SEGRE'S UPPER BOUND FOR THE REGULARITY INDEX OF $2n + 2$ NON-DEGENERATE DOUBLE POINTS IN \mathbb{P}^n

Tran Nam Sinh and Phan Van Thien

(Hue City, Viet Nam)

Communicated by Bui Minh Phong

(Received May 20, 2017; accepted August 6, 2017)

Abstract. We prove the Segre's upper bound for the regularity index of $2n + 2$ non-degenerate double points that do not exist n+1 points lying on a $(n-2)$ -plane in \mathbb{P}^n .

1. Introduction

Let $P_1, ..., P_s$ be a set of distinct points in a projective space with ndimension $\mathbb{P}^n := \mathbb{P}_k^n$, with k as an algebraically closed field. Let $\wp_1, ..., \wp_s$ be the homogeneous prime ideals of the polynomial ring $R := k[x_0, ..., x_n]$ corresponding to the points $P_1, ..., P_s$. Let $m_1, ..., m_s$ be positive integers and $I = \wp_1^{m_1} \cap \cdots \cap \wp_1^{m_1}$. Denote $Z = m_1 P_1 + \cdots + m_s P_s$ the zero-scheme defined by I, and we call Z a set of s fat points in \mathbb{P}^n .

The homogeneous coordinate ring of Z is

$$
A = R/(\wp_1^{m_1} \cap \cdots \cap \wp_s^{m_s}).
$$

The ring $A = \bigoplus_{t \geq 0} A_t$ is a one-dimension Cohen-Macaulay k-graded algebra whose multiplicity is $e(A) = \sum_{n=1}^{\infty}$ $i=1$ $\binom{m_i+n-1}{n}$. The Hilbert function $H_A(t) =$

Key words and phrases: Fat points, regularity index, zero-scheme.

²⁰¹⁰ Mathematics Subject Classification: Primary 14C20, Secondary 13D40.

 $=\dim_k A_t$ increases strictly until it reaches the multiplicity $e(A)$, at which it stabilizes. The regularity index of Z is defined to be the least integer t such that $H_A(t) = e(A)$, and we denote it by reg(Z) (or reg(A)).

In 1961, Segre (see [\[10\]](#page-13-0)) showed the upper bound for regularity index of generic fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^2 :

$$
reg(Z) \le \max\left\{m_1 + m_2 - 1, \left[\frac{m_1 + \dots + m_s}{2}\right]\right\}
$$

with $m_1 \geq \cdots \geq m_s$.

For arbitrary fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^2 , in 1969 Fulton (see [\[9\]](#page-13-1)) gave the following upper bound:

$$
reg(Z) \leq m_1 + \cdots + m_s - 1.
$$

This bound was later extended to arbitrary fat points in \mathbb{P}^n by Davis and Geramita (see [\[6\]](#page-13-2)). They also showed that this bound is attained if and only if points $P_1, ..., P_s$ lie on a line in \mathbb{P}^n .

A set of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^n is said to be in general position if no $j + 2$ of the points P_1, \ldots, P_s are on any j-plane for $j < n$. A set of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ of \mathbb{P}^n is said to be non-degenerate if all points P_1, \ldots, P_s do not lie on a hyperplane of \mathbb{P}^n . In 1991, Catalisano (see [\[3\]](#page-13-3), [\[4\]](#page-13-4)) extended Segre's result to fat points in general position in \mathbb{P}^2 , and later Catalisano, Trung and Valla (see [\[5\]](#page-13-5)) extended the result to fat points in general position in \mathbb{P}^n , they proved:

reg(Z)
$$
\leq
$$
 max $\left\{m_1 + m_2 - 1, \left[\frac{m_1 + \dots + m_s + n - 2}{n}\right]\right\}.$

In 1996, N.V. Trung gave the following conjecture: Let $Z = m_1 P_1 + \cdots$ $+m_sP_s$ be arbitrary fat points in \mathbb{P}^n . Then

$$
reg(Z) \le max \{T_j | j = 1, ..., n\},\
$$

where

$$
T_j = \max \Big\{ \Big[\frac{\sum_{l=1}^q m_{i_l} + j - 2}{j}\Big] \mid P_{i_1}, ..., P_{i_q} \text{ lie on a } j\text{-plane}\Big\}.
$$

This upper bound nowadays is called the Segre's upper bound.

The Segre's upper bound is proved right in projective spaces with $n = 2$, $n = 3$ (see [\[12\]](#page-13-6), [\[13\]](#page-13-7)), for the case of double points $Z = 2P_1 + \cdots + 2P_s$ in \mathbb{P}^n with $n = 4$ (see [\[14\]](#page-13-8)) by Thien; also for case $n = 2, n = 3$, independently by Fatabbi and Lorenzini (see [\[7\]](#page-13-9), [\[8\]](#page-13-10)).

In 2012, Benedetti, Fatabbi and Lorenzini proved the Segre's bound for any set of $n+2$ non-degenerate fat points $Z = m_1 P_1 + \cdots + m_{n+2} P_{n+2}$ of \mathbb{P}^n (see [\[1\]](#page-13-11)), and independently Thien also proved the Segre's bound for a set of $s + 2$ fat points which is not on a $(s-1)$ -space in \mathbb{P}^n , $s \leq n$ (see [\[15\]](#page-13-12)).

Recently, Ballico, Dumitrescu and Postinghen proved the Segre's upper bound for the case $n+3$ non-degenerate fat points $Z = m_1 P_1 + \cdots + m_{n+3}P_{n+3}$ in \mathbb{P}^n (see [\[2\]](#page-13-13)) and Sinh proved the Segre's upper bound for the regularity index of $2n + 1$ double points $Z = 2P_1 + \cdots + 2P_{2n+1}$ that do not exist $n+1$ points lying on a $(n-2)$ -plane in \mathbb{P}^n (see [\[11\]](#page-13-14)). Up to now, there have not been any other result of Trung's conjecture published yet.

In this article, we prove the Segre's upper bound in the case $2n + 2$ nondegenerate double points $Z = 2P_1 + \cdots + 2P_{2n+2}$ that do not exist $n+1$ points lying on a $(n-2)$ -plane in \mathbb{P}^n .

2. Preliminaries

We will use the following lemmas which have been proved. The first lemma allows us to compute the regularity index by induction.

Lemma 2.1. [5, Lemma 1]. Let $P_1, ..., P_r, P$ be distinct points in \mathbb{P}^n , and let \wp be the defining ideal of P. If $m_1, ..., m_r$ and a are positive integers, $J = \wp_1^{m_1} \cap \cdots \cap \wp_r^{m_r}$, and $I = J \cap \wp^a$, then

$$
reg(R/I) = max \left\{ a - 1, reg(R/J), reg(R/(J + \wp^a)) \right\}.
$$

To compute $reg(R/(J + \varphi^a))$, we need the following lemma.

Lemma 2.2. [5, Lemma 3]. Let $P_1, ..., P_r$ be distinct points in \mathbb{P}^n and $a, m_1, ..., m_r$ positive integers. Put $J = \wp_1^{m_1} \cap \cdots \cap \wp_r^{m_r}$ and $\wp = (x_1, ..., x_n)$. Then

$$
\operatorname{reg}(R/(J+\wp^a)) \le b
$$

if and only if $x_0^{b-i}M \in J + \wp^{i+1}$ for every monomial M of degree i in $x_1, ..., x_n$, $i = 0, \ldots, a - 1.$

To find such a number b, we will find t hyperplanes $L_1, ..., L_t$ avoiding P such that $L_1 \cdots L_t M \in J$. For $j = 1, ..., t$, since we can write $L_j = x_0 + G_j$ for some linear form $G_j \in \wp$, we get $x_0^t M \in J + \wp^{i+1}$. Therefore, if we put

$$
\delta = \max \left\{ t + i|M \text{ is a monomial of degree } i, 0 \le i \le a - 1 \right\}
$$

then

$$
\operatorname{reg}(R/(J+\wp^a)) \le \delta.
$$

The hyperplanes $L_1, ..., L_t$ will be constructed by the help of the following lemma.

Lemma 2.3. [5, Lemma 4]. Let $P_1, ..., P_r, P$ be distinct points in general position in \mathbb{P}^n , let $m_1 \geq \cdots \geq m_r$ be positive ingeters, and let $J = \wp_1^{m_1} \cap \cdots \cap \wp_r^{m_r}$. If t is an integer such that $nt \geq \sum_{i=1}^{r}$ $\sum_{i=1}^m m_i$ and $t \geq m_1$, we can find t hyperplanes, say $L_1, ..., L_t$ avoiding P such that for every $P_l, l = 1, ..., r$, there exist m_l hyperplanes of $\{L_1, ..., L_t\}$ passing through P_l .

The two following lemmas are used to prove main results by induction.

Lemma 2.4. [11, Proposition 2.1]. Let $X = \{P_1, ..., P_{2n+1}\}\$ be a set of $2n+1$ distinct points that do not exist $n + 1$ points of X lying on a $(n - 2)$ -plane in \mathbb{P}^n . Let \wp_i be the homogeneous prime ideal corresponding P_i , $i = 1, ..., 2n + 1$. Let

$$
Z=2P_1+\cdots+2P_{2n+1}.
$$

Put

$$
T_j = \max\{[\frac{1}{j}(2q + j - 2)] | P_{i_1}, ..., P_{i_q} \text{ lie on a } j\text{-plane}\},
$$

$$
T_Z = \max\{T_j | j = 1, ..., n\}.
$$

Then, there exists a point $P_{i_0} \in X$ such that

$$
reg(R/(J+\wp_{i_0}^2)) \leq T_Z,
$$

where

$$
J = \bigcap_{k \neq i_0} \wp_k^2.
$$

Lemma 2.5. [11, Proposition 2.2]. Let $X = \{P_1, ..., P_{2n+1}\}\$ be a set of $2n + 1$ distinct points which do not exist $n + 1$ points of X lying on a $(n - 2)$ -plane in \mathbb{P}^n . Let $Y = \{P_{i_1},...,P_{i_s}\}, 2 \leq s \leq 2n$, be a subset of X. Let \wp_i be the homogeneous prime ideal corresponding P_i , $i = 1, ..., 2n + 1$. Let

$$
Z=2P_1+\cdots+2P_{2n+1}.
$$

Put

$$
T_j = \max\{[\frac{1}{j}(2q + j - 2)] | P_{i_1}, ..., P_{i_q} \text{ lie on a } j\text{-plane}\},\
$$

$$
T_Z = \max\{T_j | j = 1, ..., n\}.
$$

Then, there exists a point $P_{i_0} \in Y$ such that

$$
reg(R/(J + \wp_{i_0}^2)) \le T_Z,
$$

where

$$
J = \bigcap_{P_k \in Y \backslash \{P_{i_0}\}} \wp^2_k.
$$

3. Segre's upper bound for the regularity index of $2n + 2$ non-degenerate double points in \mathbb{P}^n

From now on, we consider a hyperplane and its identical defining linear form. These following propositions are important for proving of Segre' upper bound.

Proposition 3.1. Let $X = \{P_1, ..., P_{2n+2}\}$ be a non-degenerate set of $2n + 2$ distinct points that do not exist $n + 1$ points of X lying on a $(n - 2)$ -plane in \mathbb{P}^n . Let \wp_i be the homogeneous prime ideal corresponding P_i , $i = 1, ..., 2n + 2$, and

$$
Z=2P_1+\cdots+2P_{2n+2}.
$$

Put

$$
T_j = \max \left\{ \left[\frac{1}{j} (2q + j - 2) \right] \mid P_{i_1}, ..., P_{i_q} \text{ lie on a } j\text{-plane} \right\},
$$

$$
T_Z = \max \{ T_j \mid j = 1, ..., n \}.
$$

Then, there exists a point $P_{i_0} \in X$ such that

$$
reg(R/(J + \wp_{i_0}^2)) \le T_Z,
$$

where

$$
J = \bigcap_{k \neq i_0} \wp_k^2.
$$

Proof. We denote |H| by the number points of X lying on a j-plane H. The proposition was proved in projective spaces with $n \leq 4$ (see [\[7\]](#page-13-9), [\[8\]](#page-13-10), [\[12\]](#page-13-6)–[\[14\]](#page-13-8)). Thus, we will prove the case with $n \geq 5$.

We can see that there are $(n-1)$ -planes $H_1, ..., H_d$ in \mathbb{P}^n with d as the least integer such that the two following conditions satisfied:

(i)
$$
X \subset \bigcup_{i=1}^{d} H_i
$$
,
(ii) $| H_i \cap (X) \setminus \bigcup_{j=1}^{i-1} H_j | = \max \{|H \cap (X \setminus \bigcup_{j=1}^{i-1} H_j)| | H \text{ is an } (n-1)\text{-plane}\}.$

Since X non-degenerate and $n + 1$ points do not lie on a $(n - 2)$ -plane, $2 < d < 3$. We consider the following cases:

Case 1. $d = 3$. Since a hyperplane always passes through at least n points of X and $d = 3$, we have the two following cases:

- (i) $|H_1| = n$, $|H_2| = n$, $|H_3| = 2$.
- (ii) $|H_1 = n + 1| = |H_2 \backslash H_1| = n, |H_3| = 1.$

Case 1.1. $|H_1| = n$, $|H_2| = n$, $|H_3| = 2$. Since $|H_1| = n$, there do not exist $n+1$ points of X lying on a hyperplane. Therefore, X is general position. By Lemma 2.3 and Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le T_Z.
$$

Case 1.2. $|H_1| = n + 1$, $|H_2| = n$, $|H_3| = 1$. We may assume that $P_1 \in H_3$. Choose $P_1 = P_{i_0} = (1, 0, ..., 0)$, then $\varphi_{i_0} = (x_1, ..., x_n)$. Clearly, H_1, H_2 avoiding P_{i_0} . We have $H_1H_1H_2H_2 \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}$, $c_1 + \cdots +$ $+c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.
$$

Case 2. $d = 2$. We have $X \subset H_1 \cup H_2$. Therefore, $|H_1| \ge n+1$ and $H_1 \ge |H_2|$. We call q the number points of X lying on $H_2 \backslash H_1$, we have $1 \le q \le n+1$, without loss of generality, we assume $P_1, ..., P_q \in H_2 \backslash H_1$. Put $Y = \{P_1, ..., P_q\}$. Since $n + 1$ points of X do not lie on a $(n - 2)$ -plane, Y does not lie on a $(q-3)$ -plane. We consider the following cases:

Case 2.1. *Y* lies on a $(q - 1)$ -plane and *Y* does not lie on a $(q - 2)$ -plane. Choose $P_q = P_{i_0} = (1, 0, ..., 0), P_1 = (0, 1)$ \sum_{2} $, ..., 0), ..., P_{q-1} = (0, ..., 1)$ \sum_{q} , ..., 0),

then $\varphi_{i_0} = (x_1, ..., x_n)$. Since we always have a $(q-2)$ -plane, say K, passing through $P_1, ..., P_{q-1}$ and avoiding P_{i_0} ; therefore, we always have a hyperplane, say L, containing K and avoiding P_{i_0} . We have $H_1H_1LL \in J$. Thus $H_1H_1LLM \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}$, $c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.
$$

Case 2.2. Y lies on a $(q-2)$ -plane $\alpha, q \geq 3$. We consider the following cases of Y :

Case 2.2.1. There are $q-1$ points of Y lying on a $(q-3)$ -plane. Assume that $P_1, ..., P_{q-1}$ lying on a $(q-3)$ -plane, say K and $P_q \notin K$. Choose $P_q = P_{i_0}$ $=(1, 0, ..., 0)$, then $\wp_{i_0} = (x_1, ..., x_n)$. Since $q \leq n+1$, we have $q-3 \leq n-2$ and $P_{i_0} \notin K$, we always have a hyperplane L containing K and avoiding P_{i_0} . We have $H_1H_1LL \in J$, thus $H_1H_1LLM \in J$ for every monomial $M =$ $x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$
\operatorname{reg}(R/(J+\wp_{i_0}^2))\leq 4+i\leq 5\leq T_Z.
$$

Case 2.2.2. There are not $q - 1$ points of Y lying on a $(q - 3)$ -plane. We consider the three following cases of q :

Case 2.2.2.1.
$$
q \ge 5
$$
. Since any $(q - 3)$ -planes only pass through $q - 2$ points of *Y*. Choose $P_q = P_{i_0} = (1, 0, ..., 0), P_1 = (0, \underbrace{1}_{2}, 0..., 0), ..., P_{q-2} = (0, ..., 0, \underbrace{1}_{q-1}, 0, ..., 0)$. Put $m_l = 2 - i + c_l, l = 1, ..., q - 2, m_{q-1} = 2$ and

$$
t = \max\Big\{2, \big[\big(\sum_{i=1}^{q-1} m_i + (q-2) - 1\big)/(q-2)\big]\Big\}.
$$

We have

$$
t + i = \max\{2, \left[\left(\sum_{i=1}^{q-1} m_i + q - 3\right)/(q-2)\right]\} + i \le
$$

\$\leq\$ max{2 + i, $\left[\left(\sum_{i=1}^{q-1} m_i + (q-2)i + q - 3\right)/(q-2)\right]\} \leq$ \leq max{2 + i, $\left[\left(3q - 4\right)/(q-2)\right] \leq 3$.$

Therefore,

$$
t \leq 3 - i.
$$

By Lemma 2.2, we can find t ($q-3$)-planes, say $G_1, ..., G_t$ avoiding P_{i_0} such that for every point $P_l, l = 1, ..., q - 1$, there are m_l $(q - 3)$ -planes of $G_1, ..., G_t$ passing through P_l . With $j = 1, ..., t$ we find a hyperplane L_j containing G_j and avoiding P_{i_0} . Therefore

$$
L_1 \cdots L_t \in \wp_1^{m_1} \cap \cdots \cap \wp_{q-2}^{m_{q-2}} \cap \wp_{q-1}^2.
$$

Moreover, since $H_1H_1 \in \wp_{q+1}^2 \cap \cdots \cap \wp_{2n+2}^2$ and $M \in \wp_1^{i-c_1} \cap \cdots \cap \wp_{q-2}^{i-c_{q-2}}$, then

$$
H_1H_1L_1\cdots L_tM\in J.
$$

By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 2 + (3 - i) + i \le T_Z.
$$

Case 2.2.2.2. $q = 4$. We have $P_1, P_2, P_3, P_4 \notin H_1$. Choose $P_1 = P_{i_0} =$ $=(1, 0, ..., 0), P_3 = (0, 1)$ \sum_{2} $, 0, ..., 0), P_4 = (0, 0, 1)$ \sum_{3} $, 0, ..., 0), ..., P_{n+1} =$ $=$ $(0, ..., 0, 1)$ \sum_{n} $, 0), P_{n+2} = (0, ..., 0, 1)$ \sum_{n+1}), therefore $\varphi_{i_0} = (x_1, ..., x_n)$. We call l_1 a line passing through P_2, P_3 ; l_2 a line passing through P_3, P_4 ; l_3 a line passing through P_2, P_4 . We consider the two following cases of i:

a) $i = 0$. With $j = 1, 2, 3$, since $P_{i_0} \notin l_j$, then we always have a hyperplane L_j containing l_j and avoiding P_{i_0} . We have $H_1H_1L_1L_2L_3 \in J$, thus $H_1H_1L_1L_2L_3M \in J$. By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 5 \le T_Z.
$$

b) $i = 1$. Since $c_1 + \cdots + c_n = 1$, then there exists $j \in \{1, ..., n\}$ such that $c_j = 1, c_k = 0, k \in \{1, ..., n\} \setminus \{j\}.$

◦ If $j \in \{1, 2\}$, assume that $c_1 = 1$ then

$$
M \in \wp_4 \cap \wp_5 \cap \cdots \cap \wp_{n+2}.
$$

We have a $(n-2)$ -plane, say K_1 passing through $P_{n+3},...,P_{2n-1}$ and l_1 , a $(n-2)$ -plane, say K_2 passing through P_{2n} , P_{2n+1} and l_1 , a $(n-2)$ -plane, say K_3 passing through P_4, P_{2n+2} avoiding P_{i_0} . With $i = 1, 2, 3$, we always have hyperplanes L_i containing K_i and avoiding P_{i_0} . We have

$$
H_1L_1L_2L_3 \in \wp_2^2 \cap \wp_3^2 \cap \wp_4 \cap \wp_5 \cap \cdots \cap \wp_{n+2} \cap \wp_{n+3}^2 \cap \cdots \cap \wp_{2n+2}^2.
$$

Therefore

$$
H_1L_1L_2L_3M\in J.
$$

By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 4 + i \le T_Z.
$$

 \circ If $j \in \{3, ..., n\}$, assume that $c_3 = 1$ then

$$
M\in \wp_3\cap \wp_4\cap \wp_6\cap \cdots \cap \wp_{n+2}.
$$

We call l_1 a line passing through P_2, P_3 and l_2 a line passing through P_2, P_4 . With $i = 1, 2$, since $P_{i_0} \notin l_i$, then we always have hyperplanes L_i containing l_i and avoiding P_{i_0} . We have

$$
L_1L_2\in\wp_2^2\cap\wp_3\cap\wp_4
$$

Since $H_1 H_1 \in \wp_5^2 \cap \cdots \cap \wp_{2n+2}^2$ then

$$
H_1H_1L_1L_2M \in J.
$$

By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 4 + i \le T_Z.
$$

Case 2.2.2.3. $q = 3$. We have $P_1, P_2, P_3 \notin H_1$. We call l a line passing through P_1, P_2, P_3 and $W = \{P_4, ..., P_{2n+2}\}\$ are the points of X lying on $H_1 \cap X$, then there are $(n-2)$ -planes $Q_1, ..., Q_r$ in \mathbb{P}^n such that the two following conditions satisfied:

(i) $W \subset \bigcup_{i=1}^r Q_i$,

(ii) $|Q_i \cap (W \setminus \bigcup_{j=1}^{i-1} Q_j)| = \max\{|Q \cap (W \setminus \bigcup_{j=1}^{i-1} Q_j)| | Q \text{ is a } (n-2)\text{-plane}\}.$

Since $n + 1$ of X do not lie on a $(n - 2)$ -plane, then we consider the two following cases of Q_1 :

a) $|Q_1| = n$. We have $r = 2$ and $|Q_2| = n - 1$. Put $U = \{P_4, ..., P_{n+2}\}\)$ to be $n-1$ points lying on Q_2 v $T = \{P_1, ..., P_{n+2}\}.$ We consider the two following cases of T:

a.1) T does not lie on a $(n-1)$ -plane. Since P_1, P_2, P_3 lie on a line l, then we always have a hyperplane containing l and passing through $n-2$ points of U. Assume that L to be a hyperplane containing l and passing through points $P_4, ..., P_{n+1}$. Clearly, the hyperplane L avoiding P_{n+2} (if not, then T lies on a $(n-1)$ -plane). Choose $P_{n+2} = P_{i_0} = (1, 0, ..., 0)$, then $\wp_{i_0} = (x_1, ..., x_n)$. Since $P_{i_0} \notin Q_1$, therefore we always have a hyperplane L_1 containing Q_1 and avoiding P_{i_0} . We have $LLL_1L_1 \in J$ then $LLL_1L_1M \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$
\operatorname{reg}(R/(J+\wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.
$$

a.2) T lies on a $(n-1)$ -plane, say H. Assume that $|Q_1 \cap H \cap X| = s$. When hyperplane H passing through $n + 2 + s$ points of X. Consider $n - s$ points lying on $Q_1 \backslash H$, say $P_{i_1}, ..., P_{i_{n-s}} \in Q_1 \backslash H$.

a.2.1) Case $P_{i_1},...,P_{i_{n-s}}$ lie on a $(n-s-1)$ -plane and they do not lie on a $(n-s-2)$ -plane. Choose $P_{i_1} = P_{i_0} = (1,0,...,0)$, then $\wp_{i_0} = (x_1,...,x_n)$. Since we always have a $(n-s-2)$ -plane, say β passing through $P_{i_2},...,P_{i_{n-s-1}}$. Moreover, since $n - s - 2 \leq n - 2$ then we always have a hyperplane L containing β and avoiding P_{i_0} . We have $HHLL \in J$ then $HHLLM \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.
$$

a.2.2) Case $P_{i_1},...,P_{i_{n-s}}$ lie on a $(n-s-2)$ -plane. Since P_1, P_2, P_3 lie on a line, then $P_1, P_2, P_3, P_{i_1}, ..., P_{i_{n-s}}$ lie on a $(n-s)$ -plane. So, $n-1 \leq n-s \leq n$ or $0 \leq s \leq 1$.

• If $\{P_{i_1},...,P_{i_{n-s}}\}$ has $n-s-1$ points lying on a $(n-s-3)$ -plane, say γ . Assume that $P_{i_1} \notin \gamma$, then choose $P_{i_1} = P_{i_0} = (1, 0, ..., 0)$, then $\wp_{i_0} =$ $=(x_1, ..., x_n)$. Since $P_{i_0} \notin \gamma$ therefore we always have a hyperplane L containing γ and avoiding P_{i_0} . We have $LLHH \in J$ then $LLHHM \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}$, $c_1 + \cdots + c_n = i$, $i = 0, 1$. By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.
$$

• If $\{P_{i_1},...,P_{i_{n-s}}\}$ without $n-s-1$ points lying on a $(n-s-3)$ -plane, then any $(n-s-3)$ -plane only pass through $n-s-2$ points of $\{P_{i_1},...,P_{i_{n-s}}\}$. Choose $P_{i_1} = P_{i_0} = (1, 0, ..., 0), P_{i_2} = (0, 1)$ \sum_{2} $, 0, ..., 0), ..., P_{i_{n-s-1}} = (0, ..., 0, \cup 1)$ \sum_{n-s-1} , 0, ..., 0) then $\wp_{i_0} = (x_1, ..., x_n)$. Put $m_l = 2 - i + c_l, l = 2, ..., n - s - 1, m_{n-s} = 2$ and

$$
t = \max\Big\{2, \big[\big(\sum_{i=1}^{n-s-1} m_l + (n-s-2) - 1 \big) / (n-s-2) \big] \Big\}.
$$

We have

 \checkmark s

$$
t + i = \max\{2, \left[\left(\sum_{i=1}^{n-s-1} m_i + n - s - 3\right)/(n-s-2)\right]\} + i \le
$$

\$\leq \max\{2+i, \left[\left(\sum_{i=1}^{n-s-1} m_i + (n-s-2)i + n - s - 3\right)/(n-s-2)\right]\} \leq\$
\$\leq \max\{2+i, \left[\left(3(n-s-2) + 2\right)/(n-s-2)\right].\$
= 0 or $n \geq 6$, we have

$$
t \leq 3 - i.
$$

By Lemma 2.3 we can find t $(q - 3)$ -planes, say $G_1, ..., G_t$ avoiding P_{i_0} such that for every point $P_l, l = 1, ..., q - 1$, there are m_l $(q - 3)$ -planes of $G_1, ..., G_t$ passing through. With $j = 1, ..., t$ we find a hyperplane L_j containing G_j and avoiding P_{i_0} . Therefore

$$
L_1 \cdots L_t \in \wp_{i_2}^{m_2} \cap \cdots \cap \wp_{i_{n-s-1}}^{m_{n-s-1}} \cap \wp_{i_{n-s}}^2.
$$

So, $HHL_1 \cdots L_t M \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n =$ $i, i = 0, 1$. By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.
$$

 \checkmark s = 1 and n = 5. Then hyperplane H pass through eight points of X and there are four points $P_{i_1}, P_{i_2}, P_{i_3}, P_{i_4}$ lying on a 2-plane, say $\gamma_1 \backslash H$. According to Case 2.2.2.2 we have proved it.

b) If $|Q_1| = n - 1$, then $W = \{P_4, ..., P_{2n+2}\}\$ lie on the general position in H_1 . We call H a hyperplane containing l and passing through $n-3+u$ points of $W \cap H_1$. We have $u \geq 1$.

• If $u = 1$, then consider $n + 1$ points of $H_1 \backslash H$. Without loss of generality, assume that $P_{n+2},...,P_{2n+2} \in H_1 \backslash H$. Put $V = \{P_{n+2},...,P_{2n+2}\}$. Since there do not exist *n* points of *V* lying on a $(n-2)$ -plane. Choose $P_{n+2} = P_{i_0} =$

$$
= (1, 0, ..., 0), P_{n+3} = (0, \underbrace{1}_{2}, 0, ..., 0), ..., P_{2n+1} = (0, ..., 0, \underbrace{1}_{n}, 0) \text{ then } \wp_{i_0} =
$$

= $(x_1, ..., x_n)$. Put $m_l = 2 - i + c_l$, $l = n + 3, ..., 2n + 1$, $m_{2n+2} = 2$ and

$$
t = \max \left\{ 2, \left[\left(\sum_{i=1}^{2n+2} m_l + (n-1) - 1 \right) / (n-1) \right] \right\}.
$$

 $i=n+3$

We have

$$
t + i = \max\{2, \left[(\sum_{i=n+3}^{2n+2} m_i + n - 2)/(n-1) \right] \} + i \le
$$

\n
$$
\leq \max\{2 + i, \left[(\sum_{i=n+3}^{2n+2} m_i + (n-1)i + n - 2)/(n-1) \right] \} \leq
$$

\n
$$
\leq \max\{2 + i, \left[(3n-1)/(n-1) \right] \} \leq 3.
$$

Therefore

 $t \leq 3 - i$.

By Lemma 2.3 we can find $t(n-2)$ -planes $G_1, ..., G_t$ avoiding P_{i_0} such that for every $P_l, l = n+3, ..., 2n+2$, there are m_l $(n-2)$ -planes of $G_1, ..., G_t$ passing through. With $j = 1, ..., t$ we find a hyperplane L_j containing G_j and avoiding P_{i_0} . Therefore

$$
L_1\cdots L_t\in \wp_{n+3}^{m_{n+3}}\cap\cdots\cap \wp_{2n+1}^{m_{2n+1}}\cap \wp_{2n+2}^2.
$$

Moreover, since $HH \in \wp_1^2 \cap \cdots \cap \wp_{n+1}^2$ and $M \in \wp_{n+3}^{i-c_1} \cap \cdots \cap \wp_{2n+1}^{i-c_{n-1}}$ then

$$
H_1H_1L_1\cdots L_tM\in J.
$$

By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \leq 2 + (3 - i) + i \leq T_Z.
$$

• If $u \geq 2$, then there are $n+2-u$ points, assume that $P_{i_1},...,P_{n+2-u} \in H_1 \backslash H$. Since $u \geq 2$ then $n+2-u \leq n$. Moreover, since $P_{i_1},...,P_{n+2-u}$ lie on the general position in H_1 , then we have a $(n - u)$ -plane, say π , passing through $n + 1 - u$ points $P_{i_2},...,P_{n+2-u}$ and avoiding P_{i_1} . Choose $P_{i_1} = P_{i_0} = (1,0,...,0)$, then $\wp_{i_0} = (x_1, ..., x_n)$. Since $P_{i_0} \notin \pi$, we always have a hyperplane, say L, containing π and avoiding P_{i_0} . We have $HHLL \in J$, therefore $HHLLM \in J$ for every monomial $M = x_1^{c_1} \cdots x_n^{c_n}, c_1 + \cdots + c_n = i, i = 0, 1$. By Lemma 2.2 we have

$$
reg(R/(J + \wp_{i_0}^2)) \le 4 + i \le 5 \le T_Z.
$$

The proof of proposition 3.1 is completed.

From Lemma 2.4, Lemma 2.5 and Proposition 3.1, we get the following remark.

Remark 3.1. Let $X = \{P_1, ..., P_{2n+2}\}\)$ be a non-degenerate set of $2n + 2$ distinct points that do not exist $n + 1$ points of X lying on a $(n - 2)$ -plane in \mathbb{P}^n . Let $Y = \{P_{i_1},...,P_{i_s}\}, 2 \leq s \leq 2n+1$, be a subset of X. Let \wp_i be the homogeneous prime ideal corresponding P_i , $i = 1, ..., 2n + 1$, and

 $Z = 2P_1 + \cdots + 2P_{2n+2}.$

Put

$$
T_j = \max \Big\{ \Big[\frac{1}{j} (2q + j - 2) \Big] \mid P_{i_1}, ..., P_{i_q} \text{ lie on a } j\text{-plane} \Big\},\
$$

$$
T_Z = \max \{ T_j \mid j = 1, ..., n \}.
$$

Then, there exists a point $P_{i_0} \in Y$ such that

$$
reg(R/(J+\wp_{i_0}^2)) \leq T_Z,
$$

where

$$
J=\bigcap_{P_k\in Y\backslash\{P_{i_0}\}}\wp_k^2.
$$

The theorem below is the main result of this paper.

Theorem 3.2. Let $X = \{P_1, ..., P_{2n+2}\}\$ be a non-degenerate set of $2n + 2$ distinct points that do not exist $n + 1$ points of X lying on a $(n - 2)$ -plane in \mathbb{P}^n . Let

$$
Z=2P_1+\cdots+2P_{2n+2}.
$$

Then

$$
reg(Z) \le max \{T_j | j = 1, ..., n\} = T_Z,
$$

where

$$
T_j = \left\{ \left[\frac{2q+j-2}{j} \right] \mid P_{i_1}, \dots, P_{i_q} \text{ lie on a } j\text{-plane} \right\}.
$$

Proof. Firstly, we have the following claim:

Let $X = \{P_1, ..., P_{2n+2}\}$ in \mathbb{P}^n , $Y = \{P_{i_1}, ..., P_{i_s}\}$ be a subset of X, $1 \le s \le$ $\leq 2n + 1$. Then $reg(R/J_s) \leq T_Z$,

$$
where
$$

$$
J_s = \bigcap_{P_i \in Y} \wp_i^2.
$$

We will prove this claim by induction on number points of Y. If $s = 1$. Let \wp_1 be the defining homogeneous prime ideal of P_1 . Put $J_1 =$ $=\wp_1^2$, $A = R/J_1$. Then,

$$
reg(R/J_1) = 1 \leq T_Z.
$$

Assume that the claim is right for all subsets Y of X , whose number points are smaller or equal $s-1$. Let $Y = \{P_{i_1},...,P_{i_s}\}$. By Remark 3.1, there exists a point $P_{i_0} \in Y$ such that

(1)
$$
\operatorname{reg}(R/(J_{s-1} + \wp_{i_0}^2)) \le T_Z,
$$

where $J_{s-1} = \bigcap$ $P_i \in Y \setminus \{P_{i_0}\}$ \wp_i^2 . Note that, J_{s-1} is the intersection of ideals containing $s - 1$ double points of Y. By conjecture of induction, we have

$$
(2) \t\t\t \operatorname{reg}(R/J_{s-1}) \le T_Z.
$$

By Lemma 2.1 we have

(3)
$$
\text{reg}(R/J_s) = \left\{1, \text{reg}(R/(J_{s-1}), \text{reg}(R/(J_{s-1} + \wp_{i_0}^2))\right\}.
$$

From (1) , (2) and (3) we have

$$
reg(R/J_s) \leq T_Z.
$$

The proof of the above claim is completed.

Now, we prove Theorem 3.2. Let $X = \{P_1, ..., P_{2n+2}\}\$ in \mathbb{P}^n , by Proposition 3.1, there exists a point $P_{i_0} \in X$ such that

(4)
$$
\text{reg}(R/(J + \wp_{i_0}^2)) \leq T_Z.
$$

where $J =$ ∩ $P_i \in X \backslash \{P_{i_0}\}$ \wp_i^2 . Note that, J is the intersection of ideals containing

 $2n + 1$ double points of X. Therefore, by the above claim with $s = 2n + 1$, we have

$$
(5) \t\t\t \operatorname{reg}(R/J) \le T_Z.
$$

By Lemma 2.1 we have

(6)
$$
\text{reg } R/I = \left\{ 1, \text{reg}(R/J), \text{reg}(R/(J + \wp_{i_0}^2)) \right\}
$$

where $I = J \cap \wp_{i_0}^2$.

From (4) , (5) and (6) we have

$$
reg(Z) \leq T_Z.
$$

The proof of Theorem 3.2 is completed.

References

- [1] Benedetti, B., G. Fatabbi and A. Lorenzini, Segre's bound and the case of $n + 2$ fat points of \mathbb{P}^n , *Comm. Algebra*, **40**, (2012), 395-5473.
- [2] Ballico, E., O. Dumitrescu and E. Postinghel, On Segre's bound for fat points in \mathbb{P}^n , *J. Pure and Appl. Algebra*, **220**, (2016), 2307-2323.
- [3] Catalisano, M.V., Linear systems of plane curves through fixed fat points of \mathbb{P}^2 , *J. Algebra*, **142(1)** (1991), 81–100.
- [4] Catalisano, M.V., Fat points on a conic, *Comm. Algebra*, 19 (1991), 2153–2168.
- [5] Catalisano, M.V., N.V. Trung and G. Valla, A sharp bound for the regularity index of fat points in general position, Proc. Amer. Math. Soc., 118 (1993), 717–724.
- [6] Davis, E.D. and A.V. Geramita, The Hilbert funtion of a special class of 1-dimension Cohen–Macaulay grade algrebras, The Curves Seminar at Queen's, Queen's Paper in Pure and Appl. Math., 67 (1984), 1–29.
- [7] Fatabbi, G., Regularity index of fat points in the projective plane, J. Algebra, 170 (1994), 916–928.
- [8] Fatabbi, G. and A. Lorenzini, On the sharp bound for the regularity index of any set of fat points, *J. Pure Appl. Algebra*, **161** (2001), 91–111.
- [9] Fulton, W., Algebraic Curves, Math. Lect. Note Series, Benjamin, New York, 1969.
- [10] Serge, B., Alcune question su insiemi finiti di punti in geometria algebrica, Atti. Convergno. Intern. di Torino, 1961, 15–33.
- [11] Sinh, T.N., Segre's upper bound for the regularity index of $2n+1$ double points in \mathbb{P}^n , (to appear in *Journal of Science*, *Hue University*).
- [12] Thien, P.V., On Serge bound for the regularity index of fat points in \mathbb{P}^2 , Acta Math. Vietnamica 24 (1999), 75–81.
- [13] Thien, P.V., Serge bound for the regularity index of fat points in \mathbb{P}^3 , J. Pure and Appl. Algebra, 151 (2000), 197–214.
- [14] Thien, P.V., Sharp upper bound for the regularity of zero-schemes of double points in \mathbb{P}^4 , *Comm. Algebra*, **30** (2002), 5825-5847.
- [15] Thien, P.V., Regularity index of $s + 2$ fat points not on a $(s - 1)$ -space, Comm. Algebra, 40 (2012), 3704–3715.
- [16] **Thien, P.V. and T.N. Sinh,** On the regularity index of s fat points not on a $(r-1)$ -space, $s \le r+3$, *Comm. Algebra*, **45** (2017), 4123–4138.

T.N. Sinh and P.V. Thien

Department of Mathematics, College of Education Hue University 34 Le Loi, Hue City, Vietnam trannamsinh80@gmail.com, tphanvannl@yahoo.com