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A WEIGHTED VOLUME ESTIMATE AND ITS APPLICATION TO
BERNSTEIN TYPE THEOREMS IN GAUSS SPACE

BY

DOAN THE HIEU (Hue)

Abstract. A weighted area estimate for entire graphs with bounded weighted mean
curvature in a Gauss space is given, with a short proof. Bernstein type theorems for
self-shrinkers (Wang, 2011) as well as for graphic λ-hypersurfaces (Cheng and Wei, 2014)
are immediate consequences.

1. Introduction. A manifold with density is a Riemannian manifold
with a positive function e−f used to weight both the volume and the perime-
ter area. The weighted volume of a region E is Volf (E) =

	
E e
−f dV and the

weighted area of a hypersurface Σ is Areaf (Σ) =
	
Σ e
−f dAΣ , where dV

and dA are the (n + 1)-dimensional Riemannian volume and the n-dimen-
sional Riemannian perimeter area elements, respectively.

The weighted mean curvature of a hypersurface Σ in such a manifold is
defined as follows:

Hf (Σ) = H(Σ) + 〈∇f,n〉,
where n is the unit normal vector field and H = −divn is the Euclidean
mean curvature of the hypersurface. If Hf (Σ) = λ, a constant, then Σ is
called a λ-hypersurface, and if Hf (Σ) = 0, then Σ is said to be f -minimal.

The Gauss space Gn+1, the Euclidean space Rn+1 with the Gaussian
probability density e−f = (2π)−(n+1)/2e−|x|

2/2, is a typical example of a
manifold with density and is of much interest to probabilists. For more details
about manifolds with density, we refer the reader to [M1]–[M3], [MW].

In the Gauss space, f -minimal hypersurfaces are self-shrinkers and hyper-
planes are λ-hypersurfaces. The weighted mean curvature of the hyperplane∑n+1

i=1 aixi + a0 = 0 is −a0/(
∑n+1

i=1 a
2
i )

1/2. It is well-known that hyperplanes
solve the weighted isoperimetric problem, i.e., they minimize the weighted
area for given weighted volume (see [B], [ST]). It should be mentioned that
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both the weighted volume of Gn+1 and the weighted area of a hyperplane
are finite.

In this paper, we use a short proof to establish a weighted area estimate
for entire graphs with bounded weighted mean curvature. The Bernstein type
theorems for graphic self-shrinkers [W] as well as for graphic λ-hypersurfaces
[CW] are immediate consequences. These results were also proved by Ecker
and Huisken [EH] and Guang [G], respectively, under the polynomial volume
growth conditions.

2. Weighted area estimate and Bernstein type theorems. In
Gn+1, let Σ be the graph of a smooth function u(x) = xn+1 for x ∈ Rn,
and n be its upward unit normal field. Extending n by translations along the
xn+1-axis we obtain a smooth vector field on Rn+1, also denoted by n. Along
any vertical line, since div(n) remains unchanged while 〈∇f,n〉 is increasing,
Hf = −div(n) + 〈∇f,n〉 is increasing.

Consider the differential n-form

w(X1, . . . , Xn) = det(X1, . . . , Xn,n),

where Xi, i = 1, . . . , n, are smooth vector fields. Then |w(X1, . . . , Xn)| ≤ 1
for any unit normal vector fields Xi, i = 1, . . . , n, and equality holds if and
only if X1, . . . , Xn are tangent to Σ.

We use the following notations:

• E1 = {(x, xn+1) : xn+1 ≤ u(x)}, E2 = {(x, xn+1) : xn+1 ≤ a}, with
a ∈ R, such that Volf (E1) = Volf (E2), and let P the hyperplane xn+1 = a;
• F = (E1 − E2) ∪ (E2 − E1), the region bounded by P and Σ;
• F+ = E2 − E1 and F− = E1 − E2, the parts of F above and below Σ,

respectively;
• BR, SR the (n + 1)-ball and n-hypershere in Rn+1 with center O and

radius R, respectively;
• ΣR = Σ ∩ BR, PR = P ∩ BR, FR = F ∩ BR, F+

R = F+ ∩ BR and
F−R = F− ∩BR.
Theorem 2.1. If Hf (Σ) is bounded, then

(2.1) Areaf (Σ) ≤ Areaf (P ) +
1
2(M −m)Volf (F ),

where M = supHf (Σ) and m = infHf (Σ).

Proof. Let R be so large that BR intersects both F+ and F−. By Stokes’
theorem with suitably chosen orientations of boundary parts (see the figure),

Areaf (ΣR)−Areaf (PR) +
�

F∩SR

e−fw

≤
�

ΣR

e−fw −
�

PR

e−fw +
�

F∩SR

e−fw =
�

FR

d(e−fw) =
�

FR

d(div(e−fn)) dV
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=
�

FR

(e−f div(n)− e−f 〈∇f,n〉) dV = −
�

FR

e−fHf dV

= −
�

F+
R

e−fHf dV +
�

F−
R

e−fHf dV ≤ −mVolf (F
+
R ) +M Volf (F

−
R ).

Thus,

(2.2) Areaf (ΣR)−Areaf (PR) +
�

FR

e−fw ≤ −mVolf (F
+
R ) +M Volf (F

−
R ).

SR

F+
R

F−
R

Σ

−P

It is not hard to check that

lim
R→∞

�

SR∩F
e−fw = lim

R→∞
e−R

�

SR∩F
w = 0,

and by the assumption that Volf (E1) = Volf (E2),

lim
R→∞

Volf (F
+
R ) = Volf (F

+) = lim
R→∞

Volf (F
−
R ) = Volf (F

−) =
1

2
Volf (F ).

Taking the limit of both sides of (2.2) as R tends to infinity, we get (2.1).

Corollary 2.2 (Bernstein type theorem for λ-hypersurfaces [CW]). If
Σ is an entire graphic λ-hypersurface, then it must be a hyperplane.

Proof. Because M −m = 0 and P is weighted area minimizing.

Corollary 2.3 (Bernstein type theorem for self-shrinkers [W]). If Σ is
an entire graphic self-shrinker, then it must be a hyperplane passing through
the origin.

Proof. Because among all hyperplanes, only the ones passing through
the origin have zero weighted mean curvature.
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