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Abstract. We prove the Segre’s upper bound for the regularity index of
2n + 2 non-degenerate double points that do not exist n+1 points lying on
a (n — 2)-plane in P".

1. Introduction

Let Pi,...,Ps be a set of distinct points in a projective space with n-
dimension P" := P}, with k as an algebraically closed field. Let p1, ..., ps
be the homogeneous prime ideals of the polynomial ring R := k[xq, ..., Zp]
corresponding to the points P, ..., Ps. Let mq,...,ms be positive integers and
I=p™"N---Ng". Denote Z =my P, + -+ msPs the zero-scheme defined
by I, and we call Z a set of s fat points in P™.

The homogeneous coordinate ring of Z is
A=R/(p]" N---Npf).
The ring A = @+>0A; is a one-dimension Cohen-Macaulay k-graded alge-

bra whose multiplicity is e(A) = > ("*"~"). The Hilbert function Ha(t) =
i=1
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= dimy, A; increases strictly until it reaches the multiplicity e(A), at which it
stabilizes. The regularity index of Z is defined to be the least integer ¢ such
that H4(t) = e(A), and we denote it by reg(Z) (or reg(A)).

In 1961, Segre (see [10]) showed the upper bound for regularity index of
generic fat points Z = m P, + - - - + m P, in P%:

reg(Z) < max {ml +mg —1, [u}}

2

with mq > --- > ms,.

For arbitrary fat points Z = mi P, + - - - + msP, in P2, in 1969 Fulton (see
[9]) gave the following upper bound:

reg(Z) <mi+---+mg— 1.

This bound was later extended to arbitrary fat points in P" by Davis and
Geramita (see [6]). They also showed that this bound is attained if and only if
points P4y, ..., P; lie on a line in P™.

A set of fat points Z = m;P; + -+ + msPs in P” is said to be in general
position if no j + 2 of the points Py, ..., Py are on any j-plane for j < n. A
set of fat points Z = mi P + --- + msPs of P™ is said to be non-degenerate
if all points Py,..., Ps do not lie on a hyperplane of P". In 1991, Catalisano
(see [3], [4]) extended Segre’s result to fat points in general position in P2, and
later Catalisano, Trung and Valla (see [5]) extended the result to fat points in
general position in P™, they proved:

m1+~~+ms+n—2}}

reg(Z) < max {m1 +mg — 1, [ -

In 1996, N.V. Trung gave the following conjecture: Let Z = mP; + - +
+mgsPs be arbitrary fat points in P"™. Then

reg(Z) < max {Tj |i=1, ...,n},

where

Z?:l mi, +.7 -

T-:max{{
! J

2
} | Pi,, ..., P;, lie on a j-plane}.

This upper bound nowadays is called the Segre’s upper bound.

The Segre’s upper bound is proved right in projective spaces with n = 2,
n = 3 (see [12], [13)]), for the case of double points Z = 2P; + --- + 2P; in P
with n = 4 (see [I4]) by Thien; also for case n = 2,n = 3, independently by
Fatabbi and Lorenzini (see [7], [8]).
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In 2012, Benedetti, Fatabbi and Lorenzini proved the Segre’s bound for any
set of n + 2 non-degenerate fat points Z = m1P; + -+ - + my 2Py 2 of P (see
1), and independently Thien also proved the Segre’s bound for a set of s + 2
fat points which is not on a (s — 1)-space in P", s < n (see [15]).

Recently, Ballico, Dumitrescu and Postinghen proved the Segre’s upper
bound for the case n+ 3 non-degenerate fat points Z = mi Py +- - - +myp 3P 43
in P (see [2]) and Sinh proved the Segre’s upper bound for the regularity index
of 2n 4 1 double points Z = 2P; + - - - + 2P,, 11 that do not exist n + 1 points
lying on a (n — 2)-plane in P™ (see [11]). Up to now, there have not been any
other result of Trung’s conjecture published yet.

In this article, we prove the Segre’s upper bound in the case 2n + 2 non-
degenerate double points Z = 2P; + - - - + 2P, 15 that do not exist n+ 1 points
lying on a (n — 2)-plane in P™.

2. Preliminaries

We will use the following lemmas which have been proved. The first lemma
allows us to compute the regularity index by induction.

Lemma 2.1. [5, Lemma 1]. Let Py,..., P., P be distinct points in P", and
let o be the defining ideal of P. If mq,...,m, and a are positive integers,
J=p" NNl and I =JNp* then

reg(R/I) = max {a —1,reg(R/J),reg(R/(J + pa))}

To compute reg(R/(J + %)), we need the following lemma.

Lemma 2.2. [5, Lemma 3]. Let P, ..., P be distinct points in P and a,mq, ..., m,

positive integers. Put J = " N---N " and p = (x1,...,2,). Then
reg(R/(J +p*)) <b

if and only if xg_iM € J+ 't for every monomial M of degree i in 1, ..., Tp,

i=0,..,a—1.

To find such a number b, we will find ¢ hyperplanes L1, ..., L; avoiding P
such that Ly --- LyM € J. For j =1,...,t, since we can write L; = zo + G; for
some linear form G; € p, we get zh M € J + o', Therefore, if we put

6 = max {t + i|M is a monomial of degree i, 0 <i < a— 1}
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then
reg(R/(J + p%)) < 6.

The hyperplanes L1, ..., L; will be constructed by the help of the following
lemma.

Lemma 2.3. [5, Lemma 4]. Let Py, ..., P., P be distinct points in general posi-
tion in P", let my > --- > m, be positive ingeters, and let J = p{"" N---Npr.

-
If t is an integer such that nt > Y m; and t > my, we can find t hyper-

=1
planes, say L1, ..., Ly avoiding P such that for every P;,l = 1,...,r, there exist
my hyperplanes of {L1, ..., L} passing through P,.

The two following lemmas are used to prove main results by induction.

Lemma 2.4. [11, Proposition 2.1]. Let X = {Py, ..., Pap 41} be a set of 2n+ 1
distinct points that do not exist n + 1 points of X lying on a (n — 2)-plane in
P™. Let p; be the homogeneous prime ideal corresponding P;,i = 1,...,2n + 1.
Let

Z=2P 4+ -+ 2Ps,1.
Put

1
Ty = max{[~(2¢ + j — 2)]| P,,, ..., Pi, lic on a j-plane},
J

Ty =max{T; | j=1,...n}
Then, there exists a point P;, € X such that
reg(R/(J + %)) < Tz,

J:ﬂpi.

k#io

where

Lemma 2.5. [11, Proposition 2.2]. Let X = {P, ..., Popy1} be a set of 2n+1
distinct points which do not exist n + 1 points of X lying on a (n — 2)-plane
inP". Let Y = {P;,,....P;.},2 < s < 2n, be a subset of X. Let p; be the
homogeneous prime ideal corresponding P;,i =1,...,2n + 1. Let

Z=2P +- -+ 2Py 1.

Put

1
Ty = max{[~(2¢ + j — 2)]| P, , ..., Pi, lic on a j-plane},
J

Ty =max{T; | j=1,...n}
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Then, there exists a point P;, € Y such that

reg(R/(J + 93)) < Ty,

J = ﬂ o7,

PLeY\{Pi}

where

3. Segre’s upper bound for the regularity index of 2n 4 2
non-degenerate double points in P™

From now on, we consider a hyperplane and its identical defining linear
form. These following propositions are important for proving of Segre’ upper
bound.

Proposition 3.1. Let X = {Py,..., Papi2} be a non-degenerate set of 2n + 2
distinct points that do not exist n + 1 points of X lying on a (n — 2)-plane in
P™. Let p; be the homogeneous prime ideal corresponding P;,i = 1,...,2n + 2,
and

Z =2P + -+ 2Py, 0.

Put

T; = max{[%(Zq—l—j — 2)} | Py, ..., Py, lie on aj-pl(me} ,

Tz =max{T; | j=1,...,n}.
Then, there exists a point P;, € X such that

reg(R/(J + p?o)) < Tz,

J:ﬂpi.

k#io

where

Proof. We denote |H| by the number points of X lying on a j-plane H. The
proposition was proved in projective spaces with n < 4 (see [7], [8], [12]-[14]).
Thus, we will prove the case with n > 5.

We can see that there are (n— 1)-planes Hy, ..., Hg in P™ with d as the least
integer such that the two following conditions satisfied:

(i) X C UL H;,

(i) | Hn(X)\UjZy Hy |= max{|[HN(X\ U2} H;)| | H is an (n — 1)-plane}.
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Since X non-degenerate and n + 1 points do not lie on a (n — 2)-plane,
2 < d < 3. We consider the following cases:

Case 1. d = 3. Since a hyperplane always passes through at least n points of
X and d = 3, we have the two following cases:

(i) |[Hil=n, |Hs|=n, |Hs|=2.
(11) |H1 =n-+ ].| = |H2\H1| =n, |H3‘ =1.

Case 1.1. |Hy| = n, |H3| = n, |Hs| = 2. Since |H;| = n, there do not exist
n + 1 points of X lying on a hyperplane. Therefore, X is general position. By
Lemma 2.3 and Lemma 2.2 we have

reg(R/(J + ¢},)) < Tz.

Case 1.2. |Hy| = n+ 1,|Hs| = n,|Hs| = 1. We may assume that P, € Hs.
Choose P, = P, = (1,0, ...,0), then p;, = (x1, ..., zy). Clearly, Hy, Hy avoiding
P,,. We have H1H1HoHy € J for every monomial M = z{*--- a5, ¢q + -+ +
+c, =1, i =0,1. By Lemma 2.2 we have

reg(R/(J + 7)) <4+i<5< Ty

Case 2. d = 2. We have X C H; U Hs. Therefore, |Hy| > n+1 and Hy > |Hs.
We call ¢ the number points of X lying on Ho\H;, we have 1 < ¢ < n + 1,
without loss of generality, we assume Py, ..., P, € Ho\H,. PutY = {P,,..., P}
Since n + 1 points of X do not lie on a (n — 2)-plane, ¥ does not lie on a
(g — 3)-plane. We consider the following cases:

Case 2.1. Y lies on a (¢ — 1)-plane and Y does not lie on a (¢ — 2)-plane.
Choose P, = P;, = (1,0,...,0), P, = (0, 1 ,...,0),..., Pp_1 = (0,..., 1 ,...,0),
2 q

then p;, = (#1,...,2,). Since we always have a (¢ — 2)-plane, say K, pass-
ing through P, ..., P;—; and avoiding F; ; therefore, we always have a hyper-
plane, say L, containing K and avoiding P;,. We have HyH,LL € J. Thus
H\H,LLM € J for every monomial M = (" ---xé, ¢ + -+ -+ ¢, =1,i =0, 1.
By Lemma 2.2 we have

reg(R/(J + 7)) <4+i <5< Ty.

Case 2.2. Y lies on a (¢ — 2)-plane a, ¢ > 3. We consider the following cases
of Y:

Case 2.2.1. There are ¢ — 1 points of ¥ lying on a (¢ — 3)-plane. Assume that
Py, ...,P;_1 lying on a (¢ — 3)-plane, say K and P, ¢ K. Choose P, = P;, =
= (1,0,...,0), then p;, = (z1,...,2,). Since ¢ < n+ 1, we have ¢ —3 < n —2
and P, ¢ K, we always have a hyperplane L containing K and avoiding
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P;,. We have HiH,LL € J, thus HiH,LLM € J for every monomial M =
-zl e+ -+ e =14, =0,1. By Lemma 2.2 we have

reg(R/(J + @20)) <44i<5<Ty,.

Case 2.2.2. There are not ¢ — 1 points of Y lying on a (¢ — 3)-plane. We

consider the three following cases of ¢ :

Case 2.2.2.1. ¢ > 5. Since any (¢ — 3)-planes only pass through ¢ — 2

points of Y. Choose P, = P, = (1,0,...,0),P, = (0, 1 ,0...,0),..., P,_o =
2

=(0,..0,_ 1 ,0,..,0). Put m;y=2—i+¢,l=1,..,g —2,my_1 =2 and

t=max {2, mi+ (-2 - 1)/(a - 2))}.
‘We have ;)
i = max{2, (S m +q - 3)/(g -2y +i <
< maxf2-+ (5 m+ - 20+ 3)/(a - D)) <
<max{2+1,[(3¢ —4)/(qg—2)] < 3.
Therefore,

t<3—1i.

By Lemma 2.2, we can find ¢ (¢ — 3)-planes, say Gy, ..., Gy avoiding P;, such
that for every point P;,l =1,...,q — 1, there are m; (¢ — 3)-planes of G, ..., G;
passing through F,. With j = 1,...,¢ we find a hyperplane L; containing G
and avoiding P;,. Therefore

Mg—2

Ly Ly € o™ 0Ny " Ny

i*quz

Moreover, since HiHy € g2, NN}, ., and M € i ' N---Ng, 5

, then
HH\Ly--- LM € J.
By Lemma 2.2 we have

veg(R/(J + 92)) <2+ (3—1i) +i < Ty.

Case 2.2.2.2. ¢ = 4. We have Py, P>, P5,P, ¢ H;. Choose P, = P,
= (1,0,..,0), Py = (0, 1 ,0,..,0), Py = (0,0, 1 ,0,...,0), ..., Poys =
~— ~~

2 3
= (0,...,0, ‘1 ,0), Ppy2 = (0,...,0, 1 ), therefore p;, = (21,...,z,). We

n n+1
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call /1 a line passing through P, Ps; l5 a line passing through Ps, Py; I3 a line
passing through P, Py. We consider the two following cases of i:

a) ¢ = 0. With j = 1,2,3, since P;, ¢ [;, then we always have a hyper-
plane L; containing /; and avoiding P;,. We have H{H{L,L,L3 € J, thus
H{H{L{LoLsM € J. By Lemma 2.2 we have

reg(R/(J +¢7,)) <5 < Tz

b) i = 1. Since ¢; 4+ - - - + ¢, = 1, then there exists j € {1,...,n} such that
¢j=Llc=0ke{l,...,n\{j}
o If j € {1, 2}, assume that ¢; = 1 then

MepsNpsN:---NPnia.
We have a (n — 2)-plane, say K; passing through P, 3,..., Pa,—1 and Iy, a
(n — 2)-plane, say K5 passing through P, Po,,+1 and [y, a (n — 2)-plane, say
K3 passing through Py, Ps, 1o avoiding P;,. With ¢ = 1,2, 3, we always have
hyperplanes L; containing K; and avoiding P;,. We have
HiL1LyLs € 93 N3 Npa N5 NN ppia N g NN 05,00

Therefore
H{L1LyLsM € J.

By Lemma 2.2 we have

veg(R/(J + %)) <4+ < Ty.

oIf j € {3,...,n}, assume that ¢c3 = 1 then

M e psNpsNpeN - NPpia.
We call [; a line passing through P,, P3 and ls a line passing through P», P;.
With ¢ = 1,2, since P;, ¢ I;, then we always have hyperplanes L; containing I;
and avoiding P;,. We have

LiLs € pg N3 M pa
Since H1Hy € p2 N ---N g3, ., then
H{H{L1LsM € J.

By Lemma 2.2 we have

reg(R/(J + ;) <4+i< Ty,
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Case 2.2.2.3. ¢ = 3. We have P;, P», P; ¢ H;. We call [ a line passing through
Py, Py, Py and W = {Py, ..., Pap12} are the points of X lying on H; N X, then
there are (n — 2)-planes Q1, ..., @, in P such that the two following conditions
satisfied:

(i) W CU_,Qy, _
(ii) | @N(W\UZ) Q) I= max{|QN(W\ U2, Q)| | Qis a (n — 2)-plane}.

Since n + 1 of X do not lie on a (n — 2)-plane, then we consider the two
following cases of Q1:

a) |Q1| =n. Wehaver =2 and |Q2| =n—1. Put U = {Py, ..., Pyy2} to be
n — 1 points lying on Qo v T = {Py, ..., P,42}. We consider the two following
cases of T

a.1) T does not lie on a (n — 1)-plane. Since Py, P, P5 lie on a line [, then
we always have a hyperplane containing [ and passing through n — 2 points of
U. Assume that L to be a hyperplane containing [ and passing through points
Py, ..., Pp4+1. Clearly, the hyperplane L avoiding P,y2 (if not, then T lies on
a (n — 1)-plane). Choose P12 = P, = (1,0,...,0), then g;, = (21,...,Tn).
Since F;, ¢ @1, therefore we always have a hyperplane L containing ()1 and
av01d1ng . We have LLL1L, € J then LLL1L1M € J for every monomial
M=z n,C1+ -4+ ¢, =1,i=0,1. By Lemma 2.2 we have

reg(R/(J +¢F,)) <4+i <5< Ty

a.2) T lies on a (n—1)-plane, say H. Assume that |Q1 N HNX|=s. When
hyperplane H passing through n + 2 + s points of X. Consider n — s points
lying on Q1\H, say P;,,..., P, _. € Q1\H.

a.2.1) Case P, ,..., P, . he on a (n — s — 1)-plane and they do not lie on
a (n — s — 2)-plane. Choose P;, = P, = (1,0,...,0), then g;, = (x1,...,Zn).
Since we always have a (n— s —2)-plane, say f passing through P,,,..., P, ___,.
Moreover, since n — s — 2 < n — 2 then we always have a hyperplane L con-
taining 8 and avmdmg . We have HHLL € J then HHLLM € J for every

monomial M = z7* -+ 2% ,cl +---4c¢p, =1,1=0,1. By Lemma 2.2 we have

reg(R/(J + p})) <4+i <5< Ty,

a.2.2) Case P, ..., P;,__ lieon a (n— s —2)-plane. Since P;, Py, P; lie on a

. In—s

line, then Py, P2, P53, Py, ..., P;, __lieon a (n—s)-plane. So,n—1<n—s<n
or 0 <s<1.
o If {P,,... “L .} has n — s — 1 points lying on a (n — s — 3)-plane, say

~. Assume that %, & 7, then choose P, = P, = (1,0,...,0), then p;, =
= (X1, ..., Tp). Since P;, ¢ ~ therefore we always have a hyperplane L contain-
ing ~y and avoiding P;,. We have LLHH € J then LLHHM € J for every
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monomial M = z{" -+ a&,¢1 + -+ + ¢, = 4,4 = 0,1. By Lemma 2.2 we have
reg(R/(J +g2)) <4+i<5< Ty

o If {P;,,..., P, .} without n—s—1 points lying on a (n—s—3)-plane, then
any (n—s—3)-plane only pass through n—s—2 points of {P;,, ..., P;, __}. Choose
p, =pP,6 =(1,0,..,0),P,=(0,1,0,..0),...P ., =(0,.0 _1 ,0,

~~ ~~
2 n—s—1
.,0) then p;, = (21, ...,xn). Pt my =2 —i+¢,l=2,...,n—s—1,my_, =2

and
n—s—1

tzmax{?,[( i ml+(n—572)71)/(n7572)]}.
i=1
We have .
t + 4 = max{2, [( ; m+n—s—3)/(n—s—2)]}+i <
< max{2+i, [(nzs::lml—|—(n—s—2)i+n—s—3)/(n—3—2)]}S
<max{2+1,[3(n—s—2)+2)/(n—s—2)].
v s =0orn>6, we have
t<3—1.

By Lemma 2.3 we can find ¢ (¢ — 3)-planes, say Gy, ..., Gy avoiding P;, such
that for every point P, =1,...,q — 1, there are m; (¢ — 3)-planes of G, ..., G¢
passing through. With j = 1,...,¢ we find a hyperplane L; containing G; and
avoiding F;,. Therefore

Ly Ly€pp?ne-Nppm 7 npl
So, HHLy --- LM € J for every monomial M = a7' - 2%, ¢c1 + -+ + ¢, =
1,7 =0,1. By Lemma 2.2 we have

reg(R/(J +¢F,)) <4+i <5< Ty

v' s =1 and n = 5. Then hyperplane H pass through eight points of X and
there are four points P;,, P;,, P;,, P;, lying on a 2-plane, say 71\ H. According
to Case 2.2.2.2 we have proved it.

b) If |Q1] =n — 1, then W = { Py, ..., Pap42} lie on the general position in
Hy. We call H a hyperplane containing [ and passing through n — 3 4+ u points
of W N H;. We have u > 1.

e If w =1, then consider n + 1 points of H;\H. Without loss of generality,
assume that P9, ..., Panto € HI\H. Put V = {P, 42, ..., Pani2}. Since there
do not exist n points of V lying on a (n — 2)-plane. Choose P15 = P;, =
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= (1,0,...,0), Puys=(0, 1 ,0,...,0), ..., Popy1 = (0,,...,0,_1 ,0) then p;, =

2 n
= (z1,..,zp). Put my=2—i+¢, l=n+3,..,2n+ 1, ma,12 =2 and

2n—+2

t= max{z, (S mit+(n—1)=1)/(n - 1)}}.
i=n+3
We have omio
t + ¢ = max{2, [(l:Z+3ml +n-2)/(n—1)]}+i<
< max{2 + 1, [(ig:fgml +(n—-1)i+n—-2)/(n—1)]} <
<max{2+1,[(3n—1)/(n—1)]} < 3.
Therefore

t<3—1i.

By Lemma 2.3 we can find ¢ (n — 2)-planes G4, ..., Gy avoiding P;, such that for
every P, l =n+3,...,2n + 2, there are m; (n — 2)-planes of Gy, ..., G¢ passing
through. With j =1, ..., we find a hyperplane L; containing G; and avoiding
P;,. Therefore

Ly L€ o 3% 0Nt N O o
Moreover, since HH € 2 N -+ N2, and M € pi 9NN p;i"fl then
HHLy---LM € J.
By Lemma 2.2 we have
reg(R/(J + 7)) <2+ (3 —i) +i < Ty

e If u > 2, then there are n+2 —u points, assume that P;,, ..., Ppio—., € H1\H.
Since u > 2 then n+2—u < n. Moreover, since P, , ..., P,4+o_,, lie on the general
position in Hy, then we have a (n — u)-plane, say m, passing through n+1 —u
points P,,, ..., Pyy2_, and avoiding P;,. Choose P, = P;, = (1,0,...,0), then
©io = (1, ..., Tpn). Since P;; ¢ m, we always have a hyperplane, say L, containing
m and avoiding P;,. We have HHLL € J, therefore HHLLM € J for every
monomial M = z{*--- 2% ¢1 + -+ 4+ ¢, = 4,7 =0,1. By Lemma 2.2 we have

reg(R/(J + 7)) <4+i<5< Ty,

The proof of proposition 3.1 is completed. |

From Lemma 2.4, Lemma 2.5 and Proposition 3.1, we get the following
remark.
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Remark 3.1. Let X = {P,..., Pap12} be a non-degenerate set of 2n + 2
distinct points that do not exist n + 1 points of X lying on a (n — 2)-plane in
P Let Y = {P;,,...,Pi,},2 < s < 2n+1, be a subset of X. Let p; be the
homogeneous prime ideal corresponding P;, ¢ = 1,...,2n + 1, and

Z=2P + -+ 2Psia.

Put 1
T; = max { [f(zq +j=2)] | P,,... Py, lie on a j—plane},
j

Ty =max{T; | j=1,...,n}
Then, there exists a point P;, € Y such that
reg(R/(J +¢3,)) < Tz,

J = ﬂ 0%

PreY\{Pi,}

where

The theorem below is the main result of this paper.

Theorem 3.2. Let X = {P1,..., Pani2} be a non-degenerate set of 2n + 2
distinct points that do not exist n + 1 points of X lying on a (n — 2)-plane in
P™. Let

Z =2P+ -+ 2Py, 0.

Then
reg(Z) < max {Tj |i=1, ,n} =Ty,

where

2 ) — 2
T, = {{L} | Piy, ..., Py, lie on aj—plane}.
J

Proof. Firstly, we have the following claim:

Let X ={P1, ..., Papso} nP* Y ={P;,,..., P} be a subset of X, 1 < s <
<2n+1. Then
reg<R/JS) < TZ7

PeYy

where

We will prove this claim by induction on number points of Y.
If s = 1. Let p; be the defining homogeneous prime ideal of P;. Put J; =
=7, A= R/J;. Then,
reg(R/J1) =1<Ty.
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Assume that the claim is right for all subsets Y of X, whose number points
are smaller or equal s — 1. Let Y = {P;,, ..., P;,}. By Remark 3.1, there exists
a point P;, € Y such that

(1) reg(R/(Js—1 + ¢3,)) < Tz,

where J,_1 = N pf Note that, Js_; is the intersection of ideals con-
PeY\{P;,}

taining s — 1 double points of Y. By conjecture of induction, we have

(2) reg(R/JS,l) < Tz.

By Lemma 2.1 we have

(3) reg(R/J,) = { Lxeg(R/(Jo1), reg(R/(Jm1 + 97)) |-
From (1), (2) and (3) we have
reg(R/Js) < Tz.
The proof of the above claim is completed.

Now, we prove Theorem 3.2. Let X = {Py, ..., Py, 12} in P, by Proposition
3.1, there exists a point P;, € X such that

(4) reg(R/(J + i) < Tz.

where J = N ©?. Note that, J is the intersection of ideals containing
PL'EX\{PLO}

2n + 1 double points of X. Therefore, by the above claim with s = 2n + 1, we

have

(5) reg(R/J) < Tjy.

By Lemma 2.1 we have
(6) reg R/I = {1,reg(R/J),reg(R/(J+ p?o))}

where I = J N g3 .
From (4), (5) and (6) we have

reg(Z) < Ty.

The proof of Theorem 3.2 is completed. |
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