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Abstract
In the present work, we consider the electronic properties of graphenewithKekule structure formed
from two different C–Cbonds in its hexagonal lattice.When theC–Cbond alternationwas
introduced, a small band gap has been opened in the band structure of graphene and it increases
linearly by a difference in the bond lengths δ.While the applied strain along the zigzag or armchair
direction causes band gap to decrease rapidly to zero, the strain in the other directions can increase the
band gap. Interestingly, when the graphenewithKekule structure is strained, its band gap is inversely
proportional to the bond length difference δ. Opening a band gap in graphene due to bond alternation
and strain can open up new applications in nanoelectronic devices.

1. Introduction

The discovery of graphene in 2004 [1] opened up a great turning point in the studies of layeredmaterials and
their applications in nanotechnology. Graphene became a hot topic for both theoretical and experimental
research formore than a decade due to its extraordinary and outstanding physical and chemical properties [2].
In the semimetal formwith zero energy gap, however, graphene has certain limits in applications in
nanoelectronics, such as graphene-based transistors cannot be switched off because the band gap of graphene is
zero [3]. Scientists have looked for othermaterials to overcome this disadvantage [4]. The fact thatmany
graphene-likematerials have been found and considered in recently, such as silicene [5], phosphorene [6–8],
antimonene [9], or two-dimensional (2D) transitionmetal dichalcogenides [10]. Alongwith the search for
alternativematerials, one alsofindsways to open up the band gap in graphene. Fortunately, we can control the
band gap of graphene. Recent theoretical studies have indicated thatwe can alter the electronic energy band
structure of graphene by applying strain [11], by placing it on semiconductor substrates [12, 13], or forming
graphene-based heterostructures [14–17].

The electronic properties of graphene have been studied by variousmethods [18–21]. Pereira and his co-
workers have shown that an energy gap has occurred in graphenewhen it is uniaxially deformed.However, these
calculations have shown that the deformation threshold for band gap appears to be large (larger than 23.5%).
Similarly,first-principles calculations also demonstrated that in the presence of strain larger than 30%, graphene
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becomes a semiconductor with a small energy gap [22]. Besides, the electronic properties of graphene also
depend strongly on the direction of the applied strain [22–24].

Bond alternation in the carbon nanomaterials has been studied for a long time [25, 26]. Actually, Peierls
instability suggested in [27] always appears in 1D systems [28, 29] and ring atoms [30] and does not often appear
in 2Dmaterials. One has shown that Peierls distortions [31, 32] can lead to the formation of theKekule structure
[33, 34] in carbon nanotubes. Effect of the bond alternation on electronic properties of carbon nanotubes [35]
and graphene nanoribbons [36]was also investigated using differentmethods. Interestingly, Frank and Lieb
have demonstrated the possibility of the Peierls distortions in 2D graphene [37]. As new quantumphases of
graphene, the Kekule distortion phase has been recently studied [38–40]. However, experimental evidence of the
Kekule distortion in graphene just recently published [41, 42]. Recent experimental work has shown that an
adatomon the graphene lattice can break the sublattice symmetry of the graphene. The adatom–graphene
interaction leads to displacement of theC atoms and forming theKekule distortion phase [41]. Gutiérrez’s
group has observed the formation of Kekule bonds in a graphenemonolayer that is epitaxially grown on the
copper substrate [41]. Also,Ma and co-workers showed that ordered Smonatomic superlattice on a graphene
lattice can lead the forming theKekule structure in graphenewith a small band gap of 245meV [42]. Recently,
the formationC–Cbond alternation of theKekule type in graphene due to strain and the change of the hopping
parameters in this structure has also been investigated [43].

In this work, we consider the structure of graphenewith unequal C–Cbonds arranged alternately in the
honeycomb lattice to form theKekule structure.We focus on the effect of bond alternation on electronic
properties of graphene in the presence of the strain. The dependence of the energy gap on the difference in bond
lengths and applied strain direction has also been studied and discussed in this work.

2.Model and theoretical framework

Wedesign themodel of graphene of Kekule structure which is formed by twoC–Cbonds of different lengths a
and b alternating arranged in a hexagonal lattice as shown infigure 1. Fromfigure 1we can see that theKekule
structure in graphene is formed by twoC–Cbonds a and b ( ¹a b) alternated in its hexagonal lattice.When the
Kekule structure was introduced, the primitive cell of graphene contains six carbon atom (threem and three n).
In this case, the periodic lattice constant along the y-axis = +L a b4 2y y y is about three times as large as pristine
graphene. The translational period along the x-axis is = +L a b2 2x x . Comparedwith the pristine graphene, the
area of the Brillouin zone for graphenewithKekule structure as shown infigure 1 is one-third of that of the
pristine graphene (see also in [31]).

In presence of in-plane strain, the position vector of carbon atoms can be defined via the strain tensorΛ in
the elasticity theory as the following [11]

= + L
 ( ) ( )r r1 , 1i i0

where

r i0 and


ri are the position vectors of the C atoms respectively before and after deformation. The strain

tensorΛ can be expressed as [11]

Figure 1.Model of graphenewithKekule structure of two different bond lengths a and b. The dotted rhombus containing six cabon
atoms is the primitive cell of themodel. θ is the angle by the applied tension and the x-axis. tξ is the hopping parameter corresponding
to theC–Cbond length rξ.

2

Mater. Res. Express 6 (2019) 045605 DQKhoa et al



e e
e e e

q s q s q q
s q q q s q

L = =
- +

+ -

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )sin cos 1 cos sin

1 cos sin cos sin
, 211 21

12 22

2 2

2 2

whereσ is the Poision’s ratio and θ is the angle between the x axis and the tension direction as shown infigure 1.
We can define the difference in bond length δ using the suggestion of Fujita and co-workers [44] that the

difference in theC–Cbond length bond can be expressed via the undeformedC–Cbond a0 as a=a0+δ and
b=a0−δwith δ can be positive or negative.

In the framework of tight bindingmodel, the Blockwave functions in the graphenewith the primitive cell
containing six C atoms can bewritten as [31]

åy f= -n h h
h

    


( ) ( ) ( ) ( )r
N

ikR r R
6

exp , 3k
R

where =


( )k k k,x y is wave vector, h = m n,i i (i=1, 2, 3),N is number of C atoms in the unit-cell, n

R is

position of the ν-th kind of the carbon atoms, and f
( )r is thewavefunction built from the pz orbital for an

isolatedC atoms located at the origin.We can obtain the band structure of graphene by diagonalization of
Hamiltonianwhich is built based on number of atoms in the primitive cell. As shown infigure 1, the primitive
cell of the graphenewith theKekule structure contains six C atoms, theHamiltonianmatrix is (6×6)matrix
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where tξ (ξ=1, 2,K 6) is the hopping parameters corresponding to theC–Cbond x

r . Here, the vectors of bonds

between carbon atoms are =

r m n1 1 1, =


r m n2 1 2, = =


r m n m n3 1 3 2 1, = =


r m n m n4 2 2 3 3, =


r m n5 2 3, and

=

r m n6 3 2. In the presence of theC–Cbond alternation and strain, hopping parameter tξ is changed due to the
change in the length of theC–Cbond. The dependence of the hopping parameter tξ on theC–Cbond length rξ
can be expressed via theHarrison fomular [45]

=x
x

⎛
⎝⎜

⎞
⎠⎟ ( )t t

a

r
, 60

0
2

where a0=0.142 nmand t0=2.7 eV are theC–Cbond length and hopping parameter of pristine graphene,
respectively [46].

3. Results and discussion

In the presence of bond alternationwith the bond lengths a and b as show infigure 1, there are only two different
hopping parameters = = = ( )t t t t a a1 5 6 0 0

2 and = = = ( )t t t t a b2 3 4 0 0
2. This assumption is agreement

with the previous quantumMonteCarlo calculations that there are two different hoppingmagnitudeswhen the
Kekule structure is introduced [43]. However, when the strain is applied, depending on the applied tension
direction θ, there will be four to six different values of hopping parameters that appear in the strained graphene
with theKekule structure. This is different from the case of undimerized (pristine) graphenewith two hopping
valueswhen strain is applied along the armchair or zigzag axis [47]. As an example, we showdependence of the
hopping parameters tξ on tension angle θ of graphenewithKekule structure of δ=0.02Å at ε=5% infigure 2.
We can see that, when the is applied along armchair (θ=0) or zigzag (θ=π/2)direction, only four hopping
parameters are occurred due to the symmetry of graphenewithKekule structure as shown infigure 1. In these
cases, the t2=t3 and t5=t6. Also, the symmetry of this structure leads the t2=t4 and t1=t5 at the applied
tension angle ofπ/6.

By diagonalization ofHamiltonian(4)we can obtain energy dispersion relations of graphenewithKekule
structure. Infigure 3, we show a cut of energy dispersion E(kx,0) along ky=0 of graphenewithKekule structure.
In themodel of graphenewithKekule structure containing six carbon atoms in the primitive cell, at δ=0, the
area of its first Brillouin zone is one-third of that of the pristine graphene as shown infigure 3(a). In this case, the
conduction and valence bands intersect at thefirst Brillouin zone center at the Fermi level.When the bond
alternationwas introduced, i.e. d ¹ 0, graphenewithKekule structure becomes a semiconductor with an energy
gap opening at the center of the first Brillouin zone as shown infigure 3(b). Dependence of energy gap of
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graphenewithKekule structure on the bond length difference δ is also infigure 3(c). Our calculations
demonstrate that the band gap of graphenewithKekule structure depends linearly on theC–Cbond length
difference δ. Also, the lowest conduction band is always located at the center of thefirst Brillouin zone.

We next investigate the effect of the in-plane strain on the electronic properties of graphenewithKekule
structure. Our calculations demonstrate that the electronic properties of graphenewithKekule structure is
greatly altered by the in-plane strain, especially the lowest (highest) subband of the conduction (valence) band.
In this study, the overlapmatrix is chosen by the unitmatrix, therefore the conduction and valence bands are
symmetric across the Fermi level EF=0. Infigure 4we show the energy dispersion of graphenewithKekule of
δ=0.01Å under strain. The band gap of graphenewithKekule of δ=0.01Å at ε=0 (unstrained) is 0.152eV
as shown infigure 4(a).When strain is applied along the x-axis (θ=0) or the y-axis (θ=π/2), the band gap
rapidly dropped to zero (at around 2%of elongation). The conduction bandminimum is no longer located at
thefirst Brillouin zone center, the lowest subband of the conduction band changes its shape and forms two
minimums locating near the center of the first Brillouin zone. In these cases, as shown infigures 4(b), (c) the
conduction and valence bands intersect at the Fermi level. In other tension directions (q q p¹ ¹0; 2),
strained graphenewithKekule structure is a semiconductor with small band gap being opened near the Fermi
level as shown infigures 4(d), (e), (f). Dependence of the band gap of graphenewithKekule structure on strain ε
and tension angle θ is shown in figure 5. Infigure 5(a), we show the calculations for the dependence of band gap
on the ε at various θ in the case of the bond length difference δ=0.01Å. In this case, we can see that the band
gap decreases rapidly as the strain increases from0 to 2%. Then, except for the applied strain along the x and y

Figure 2.Dependence of hopping parameters tξ on tension angle θ of graphenewithKekule structure of δ=0.02 Å at ε=5%.

Figure 3.Cut of energy dispersion E(kx, 0) along ky=0 of graphenewithKekule structure of bond length difference δ=0 (a) and
δ=0.02 Å. (c)Dependence of band gap of graphenewithKekule structure on the bond length difference δ.
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axes asmentioned above, the strain causes the energy gap of graphene to increase linearly by strain. Our
calculations also show that energy gap is greatest when graphene is strained along the applied tension direction
θ=π/6.However, as shown infigure 5(b), the difference in band gap in the cases of the applied strain direction
θ fromπ/6 toπ/3 is very small. In addition, under the same applied strain, the band gap is inversely proportional
to the bond length difference δ.

In the case of undimerized graphene, an energy gapmay appear in graphene due to strain engineering.
However, previous calculations have shown that, in small strain limits, the shape of the subbands near the Femi
level is almost unchanged by the applied strain and the energy gap can only be opened at theKpoint [11, 47].
Focusing on the effect of bond alternation on band structure, as an example, infigure 6, we plot the band
structure of graphenewithKekule structure under strain of 10% along tension direction θ=π/3.We can see
that the bond alternation in the hexagonal lattice of graphene not only affects the energy gap but also the shape of
the lowest conduction and highest valence subbands. In the presence of the same strain, the two-peak shape that
is symmetric across the vertical line passing through the center of the first Brillouin zone tends to occur in small δ
cases. Further, the shape of these subbands depends also on the tension direction θ as shown infigure 4.

Figure 4.Cut of energy dispersion along ky=0 of deformed graphenewithKekule structure of bond length difference δ=0.01 Å at
various elongation ε: (a) undeformedKekule structure ε=0, (b) θ=0, (c) θ=π/2, (d) θ=π/6, (e) θ=π/4, and (f) θ=π/3.

Figure 5.Dependence of band gap graphenewithKekule structure on strain elongation ε (a) and tension angle θ(b).
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4. Conclusion

In conclusion, using the tight binding approximation, we considered the effect of the C–Cbond alternation on
electronic properties of graphene.When theKekule structure was introduced, a small energy gap appears in
graphene and one canmanipulate it by strain. Energy gap depends not only on the difference in theC–Cbond
length δ but also on the applied strain, especially the direction of applied strain on the graphene. The appearance
of the energy gap in graphene is important in the application of graphene to nanoelectronic devices.
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