cap \cdots \cap \wp_r^{m_r}$. If t is an integer such that $nt \ge \sum_{i=1}^r m_i$ and $t \ge m_1$, we can find t hyperplanes, say $L_1, ..., L_t$ avoiding P such that for every $P_l, l = 1, ..., r$, there exist m_l hyperplanes of $\{L_1, ..., L_t\}$ passing through P_l .

The two following lemmas are used to prove main results by induction.

Lemma 2.4. [11, Proposition 2.1]. Let $X = \{P_1, ..., P_{2n+1}\}$ be a set of 2n + 1 distinct points that do not exist n + 1 points of X lying on a (n - 2)-plane in \mathbb{P}^n . Let \wp_i be the homogeneous prime ideal corresponding $P_i, i = 1, ..., 2n + 1$. Let

$$Z = 2P_1 + \dots + 2P_{2n+1}$$

Put

$$T_{j} = \max\{\left[\frac{1}{j}(2q+j-2)\right] | P_{i_{1}}, ..., P_{i_{q}} \text{ lie on a } j\text{-plane}\},$$
$$T_{Z} = \max\{T_{j} \mid j = 1, ..., n\}.$$

Then, there exists a point $P_{i_0} \in X$ such that

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le T_Z$$

where

$$J = \bigcap_{k \neq i_0} \wp_k^2.$$

Lemma 2.5. [11, Proposition 2.2]. Let $X = \{P_1, ..., P_{2n+1}\}$ be a set of 2n + 1 distinct points which do not exist n + 1 points of X lying on a (n - 2)-plane in \mathbb{P}^n . Let $Y = \{P_{i_1}, ..., P_{i_s}\}, 2 \leq s \leq 2n$, be a subset of X. Let \wp_i be the homogeneous prime ideal corresponding $P_i, i = 1, ..., 2n + 1$. Let

$$Z = 2P_1 + \dots + 2P_{2n+1}.$$

Put

$$T_{j} = \max\{ [\frac{1}{j}(2q+j-2)] | P_{i_{1}}, ..., P_{i_{q}} \text{ lie on a } j\text{-plane} \}$$
$$T_{Z} = \max\{T_{j} | j = 1, ..., n\}.$$

Then, there exists a point $P_{i_0} \in Y$ such that

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le T_Z,$$

where

$$J = \bigcap_{P_k \in Y \setminus \{P_{i_0}\}} \wp_k^2.$$

3. Segre's upper bound for the regularity index of 2n + 2non-degenerate double points in \mathbb{P}^n

From now on, we consider a hyperplane and its identical defining linear form. These following propositions are important for proving of Segre' upper bound.

Proposition 3.1. Let $X = \{P_1, ..., P_{2n+2}\}$ be a non-degenerate set of 2n + 2distinct points that do not exist n + 1 points of X lying on a (n - 2)-plane in \mathbb{P}^n . Let \wp_i be the homogeneous prime ideal corresponding $P_i, i = 1, ..., 2n + 2$, and

$$Z = 2P_1 + \dots + 2P_{2n+2}$$

Put

$$T_{j} = \max\left\{ \left[\frac{1}{j}(2q+j-2) \right] \mid P_{i_{1}}, ..., P_{i_{q}} \text{ lie on a } j\text{-plane} \right\},\$$
$$T_{Z} = \max\{T_{j} \mid j = 1, ..., n\}.$$

Then, there exists a point $P_{i_0} \in X$ such that

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \leq T_Z,$$

where

$$J = \bigcap_{k \neq i_0} \wp_k^2.$$

Proof. We denote |H| by the number points of X lying on a *j*-plane H. The proposition was proved in projective spaces with $n \leq 4$ (see [7], [8], [12]–[14]). Thus, we will prove the case with $n \geq 5$.

We can see that there are (n-1)-planes $H_1, ..., H_d$ in \mathbb{P}^n with d as the least integer such that the two following conditions satisfied:

(i)
$$X \subset \bigcup_{i=1}^{d} H_i$$
,
(ii) $|H_i \cap (X) \setminus \bigcup_{j=1}^{i-1} H_j| = \max\{|H \cap (X \setminus \bigcup_{j=1}^{i-1} H_j)| \mid H \text{ is an } (n-1)\text{-plane}\}$.

Since X non-degenerate and n + 1 points do not lie on a (n - 2)-plane, $2 \le d \le 3$. We consider the following cases:

Case 1. d = 3. Since a hyperplane always passes through at least n points of X and d = 3, we have the two following cases:

- (i) $|H_1| = n$, $|H_2| = n$, $|H_3| = 2$.
- (ii) $|H_1 = n + 1| = |H_2 \setminus H_1| = n, |H_3| = 1.$

Case 1.1. $|H_1| = n$, $|H_2| = n$, $|H_3| = 2$. Since $|H_1| = n$, there do not exist n + 1 points of X lying on a hyperplane. Therefore, X is general position. By Lemma 2.3 and Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \leq T_Z$$

Case 1.2. $|H_1| = n + 1, |H_2| = n, |H_3| = 1$. We may assume that $P_1 \in H_3$. Choose $P_1 = P_{i_0} = (1, 0, ..., 0)$, then $\wp_{i_0} = (x_1, ..., x_n)$. Clearly, H_1, H_2 avoiding P_{i_0} . We have $H_1H_1H_2H_2 \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z$$

Case 2. d = 2. We have $X \subset H_1 \cup H_2$. Therefore, $|H_1| \ge n+1$ and $H_1 \ge |H_2|$. We call q the number points of X lying on $H_2 \setminus H_1$, we have $1 \le q \le n+1$, without loss of generality, we assume $P_1, \ldots, P_q \in H_2 \setminus H_1$. Put $Y = \{P_1, \ldots, P_q\}$. Since n + 1 points of X do not lie on a (n - 2)-plane, Y does not lie on a (q - 3)-plane. We consider the following cases:

Case 2.1. *Y* lies on a (q-1)-plane and *Y* does not lie on a (q-2)-plane. Choose $P_q = P_{i_0} = (1, 0, ..., 0), P_1 = (0, 1, ..., 0), ..., P_{q-1} = (0, ..., 1, ..., 0),$

then $\wp_{i_0} = (x_1, ..., x_n)$. Since we always have a (q-2)-plane, say K, passing through $P_1, ..., P_{q-1}$ and avoiding P_{i_0} ; therefore, we always have a hyperplane, say L, containing K and avoiding P_{i_0} . We have $H_1H_1LL \in J$. Thus $H_1H_1LLM \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.$$

Case 2.2. Y lies on a (q-2)-plane $\alpha, q \ge 3$. We consider the following cases of Y :

Case 2.2.1. There are q-1 points of Y lying on a (q-3)-plane. Assume that $P_1, ..., P_{q-1}$ lying on a (q-3)-plane, say K and $P_q \notin K$. Choose $P_q = P_{i_0} = (1, 0, ..., 0)$, then $\wp_{i_0} = (x_1, ..., x_n)$. Since $q \leq n+1$, we have $q-3 \leq n-2$ and $P_{i_0} \notin K$, we always have a hyperplane L containing K and avoiding

 P_{i_0} . We have $H_1H_1LL \in J$, thus $H_1H_1LLM \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 4+i \le 5 \le T_Z.$$

Case 2.2.2. There are not q-1 points of Y lying on a (q-3)-plane. We consider the three following cases of q:

Case 2.2.2.1.
$$q \ge 5$$
. Since any $(q-3)$ -planes only pass through $q-2$
points of Y. Choose $P_q = P_{i_0} = (1, 0, ..., 0), P_1 = (0, 1, 0, ..., 0), ..., P_{q-2} = (0, ...0, 1, 0, ..., 0)$. Put $m_l = 2 - i + c_l, l = 1, ..., q - 2, m_{q-1} = 2$ and

$$t = \max\left\{2, \left[\left(\sum_{i=1}^{q-1} m_i + (q-2) - 1\right)/(q-2)\right]\right\}.$$

We have

$$t + i = \max\{2, [(\sum_{i=1}^{q-1} m_i + q - 3)/(q - 2)]\} + i \le \\ \le \max\{2 + i, [(\sum_{i=1}^{q-1} m_i + (q - 2)i + q - 3)/(q - 2)]\} \le \\ \le \max\{2 + i, [(3q - 4)/(q - 2)] \le 3.$$

Therefore,

$$t < 3 - i.$$

By Lemma 2.2, we can find t (q-3)-planes, say $G_1, ..., G_t$ avoiding P_{i_0} such that for every point $P_l, l = 1, ..., q-1$, there are $m_l (q-3)$ -planes of $G_1, ..., G_t$ passing through P_l . With j = 1, ..., t we find a hyperplane L_j containing G_j and avoiding P_{i_0} . Therefore

$$L_1 \cdots L_t \in \wp_1^{m_1} \cap \cdots \cap \wp_{q-2}^{m_{q-2}} \cap \wp_{q-1}^2$$

Moreover, since $H_1H_1 \in \wp_{q+1}^2 \cap \cdots \cap \wp_{2n+2}^2$ and $M \in \wp_1^{i-c_1} \cap \cdots \cap \wp_{q-2}^{i-c_{q-2}}$, then

$$H_1H_1L_1\cdots L_tM \in J.$$

By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 2 + (3-i) + i \le T_Z.$$

Case 2.2.2.2. q = 4. We have $P_1, P_2, P_3, P_4 \notin H_1$. Choose $P_1 = P_{i_0} = (1, 0, ..., 0), P_3 = (0, \underbrace{1}_2, 0, ..., 0), P_4 = (0, 0, \underbrace{1}_3, 0, ..., 0), ..., P_{n+1} = (0, ..., 0, \underbrace{1}_n, 0), P_{n+2} = (0, ..., 0, \underbrace{1}_{n+1})$, therefore $\wp_{i_0} = (x_1, ..., x_n)$. We

call l_1 a line passing through P_2, P_3 ; l_2 a line passing through P_3, P_4 ; l_3 a line passing through P_2, P_4 . We consider the two following cases of *i*:

a) i = 0. With j = 1, 2, 3, since $P_{i_0} \notin l_j$, then we always have a hyperplane L_j containing l_j and avoiding P_{i_0} . We have $H_1H_1L_1L_2L_3 \in J$, thus $H_1H_1L_1L_2L_3M \in J$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 5 \le T_Z$$

b) i = 1. Since $c_1 + \cdots + c_n = 1$, then there exists $j \in \{1, ..., n\}$ such that $c_j = 1, c_k = 0, k \in \{1, ..., n\} \setminus \{j\}$.

• If $j \in \{1, 2\}$, assume that $c_1 = 1$ then

$$M \in \wp_4 \cap \wp_5 \cap \dots \cap \wp_{n+2}.$$

We have a (n-2)-plane, say K_1 passing through $P_{n+3}, ..., P_{2n-1}$ and l_1 , a (n-2)-plane, say K_2 passing through P_{2n}, P_{2n+1} and l_1 , a (n-2)-plane, say K_3 passing through P_4, P_{2n+2} avoiding P_{i_0} . With i = 1, 2, 3, we always have hyperplanes L_i containing K_i and avoiding P_{i_0} . We have

$$H_1L_1L_2L_3 \in \wp_2^2 \cap \wp_3^2 \cap \wp_4 \cap \wp_5 \cap \dots \cap \wp_{n+2} \cap \wp_{n+3}^2 \cap \dots \cap \wp_{2n+2}^2.$$

Therefore

$$H_1L_1L_2L_3M \in J.$$

By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 4+i \le T_Z$$

• If $j \in \{3, ..., n\}$, assume that $c_3 = 1$ then

$$M \in \wp_3 \cap \wp_4 \cap \wp_6 \cap \dots \cap \wp_{n+2}$$

We call l_1 a line passing through P_2, P_3 and l_2 a line passing through P_2, P_4 . With i = 1, 2, since $P_{i_0} \notin l_i$, then we always have hyperplanes L_i containing l_i and avoiding P_{i_0} . We have

$$L_1 L_2 \in \wp_2^2 \cap \wp_3 \cap \wp_4$$

Since $H_1H_1 \in \wp_5^2 \cap \cdots \cap \wp_{2n+2}^2$ then

$$H_1H_1L_1L_2M \in J.$$

By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 4+i \le T_Z.$$

Case 2.2.2.3. q = 3. We have $P_1, P_2, P_3 \notin H_1$. We call l a line passing through P_1, P_2, P_3 and $W = \{P_4, ..., P_{2n+2}\}$ are the points of X lying on $H_1 \cap X$, then there are (n-2)-planes $Q_1, ..., Q_r$ in \mathbb{P}^n such that the two following conditions satisfied:

(i) $W \subset \bigcup_{i=1}^{r} Q_i$,

(ii) $|Q_i \cap (W \setminus \bigcup_{j=1}^{i-1} Q_j)| = \max\{|Q \cap (W \setminus \bigcup_{j=1}^{i-1} Q_j)| | Q \text{ is a } (n-2)\text{-plane}\}.$

Since n + 1 of X do not lie on a (n - 2)-plane, then we consider the two following cases of Q_1 :

a) $|Q_1| = n$. We have r = 2 and $|Q_2| = n - 1$. Put $U = \{P_4, ..., P_{n+2}\}$ to be n - 1 points lying on $Q_2 \vee T = \{P_1, ..., P_{n+2}\}$. We consider the two following cases of T:

a.1) T does not lie on a (n-1)-plane. Since P_1, P_2, P_3 lie on a line l, then we always have a hyperplane containing l and passing through n-2 points of U. Assume that L to be a hyperplane containing l and passing through points P_4, \ldots, P_{n+1} . Clearly, the hyperplane L avoiding P_{n+2} (if not, then T lies on a (n-1)-plane). Choose $P_{n+2} = P_{i_0} = (1, 0, \ldots, 0)$, then $\wp_{i_0} = (x_1, \ldots, x_n)$. Since $P_{i_0} \notin Q_1$, therefore we always have a hyperplane L_1 containing Q_1 and avoiding P_{i_0} . We have $LLL_1L_1 \in J$ then $LLL_1L_1M \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z$$

a.2) T lies on a (n-1)-plane, say H. Assume that $|Q_1 \cap H \cap X| = s$. When hyperplane H passing through n + 2 + s points of X. Consider n - s points lying on $Q_1 \setminus H$, say $P_{i_1}, \ldots, P_{i_{n-s}} \in Q_1 \setminus H$.

a.2.1) Case $P_{i_1}, ..., P_{i_{n-s}}$ lie on a (n-s-1)-plane and they do not lie on a (n-s-2)-plane. Choose $P_{i_1} = P_{i_0} = (1, 0, ..., 0)$, then $\wp_{i_0} = (x_1, ..., x_n)$. Since we always have a (n-s-2)-plane, say β passing through $P_{i_2}, ..., P_{i_{n-s-1}}$. Moreover, since $n-s-2 \leq n-2$ then we always have a hyperplane L containing β and avoiding P_{i_0} . We have $HHLL \in J$ then $HHLLM \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 4+i \le 5 \le T_Z.$$

a.2.2) Case $P_{i_1}, ..., P_{i_{n-s}}$ lie on a (n-s-2)-plane. Since P_1, P_2, P_3 lie on a line, then $P_1, P_2, P_3, P_{i_1}, ..., P_{i_{n-s}}$ lie on a (n-s)-plane. So, $n-1 \le n-s \le n$ or $0 \le s \le 1$.

• If $\{P_{i_1}, ..., P_{i_{n-s}}\}$ has n-s-1 points lying on a (n-s-3)-plane, say γ . Assume that $P_{i_1} \notin \gamma$, then choose $P_{i_1} = P_{i_0} = (1, 0, ..., 0)$, then $\wp_{i_0} = (x_1, ..., x_n)$. Since $P_{i_0} \notin \gamma$ therefore we always have a hyperplane L containing γ and avoiding P_{i_0} . We have $LLHH \in J$ then $LLHHM \in J$ for every

monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.$$

• If $\{P_{i_1}, ..., P_{i_{n-s}}\}$ without n-s-1 points lying on a (n-s-3)-plane, then any (n-s-3)-plane only pass through n-s-2 points of $\{P_{i_1}, ..., P_{i_{n-s}}\}$. Choose $P_{i_1} = P_{i_0} = (1, 0, ..., 0), P_{i_2} = (0, \underbrace{1}_2, 0, ..., 0), ..., P_{i_{n-s-1}} = (0, ..., 0, \underbrace{1}_{n-s-1}, 0, \ldots, 0)$ then $\wp_{i_0} = (x_1, ..., x_n)$. Put $m_l = 2 - i + c_l, l = 2, ..., n-s-1, m_{n-s} = 2$ and

$$t = \max\left\{2, \left[\left(\sum_{i=1}^{n-s-1} m_i + (n-s-2) - 1\right)/(n-s-2)\right]\right\}.$$

We have

 $\checkmark s$

$$t + i = \max\{2, [(\sum_{i=1}^{n-s-1} m_l + n - s - 3)/(n - s - 2)]\} + i \le \le \max\{2 + i, [(\sum_{i=1}^{n-s-1} m_l + (n - s - 2)i + n - s - 3)/(n - s - 2)]\} \le \le \max\{2 + i, [(3(n - s - 2) + 2)/(n - s - 2)].$$

= 0 or $n \ge 6$, we have
 $t \le 3 - i$.

By Lemma 2.3 we can find t (q-3)-planes, say $G_1, ..., G_t$ avoiding P_{i_0} such that for every point $P_l, l = 1, ..., q-1$, there are $m_l (q-3)$ -planes of $G_1, ..., G_t$ passing through. With j = 1, ..., t we find a hyperplane L_j containing G_j and avoiding P_{i_0} . Therefore

$$L_1 \cdots L_t \in \wp_{i_2}^{m_2} \cap \cdots \cap \wp_{i_{n-s-1}}^{m_{n-s-1}} \cap \wp_{i_{n-s}}^2$$

So, $HHL_1 \cdots L_t M \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 4+i \le 5 \le T_Z.$$

 $\checkmark s = 1$ and n = 5. Then hyperplane H pass through eight points of X and there are four points $P_{i_1}, P_{i_2}, P_{i_3}, P_{i_4}$ lying on a 2-plane, say $\gamma_1 \backslash H$. According to Case 2.2.2.2 we have proved it.

b) If $|Q_1| = n - 1$, then $W = \{P_4, ..., P_{2n+2}\}$ lie on the general position in H_1 . We call H a hyperplane containing l and passing through n - 3 + u points of $W \cap H_1$. We have $u \ge 1$.

• If u = 1, then consider n + 1 points of $H_1 \setminus H$. Without loss of generality, assume that $P_{n+2}, ..., P_{2n+2} \in H_1 \setminus H$. Put $V = \{P_{n+2}, ..., P_{2n+2}\}$. Since there do not exist n points of V lying on a (n - 2)-plane. Choose $P_{n+2} = P_{i_0} =$

$$= (1, 0, ..., 0), P_{n+3} = (0, \underbrace{1}_{2}, 0, ..., 0), ..., P_{2n+1} = (0, ..., 0, \underbrace{1}_{n}, 0) \text{ then } \wp_{i_0} = (x_1, ..., x_n). \text{ Put } m_l = 2 - i + c_l, \ l = n+3, ..., 2n+1, \ m_{2n+2} = 2 \text{ and}$$

$$t = \max\left\{2, \left[\left(\sum_{i=n+3}^{l+1} m_i + (n-1) - 1\right)/(n-1)\right]\right\}$$

We have

$$t + i = \max\{2, [(\sum_{i=n+3}^{2n+2} m_l + n - 2)/(n - 1)]\} + i \le \le \max\{2 + i, [(\sum_{i=n+3}^{2n+2} m_l + (n - 1)i + n - 2)/(n - 1)]\} \le \le \max\{2 + i, [(3n - 1)/(n - 1)]\} \le 3.$$

Therefore

 $t \le 3 - i.$

By Lemma 2.3 we can find t (n-2)-planes $G_1, ..., G_t$ avoiding P_{i_0} such that for every $P_l, l = n + 3, ..., 2n + 2$, there are m_l (n-2)-planes of $G_1, ..., G_t$ passing through. With j = 1, ..., t we find a hyperplane L_j containing G_j and avoiding P_{i_0} . Therefore

$$L_1 \cdots L_t \in \wp_{n+3}^{m_{n+3}} \cap \cdots \cap \wp_{2n+1}^{m_{2n+1}} \cap \wp_{2n+2}^2.$$

Moreover, since $HH \in \wp_1^2 \cap \cdots \cap \wp_{n+1}^2$ and $M \in \wp_{n+3}^{i-c_1} \cap \cdots \cap \wp_{2n+1}^{i-c_{n-1}}$ then

$$H_1H_1L_1\cdots L_tM \in J.$$

By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 2 + (3-i) + i \le T_Z.$$

• If $u \geq 2$, then there are n+2-u points, assume that $P_{i_1}, ..., P_{n+2-u} \in H_1 \setminus H$. Since $u \geq 2$ then $n+2-u \leq n$. Moreover, since $P_{i_1}, ..., P_{n+2-u}$ lie on the general position in H_1 , then we have a (n-u)-plane, say π , passing through n+1-u points $P_{i_2}, ..., P_{n+2-u}$ and avoiding P_{i_1} . Choose $P_{i_1} = P_{i_0} = (1, 0, ..., 0)$, then $\wp_{i_0} = (x_1, ..., x_n)$. Since $P_{i_0} \notin \pi$, we always have a hyperplane, say L, containing π and avoiding P_{i_0} . We have $HHLL \in J$, therefore $HHLLM \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 4+i \le 5 \le T_Z.$$

The proof of proposition 3.1 is completed.

From Lemma 2.4, Lemma 2.5 and Proposition 3.1, we get the following remark.

Remark 3.1. Let $X = \{P_1, ..., P_{2n+2}\}$ be a non-degenerate set of 2n + 2 distinct points that do not exist n + 1 points of X lying on a (n - 2)-plane in \mathbb{P}^n . Let $Y = \{P_{i_1}, ..., P_{i_s}\}, 2 \leq s \leq 2n + 1$, be a subset of X. Let φ_i be the homogeneous prime ideal corresponding $P_i, i = 1, ..., 2n + 1$, and

 $Z = 2P_1 + \dots + 2P_{2n+2}.$

Put

$$T_{j} = \max\left\{ \left[\frac{1}{j}(2q+j-2)\right] \mid P_{i_{1}}, ..., P_{i_{q}} \text{ lie on a } j\text{-plane} \right\},\$$
$$T_{Z} = \max\{T_{j} \mid j = 1, ..., n\}.$$

Then, there exists a point $P_{i_0} \in Y$ such that

$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le T_Z,$$

where

$$J = \bigcap_{P_k \in Y \setminus \{P_{i_0}\}} \wp_k^2.$$

The theorem below is the main result of this paper.

Theorem 3.2. Let $X = \{P_1, ..., P_{2n+2}\}$ be a non-degenerate set of 2n + 2 distinct points that do not exist n + 1 points of X lying on a (n - 2)-plane in \mathbb{P}^n . Let

$$Z = 2P_1 + \dots + 2P_{2n+2}$$

Then

$$\operatorname{reg}(Z) \le \max\left\{T_j \mid j = 1, ..., n\right\} = T_Z,$$

where

$$T_j = \left\{ \left[\frac{2q+j-2}{j} \right] \mid P_{i_1}, \dots, P_{i_q} \text{ lie on a } j\text{-plane} \right\}.$$

Proof. Firstly, we have the following claim:

Let $X = \{P_1, ..., P_{2n+2}\}$ in \mathbb{P}^n , $Y = \{P_{i_1}, ..., P_{i_s}\}$ be a subset of $X, 1 \le s \le \le 2n+1$. Then $\operatorname{reg}(R/J_s) \le T_Z,$

$$J_s = \bigcap_{P_i \in Y} \wp_i^2$$

We will prove this claim by induction on number points of Y. If s = 1. Let \wp_1 be the defining homogeneous prime ideal of P_1 . Put $J_1 = \wp_1^2$, $A = R/J_1$. Then,

$$\operatorname{reg}(R/J_1) = 1 \le T_Z.$$

Assume that the claim is right for all subsets Y of X, whose number points are smaller or equal s - 1. Let $Y = \{P_{i_1}, ..., P_{i_s}\}$. By Remark 3.1, there exists a point $P_{i_0} \in Y$ such that

(1)
$$\operatorname{reg}(R/(J_{s-1} + \wp_{i_0}^2)) \le T_Z,$$

where $J_{s-1} = \bigcap_{P_i \in Y \setminus \{P_{i_0}\}} \wp_i^2$. Note that, J_{s-1} is the intersection of ideals containing s-1 double points of Y. By conjecture of induction, we have

(2)
$$\operatorname{reg}(R/J_{s-1}) \le T_Z$$

By Lemma 2.1 we have

(3)
$$\operatorname{reg}(R/J_s) = \left\{ 1, \operatorname{reg}(R/(J_{s-1}), \operatorname{reg}(R/(J_{s-1} + \wp_{i_0}^2))) \right\}.$$

From (1), (2) and (3) we have

$$\operatorname{reg}(R/J_s) \leq T_Z.$$

The proof of the above claim is completed.

Now, we prove Theorem 3.2. Let $X = \{P_1, ..., P_{2n+2}\}$ in \mathbb{P}^n , by Proposition 3.1, there exists a point $P_{i_0} \in X$ such that

(4)
$$\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le T_Z.$$

where $J = \bigcap_{P_i \in X \setminus \{P_{i_0}\}} \wp_i^2$. Note that, J is the intersection of ideals containing 2n + 1 double points of X. Therefore, by the above claim with s = 2n + 1, we

(5)
$$\operatorname{reg}(R/J) \le T_Z.$$

By Lemma 2.1 we have

have

(6)
$$\operatorname{reg} R/I = \left\{ 1, \operatorname{reg}(R/J), \operatorname{reg}(R/(J + \wp_{i_0}^2)) \right\}$$

where $I = J \cap \wp_{i_0}^2$.

From (4), (5) and (6) we have

$$\operatorname{reg}(Z) \leq T_Z.$$

The proof of Theorem 3.2 is completed.

References

- [1] Benedetti, B., G. Fatabbi and A. Lorenzini, Segre's bound and the case of n + 2 fat points of \mathbb{P}^n , Comm. Algebra, 40, (2012), 395–5473.
- [2] Ballico, E., O. Dumitrescu and E. Postinghel, On Segre's bound for fat points in \mathbb{P}^n , J. Pure and Appl. Algebra, 220, (2016), 2307–2323.
- [3] Catalisano, M.V., Linear systems of plane curves through fixed fat points of P², J. Algebra, 142(1) (1991), 81–100.
- [4] Catalisano, M.V., Fat points on a conic, Comm. Algebra, 19 (1991), 2153–2168.
- [5] Catalisano, M.V., N.V. Trung and G. Valla, A sharp bound for the regularity index of fat points in general position, *Proc. Amer. Math. Soc.*, 118 (1993), 717–724.
- [6] Davis, E.D. and A.V. Geramita, The Hilbert function of a special class of 1-dimension Cohen–Macaulay grade algebras, The Curves Seminar at Queen's, *Queen's Paper in Pure and Appl. Math.*, 67 (1984), 1–29.
- [7] Fatabbi, G., Regularity index of fat points in the projective plane, J. Algebra, 170 (1994), 916–928.
- [8] Fatabbi, G. and A. Lorenzini, On the sharp bound for the regularity index of any set of fat points, J. Pure Appl. Algebra, 161 (2001), 91–111.
- [9] Fulton, W., Algebraic Curves, Math. Lect. Note Series, Benjamin, New York, 1969.
- [10] Serge, B., Alcune question su insiemi finiti di punti in geometria algebrica, Atti. Convergno. Intern. di Torino, 1961, 15–33.
- [11] Sinh, T.N., Segre's upper bound for the regularity index of 2n+1 double points in \mathbb{P}^n , (to appear in *Journal of Science, Hue University*).
- [12] Thien, P.V., On Serge bound for the regularity index of fat points in \mathbb{P}^2 , Acta Math. Vietnamica 24 (1999), 75–81.
- [13] Thien, P.V., Serge bound for the regularity index of fat points in P³, J. Pure and Appl. Algebra, 151 (2000), 197–214.
- [14] Thien, P.V., Sharp upper bound for the regularity of zero-schemes of double points in P⁴, Comm. Algebra, 30 (2002), 5825–5847.
- [15] Thien, P.V., Regularity index of s + 2 fat points not on a (s 1)-space, Comm. Algebra, 40 (2012), 3704–3715.
- [16] Thien, P.V. and T.N. Sinh, On the regularity index of s fat points not on a (r-1)-space, $s \le r+3$, Comm. Algebra, 45 (2017), 4123–4138.

T.N. Sinh and P.V. Thien

Department of Mathematics, College of Education Hue University 34 Le Loi, Hue City, Vietnam trannamsinh80@gmail.com, tphanvannl@yahoo.com