Online First version

A WEIGHTED VOLUME ESTIMATE AND ITS APPLICATION TO BERNSTEIN TYPE THEOREMS IN GAUSS SPACE

BҮ

DOAN THE HIEU (Hue)

Abstract. A weighted area estimate for entire graphs with bounded weighted mean curvature in a Gauss space is given, with a short proof. Bernstein type theorems for self-shrinkers (Wang, 2011) as well as for graphic λ -hypersurfaces (Cheng and Wei, 2014) are immediate consequences.

1. Introduction. A manifold with density is a Riemannian manifold with a positive function e^{-f} used to weight both the volume and the perimeter area. The weighted volume of a region E is $\operatorname{Vol}_f(E) = \int_E e^{-f} dV$ and the weighted area of a hypersurface Σ is $\operatorname{Area}_f(\Sigma) = \int_{\Sigma} e^{-f} dA_{\Sigma}$, where dV and dA are the (n + 1)-dimensional Riemannian volume and the *n*-dimensional Riemannian perimeter area elements, respectively.

The weighted mean curvature of a hypersurface Σ in such a manifold is defined as follows:

$$H_f(\Sigma) = H(\Sigma) + \langle \nabla f, \mathbf{n} \rangle,$$

where **n** is the unit normal vector field and $H = -\operatorname{div} \mathbf{n}$ is the Euclidean mean curvature of the hypersurface. If $H_f(\Sigma) = \lambda$, a constant, then Σ is called a λ -hypersurface, and if $H_f(\Sigma) = 0$, then Σ is said to be *f*-minimal.

The Gauss space \mathbb{G}^{n+1} , the Euclidean space \mathbb{R}^{n+1} with the Gaussian probability density $e^{-f} = (2\pi)^{-(n+1)/2}e^{-|x|^2/2}$, is a typical example of a manifold with density and is of much interest to probabilists. For more details about manifolds with density, we refer the reader to [M1]–[M3], [MW].

In the Gauss space, f-minimal hypersurfaces are self-shrinkers and hyperplanes are λ -hypersurfaces. The weighted mean curvature of the hyperplane $\sum_{i=1}^{n+1} a_i x_i + a_0 = 0$ is $-a_0/(\sum_{i=1}^{n+1} a_i^2)^{1/2}$. It is well-known that hyperplanes solve the weighted isoperimetric problem, i.e., they minimize the weighted area for given weighted volume (see [B], [ST]). It should be mentioned that

Received 26 March 2018; revised 28 November 2018. Published online $^\ast.$

²⁰¹⁰ Mathematics Subject Classification: Primary 53C42; Secondary 53C50, 53C25.

Key words and phrases: Bernstein type theorem, self-shrinkers, λ -hypersurfaces, Gauss spaces.

both the weighted volume of \mathbb{G}^{n+1} and the weighted area of a hyperplane are finite.

In this paper, we use a short proof to establish a weighted area estimate for entire graphs with bounded weighted mean curvature. The Bernstein type theorems for graphic self-shrinkers [W] as well as for graphic λ -hypersurfaces [CW] are immediate consequences. These results were also proved by Ecker and Huisken [EH] and Guang [G], respectively, under the polynomial volume growth conditions.

2. Weighted area estimate and Bernstein type theorems. In \mathbb{G}^{n+1} , let Σ be the graph of a smooth function $u(\mathbf{x}) = x_{n+1}$ for $\mathbf{x} \in \mathbb{R}^n$, and **n** be its upward unit normal field. Extending **n** by translations along the x_{n+1} -axis we obtain a smooth vector field on \mathbb{R}^{n+1} , also denoted by **n**. Along any vertical line, since div(**n**) remains unchanged while $\langle \nabla f, \mathbf{n} \rangle$ is increasing, $H_f = -\operatorname{div}(\mathbf{n}) + \langle \nabla f, \mathbf{n} \rangle$ is increasing.

Consider the differential n-form

$$w(X_1,\ldots,X_n) = \det(X_1,\ldots,X_n,\mathbf{n}),$$

where X_i , i = 1, ..., n, are smooth vector fields. Then $|w(X_1, ..., X_n)| \leq 1$ for any unit normal vector fields X_i , i = 1, ..., n, and equality holds if and only if $X_1, ..., X_n$ are tangent to Σ .

We use the following notations:

- $E_1 = \{(\mathbf{x}, x_{n+1}) : x_{n+1} \leq u(\mathbf{x})\}, E_2 = \{(\mathbf{x}, x_{n+1}) : x_{n+1} \leq a\}, \text{ with } a \in \mathbb{R}, \text{ such that } \operatorname{Vol}_f(E_1) = \operatorname{Vol}_f(E_2), \text{ and let } P \text{ the hyperplane } x_{n+1} = a;$
- $F = (E_1 E_2) \cup (E_2 E_1)$, the region bounded by P and Σ ;
- $F^+ = E_2 E_1$ and $F^- = E_1 E_2$, the parts of F above and below Σ , respectively;
- B_R, S_R the (n + 1)-ball and *n*-hypershere in \mathbb{R}^{n+1} with center O and radius R, respectively;
- $\Sigma_R = \Sigma \cap B_R$, $P_R = P \cap B_R$, $F_R = F \cap B_R$, $F_R^+ = F^+ \cap B_R$ and $F_R^- = F^- \cap B_R$.

THEOREM 2.1. If $H_f(\Sigma)$ is bounded, then

(2.1)
$$\operatorname{Area}_{f}(\Sigma) \leq \operatorname{Area}_{f}(P) + \frac{1}{2}(M-m)\operatorname{Vol}_{f}(F),$$

where $M = \sup H_f(\Sigma)$ and $m = \inf H_f(\Sigma)$.

Proof. Let R be so large that B_R intersects both F^+ and F^- . By Stokes' theorem with suitably chosen orientations of boundary parts (see the figure),

$$\operatorname{Area}_{f}(\Sigma_{R}) - \operatorname{Area}_{f}(P_{R}) + \int_{F \cap S_{R}} e^{-f} w$$
$$\leq \int_{\Sigma_{R}} e^{-f} w - \int_{P_{R}} e^{-f} w + \int_{F \cap S_{R}} e^{-f} w = \int_{F_{R}} d(e^{-f} w) = \int_{F_{R}} d(\operatorname{div}(e^{-f} \mathbf{n})) \, dV$$

$$\begin{split} &= \int\limits_{F_R} \left(e^{-f} \operatorname{div}(\mathbf{n}) - e^{-f} \langle \nabla f, \mathbf{n} \rangle \right) dV = - \int\limits_{F_R} e^{-f} H_f \, dV \\ &= - \int\limits_{F_R^+} e^{-f} H_f \, dV + \int\limits_{F_R^-} e^{-f} H_f \, dV \leq -m \operatorname{Vol}_f(F_R^+) + M \operatorname{Vol}_f(F_R^-). \end{split}$$

Thus,

(2.2)
$$\operatorname{Area}_{f}(\Sigma_{R}) - \operatorname{Area}_{f}(P_{R}) + \int_{F_{R}} e^{-f} w \leq -m \operatorname{Vol}_{f}(F_{R}^{+}) + M \operatorname{Vol}_{f}(F_{R}^{-}).$$

It is not hard to check that

$$\lim_{R \to \infty} \int_{S_R \cap F} e^{-f} w = \lim_{R \to \infty} e^{-R} \int_{S_R \cap F} w = 0,$$

and by the assumption that $\operatorname{Vol}_f(E_1) = \operatorname{Vol}_f(E_2)$,

$$\lim_{R \to \infty} \operatorname{Vol}_f(F_R^+) = \operatorname{Vol}_f(F^+) = \lim_{R \to \infty} \operatorname{Vol}_f(F_R^-) = \operatorname{Vol}_f(F^-) = \frac{1}{2} \operatorname{Vol}_f(F).$$

Taking the limit of both sides of (2.2) as R tends to infinity, we get (2.1).

COROLLARY 2.2 (Bernstein type theorem for λ -hypersurfaces [CW]). If Σ is an entire graphic λ -hypersurface, then it must be a hyperplane.

Proof. Because M - m = 0 and P is weighted area minimizing.

COROLLARY 2.3 (Bernstein type theorem for self-shrinkers [W]). If Σ is an entire graphic self-shrinker, then it must be a hyperplane passing through the origin.

Proof. Because among all hyperplanes, only the ones passing through the origin have zero weighted mean curvature. \blacksquare

Acknowledgements. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04.2014.26.

REFERENCES

- [B] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207–216.
- [CW] Q. M. Cheng and G. Wei, The Gauss image of λ -hypersurfaces and a Bernstein type problem, arXiv:1410.5302 (2014).
- [EH] K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. of Math. 130 (1989), 453–471.
- [G] Q. Guang, Gap and rigidity theorems of λ-hypersurfaces, Proc. Amer. Math. Soc. 146 (2018), 4459–4471.
- [M1] F. Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), 853–858.
- [M2] F. Morgan, Geometric Measure Theory: a Beginner's Guide, 4th ed., Academic Press, 2008.
- [M3] F. Morgan, Manifolds with density and Perelman's proof of the Poincaré Conjecture, Amer. Math. Monthly 116 (2009), 134–142.
- [MW] O. Munteanu and J. Wang, Geometry of manifolds with densities, Adv. Math. 259 (2014), 269–305.
- [ST] V. N. Sudakov and B. S. Tsirel'son, Extremal properties of half-spaces for spherically invariant measures, J. Soviet Math. 9 (1978), 9–18.
- [W] L. Wang, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata 151 (2011), 297–303.

Doan The Hieu College of Education Hue University 32 Le Loi, Hue, Vietnam E-mail: dthehieu@yahoo.com