Information Technology

ON THE TIME COMPLEXITY OF THE PROBLEM OF CONSTRUCTING A RELATION SCHEME

Vu Duc Thi
Institute of Information Technology, VAST
Nguyen Hoang Son
Department of Mathematics, College of Sciences, Hue University

Received November 02, 2007

Abstract

The purpose of this paper is to investigate the time complexity of problem of constructing a relation scheme by hypergraphs and dense families. We prove that the time complexity of this problem is exponential in the number of attributes.

Keywords: relation, relational datamodel, functional dependency, relation scheme, minimal key.

1. INTRODUCTION

The relational datamodel introduced by Codd [3] in 1970 is one of the most powerful database models. The basic concept of this model is a relation. It is a table, every row of which corresponds to a record and every column to an attribute. Semantic constraints between sets of attributes play a very important role in logical and structural investigations of the relational datamodel, in both practice and theory. The most important of these constraints is functional dependency (FD for short). Informally, FD means that some attributes' values can be unambiguously reconstructed by the others.

Armstrong relations are objects of interest in relational database theory (see, e.g. $[1,4])$. The following problem plays an important role in the theory of relational database design.
Problem 1.1 (Constructing a relation scheme). Let R relation on U. Construct a relation scheme $S=(U, F)$ such that R is the Armstrong relation of S.

Hypergraph theory (see, e.g., [2]) is an important subfield of discrete mathematics with many relevant applications in both theoretical and applied computer science.

The dense families of database relations were introduced by Järvinen [6]. Järvinen has characterized FDs and minimal keys of relations in terms of dense families. The method of Järvinen is very effective.

We will prove the following result by means of hypergraphs and dense families.
Theorem 1.1. The time complexity of constructing a relation scheme is exponential in the number of attributes.

The rest of the paper is organized as follows: in Section 2, some basic concepts and results of the theory of relational databases are given. In Sections 3 and 4, we first introduce some basic concepts and properties of hypergraphs and dense families. Next, we prove some basic results of hypergraphs and dense families. In Section 5, we prove Theorem 1.1. The final Section is the conclusion.

2. RELATIONAL DATABASES

In this section, we show some key concepts of the theory of relational databases, which can be found in $[1,3]$.

Let $U=\left\{a_{1}, a_{1}, \ldots, a_{n}\right\}$ be a nonempty finite set of attributes. A map dom associates with each $a_{i} \in U$ its domain $\operatorname{dom}\left(a_{i}\right)$. A relation R on U is a subset of Cartesian product $\operatorname{dom}\left(a_{1}\right) \times \operatorname{dom}\left(a_{2}\right) \times \ldots \times \operatorname{dom}\left(a_{n}\right)$.

We can think of a relation R on U as being a set of tuples: $R=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$,

$$
h_{j}: U \rightarrow \bigcup_{i=1}^{n} \operatorname{dom}\left(a_{i}\right), h_{j}\left(a_{i}\right) \in \operatorname{dom}\left(a_{i}\right), j=1,2, \ldots, m .
$$

The concept of FD between sets of attributes was introduced by Armstrong [1]. A $F D$ on U is a statement of the form $X \rightarrow Y$, where $X, Y \subseteq U$. The FD $X \rightarrow Y$ holds in a relation R if

$$
\left(\forall h_{i}, h_{j} \in R\right)\left(h_{i}(X)=h_{j}(X) \Rightarrow h_{i}(Y)=h_{j}(Y)\right) .
$$

We also say that R satisfies the FD $X \rightarrow Y$.
Let F_{R} be a family of all FDs that holds in R.
R be a relation on U and $K \subseteq U$. And K is called a minimal key of R if it satisfies two following conditions:

$$
\begin{aligned}
& (K 1) K \rightarrow U \in F_{R}, \\
& (K 2) \quad \nexists K^{\prime} \subset K \text { such that } K^{\prime} \rightarrow U \in F_{R} .
\end{aligned}
$$

The subset K which satisfies only (K1) is called a key of R.
Note that a relation may have several minimal keys. Denote K_{R} the set of all minimal keys of R.

It is clear that $F=F_{R}$ satisfies

$$
\begin{array}{lll}
\text { (F1) } X \rightarrow X \in F, & & \\
\text { (F2) }(X \rightarrow Y \in F, Y \rightarrow Z \in F) & \Rightarrow(X \rightarrow Z \in F), \\
\text { (F3) }(X \rightarrow Y \in F, X \subseteq V, W \subseteq Y) & \Rightarrow(V \rightarrow W \in F), \\
\text { (F4) }(X \rightarrow Y \in F, V \rightarrow W \in F) & \Rightarrow(X \cup V \rightarrow Y \cup W \in F), \\
\forall X, Y, Z, V, W \subseteq U .
\end{array}
$$

A family of FDs satisfying (F1) - (F4) is called a f-family on U.
F_{R} clearly is an f-family on U. It is known [1] that if F is an arbitrary f-family, then there is a relation R on U such that $F_{R}=F$.

Given a family F of FDs on U, there exists an unique minimal f-family F^{+}that contains F. It can be seen that F^{+}contains all FDs which can be derived from F by the rules (F1) - (F4).

A relation scheme S is a pair (U, F), where U is a nonempty finite set of attributes and F is a set of FDs on U.

Denote $X^{+}=\left\{a \in U: X \rightarrow\{a\} \in F^{+}\right\} . X^{+}$is called the closure of X on S .
Let $S=(U, F)$ be a relation scheme. Clearly, if $S=(U, F)$ is a relation scheme, then there is a relation R on U such that $F_{R}=F^{+}$(see, [1]). Such a relation is called an Armstrong relation of S. Evidently, all FDs of S hold in R.

Subset K of U is called a key of S if $K \rightarrow U \in F^{+}$. K is a minimal key of S if K is a key of S and any proper subset of K is not a key of $S . K_{S}$ denote the set of all minimal keys of S.
$S=(U, F)$ is in $B C N F$ if $X \rightarrow\{a\} \in F^{+}$for $X^{+} \neq U$ and $a \notin X$. If a relation scheme is changed to a relation then we have the definition of $B C N F$ for that relation.

3. HYPERGRAPHS

In this section, we introduce some basic concepts and results of hypergraphs which will be needed in next sections. The concepts and facts given in this section can be found in $[2,4]$.

Let U be a nonempty finite set and put $P(U)$ be the family of all subsets of U (its power set). The family $H=\left\{E_{1}, E_{2}, \ldots, E_{m}\right\} \subseteq P(U)$ is called a hypergraph on U if $E_{i} \neq \emptyset$ holds for all i (in [2] it is required that

$$
\bigcup_{i=1}^{n} E_{i}=U
$$

but in the present paper this requirement is not necessary.)
The elements of U are called vertices, and the sets $E_{1}, E_{2}, \ldots, E_{m}$ the edges of the hypergraph H.

A hypergraph H is called simple if it satisfies

$$
\forall E_{i}, E_{j} \in H: E_{i} \subseteq E_{j} \Rightarrow i=j
$$

It can be seen that K_{R}, K_{S} are simple hypergraphs.
In this paper we always assume that if a simple hypergraph H plays the role of the set of minimal keys (resp. antikeys, i.e., maximal non-keys), then $H \neq \emptyset$ and $\emptyset \notin H$ (resp. $\emptyset, U \notin H)$. We consider the comparison of two attributes as an elementary step of algorithms. Thus, if we assume that subsets of U are represented as sorted lists of attributes, then a Boolean operation on two subsets requires at most $|U|$ elementary steps.

Let H be a hypergraph on U. Then $\min (H)$ denotes the set of minimal edges of H with respect to set inclusion, i.e.,

$$
\min (H)=\left\{E_{i} \in H: \nexists E_{j} \in H: E_{j} \subset E_{i}\right\}
$$

It is clear that, $\min (H)$ is a simple hypergraph. Furthermore, $\min (H)$ is uniquely determined by H.

A set $T \subseteq U$ is called a transversal of H (sometimes it is called hitting set) if it meets all edges of H, i.e.,

$$
\forall E \in H: T \cap E \neq \emptyset
$$

A transversal T of H is called minimal if no proper subset T^{\prime} of T is a transversal.
The family of all minimal transversals of H is called the transversal hypergraph of H, and denoted by $\operatorname{Tr}(H)$. Clearly, $\operatorname{Tr}(H)$ is a simple hypergraph.

The following algorithm finds the family of all minimal transversals of a given hypergraph (by induction).
Algorithm 3.1 [5].
Input: Let $H=\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$ be a hypergraph on U.
Output: $\operatorname{Tr}(H)$.
Method:
Step 0: We set $L_{1}:=\left\{\{a\}: a \in E_{1}\right\}$. It is obvious that $L_{1}=\operatorname{Tr}\left(\left\{E_{1}\right\}\right)$.
Step $q+1:(q<m)$ Assume that

$$
L_{q}=S_{q} \cup\left\{B_{1}, B_{2}, \ldots, B_{t_{q}}\right\}
$$

where $B_{i} \cap E_{q+1}=\emptyset, i=1,2, \ldots, t_{q}$ and $S_{q}=\left\{A \in L_{q}: A \cap E_{q+1} \neq \emptyset\right\}$.
For each $i\left(i=1,2, \ldots, t_{q}\right)$ constructs the set $\left\{B_{i} \cup\{b\} \mid b \in E_{q+1}\right\}$. Denote them by $A_{1}^{i}, A_{2}^{i}, \ldots, A_{r_{i}}^{i}\left(i=1,2, \ldots, t_{q}\right)$. Let

$$
L_{q+1}=S_{q} \cup\left\{A_{p}^{i}: A \in S_{q} \Rightarrow A \not \subset A_{p}^{i}, 1 \leq i \leq t_{q}, 1 \leq p \leq r_{i}\right\}
$$

Theorem 3.1 [5]. For every $q(1 \leq q \leq m) L_{q}=\operatorname{Tr}\left(\left\{E_{1}, E_{2}, \ldots, E_{q}\right\}\right)$, i.e., $L_{m}=\operatorname{Tr}(H)$.
The determination of $\operatorname{Tr}(H)$ based on our algorithm does not depend on the order of $E_{1}, E_{2}, \ldots, E_{m}$.
Proposition 3.2 [5]. The time complexity of finding $\operatorname{Tr}(H)$ of a given hypergraph H is (in general) exponential in the number of elements of U.

Now we investigate some results about hypergraphs.
Let H be a simple hypergraph on U. We define a set H^{-1} as follows:
$H^{-1}=\{A \in P(U):(B \in H) \Rightarrow(B \nsubseteq A)$ and $(A \subset C) \Rightarrow(\exists B \in H)(B \subseteq C)\}$.
It is easy to see that if H^{-1} is a hypergraph on U, then H^{-1} is a simple hypergraph.
For each subset A of U, we define $\bar{A}=U \backslash A$. For every family $\mathrm{A} \subseteq \mathrm{P}(U)$, the complemente family of A is $A=\{\bar{A}: A \in A\}$ on U.

We then have following important relationship [8]:
Proposition 3.3. Let H be a simple hypergraph on U. Then

$$
H^{-1}=\overline{\operatorname{Tr}(H)}
$$

Now let K be a Sperner system on U (i.e. $A, B \in \mathrm{~K}$ implies $A \nsubseteq B$). Denote

$$
s(K)=\min \left\{m:|R|=m, K_{R}=K\right\} .
$$

Theorem 3.4 ([4]).

$$
\sqrt{2\left|K^{-1}\right|} \leq s(K) \leq\left|K^{-1}\right|+1
$$

Because a simple hypergraph is also a Sperner system, from Theorem 3.4 and Proposition 3.3, we have the following corollary.
Corollary 3.1. Let H be a simple hypergraph on U. Then

$$
\sqrt{2|\overline{\operatorname{Tr}(H)}|} \leq s(H) \leq|\overline{\operatorname{Tr}(H)}|+1
$$

Now we assume that $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}(n>1)$. Thus we have the following remark.
Remark 3.1. Let us take a partition $U=X_{1} \cup X_{2} \cup \cdots \cup X_{m} \cup W$, where $m=\left[\frac{n}{3}\right]$ and $\left|X_{i}\right|=3(1 \leq i \leq m)$.

We set

$$
\left.\begin{array}{ll}
H=\{B:|B|=2, & B \subseteq X_{i}
\end{array} \quad \text { for some } i\right\} \text { if }|W|=0 . ~=\left\{\begin{array}{ll}
H=\{B:|B|=2, & B \subseteq X_{i} \\
H=\left\{\text { for some } i: 1 \leq i \leq m-1 \text { or } B \subseteq X_{m} \cup W\right\} \text { if }|W|=1 \\
H=\{B:|B|=2, & B \subseteq X_{i}
\end{array} \quad \text { for some } i: 1 \leq i \leq m \text { or } B=W\right\} \text { if }|W|=2 .
$$

It can be seen that H is a simple hypergraph on U and $n-1 \leq|H| \leq n+2$.
By Proposition 3.3, we have

$$
\begin{aligned}
& \operatorname{Tr}(H)=\left\{A:\left|A \cap X_{i}\right|=1 \text { for all } i\right\} \text { if }|W|=0 \\
& \operatorname{Tr}(H)=\left\{A:\left|A \cap X_{i}\right|=1(1 \leq i \leq m-1) \text { and }\left|A \cap\left(X_{m} \cup W\right)\right|=1\right\} \text { if }|W|=1 \\
& \operatorname{Tr}(H)=\left\{A:\left|A \cap X_{i}\right|=1(1 \leq i \leq m) \text { and }|A \cap W|=1\right\} \text { if }|W|=2
\end{aligned}
$$

Thus, $|\overline{\operatorname{Tr}(H)}|<3^{\left[\frac{n}{4}\right]}$.
Set $K=(\overline{\operatorname{Tr}(H)})^{-1}$, we obtain
$K=\left\{C:|C|=n-3, C \cap X_{i}=\emptyset \quad\right.$ for some $\left.i\right\}$ if $|W|=0$.
$K=\left\{C:|C|=n-3, C \cap X_{i}=\emptyset \quad\right.$ for some $i(1 \leq i \leq m-1)$
or $\left.|C|=n-4, C \cap\left(X_{m} \cup W\right)=\emptyset\right\}$ if $|W|=1$.
$K=\left\{C:|C|=n-3, C \cap X_{i}=\emptyset \quad\right.$ for some $i(1 \leq i \leq m)$ or $\left.\left.|C|=n-2, C \cap W\right)=\emptyset\right\}$
if $|W|=2$.
It is easy to see that $|\mathrm{K}| \leq m+1$.

4. DENSE FAMILIES

In this section, we introduce some basic concepts and results about dense families of database relations $[6,7]$.

The notion of dense family of a database relation is defined in [6] as follows:
Let R be a relation on U. We say that a family $\mathcal{D} \subseteq P(U)$ of attribute sets is R-dense (or dense in R) if $F_{R}=F_{\mathcal{D}}$.

The problem is how to find dense families. Järvinen [5] guarantees the existence of at least one dense family. In the sequel we denote $L_{F_{R}}$ simply by L_{R}, i.e.,

$$
L_{R}=\left\{X_{R}^{+}: X \subseteq U\right\}
$$

where $X_{R}^{+}=\left\{a \in U: X \rightarrow\{a\} \in F_{R}\right\}$.
Propositon 4.1 ([6]). (1) The family L_{R} is R-dense.
(2) If \mathcal{D} is R-dense, then $\mathcal{D} \subseteq L_{R}$.

In [6] J. Järvinen proved the following important theorem:
Theorem 4.2. Let R be a relation on U. If $\mathcal{D} \subseteq P(U)$ is R-dense, then the following conditions hold
(1) K is a key of R if and only if it contains an element from each set in $\{\bar{A}: A \in$ $\mathcal{D}, A \neq U\}$.
(2) K is a minimal key of R if and only if it is minimal with respect to the property of containing an element from each set in $\{\bar{A}: A \in \mathcal{D}, A \neq U\}$.

Now we investigate some results about dense families. In [7] we also presented another dense family of database relations.

Let $R=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ be a relation on U, and E_{R} the equality set of R, i.e.,

$$
E_{R}=\left\{E_{i j}: 1 \leq i<j \leq m\right\}
$$

where $E_{i j}=\left\{a \in U: h_{i}(a)=h_{j}(a)\right\}$.
Proposition 4.3 ([7]). The equality set E_{R} is R-dense.
It is easy to see that the dense family E_{R} has at most $\frac{m(m-1)}{2}$ elements.
In [8] we proved the following important result.
Theorem 4.4. Let R be a relation on U. Then

$$
K_{R}=\operatorname{Tr}\left(\min \left(\bar{E}_{R}\right)\right) .
$$

We present an effective application of Theorem 4.4, which is the algorithm of finding all minimal keys of a given relation.

Algorithm 4.1.

Input: a relation $R=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ on $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Output: K_{R}.
Method:
Step 1. Construct the equality set

$$
E_{R}=\left\{E_{i j}: 1 \leq i<j \leq m\right\}
$$

where $E_{i j}=\left\{a \in U: h_{i}(a)=h_{j}(a)\right\}$.
Step 2. Compute the complement of E_{R} as follows:

$$
\overline{E_{R}}=\left\{\overline{E_{i j}}: E_{i j} \in E_{R}\right\} .
$$

Denote elemens of \bar{E}_{R} by $N_{1}, N_{2}, \ldots, N_{k}$.
Step 3. From \bar{E}_{R} compute the family $\min \left(\overline{E_{R}}\right)=\left\{N_{i} \in \overline{E_{R}}: \nexists N_{j} \in \overline{E_{R}}: N_{j} \subset N_{i}\right\}$.
Step 4. By Algorithm 3.1 we construct the set $K_{R}=\operatorname{Tr}\left(\min \left(\bar{E}_{R}\right)\right)$.
By Algorithm 3.1 and Theorem 4.4, we have $K_{R}=\operatorname{Tr}\left(\min \left(\bar{E}_{R}\right)\right)$. It can be seen that the time complexity of our algorithm is the time complexity of Algorithm 3.1.

From Algorithm 4.1, we have the following application, which is the following algorithm of finding a BCNF relation scheme S from a given relation R in BCNF such that $F^{+}=F_{R}$, i.e., R is an Armstrong relation of S.

Algorithm 4.2.

Input: Let R be a BCNF relation on $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Output: A BCNF relation scheme $S=(U, F)$ such that R is an Armstrong relation of S. Method:
Step 1. By Algorithm 4.1 constructs K_{R}.
Step 2. Denoting elements of K_{R} by $K_{1}, K_{2}, \ldots, K_{m}$. We construct a relation scheme as follows: $S=(U, F)$, where $F=\left\{K_{1} \rightarrow U, K_{2} \rightarrow U, \ldots, K_{m} \rightarrow U\right\}$.

Clearly, S is in BCNF and R is an Armstrong relation of S.
Note that in BCNF class a relation R is an Armstrong relation of relation scheme S (i.e. $F_{R}=F^{+}$) if and only if $K_{R}=K_{S}$.

It can be seen that the time complexity of Algorithm 4.2 is the time complexity of Algorithm 4.1.

5. PROOF OF THEOREM 1.1

The time complexity of constructing relation scheme in BCNF class is exponential in the number of attributes. Indeed, we shall prove that:

Claim 1: There is an algorithm of finding a BCNF relation scheme S from a given BCNF relation R such that R is an Armstrong relation of S, and the time complexity of this algorithm is exponential in the number of attributes.

Claim 2: There exists a BCNF relation R such that the number of elements of F of any BCNF relation scheme $S=(U, F)$ so that R is an Armstrong relation of S is exponential in the number of attributes.

For Claim 1: We have Algorithm 4.2.
For Claim 2: By Remark 3.1 we have $|\mathcal{K}| \leq m+1$. Set $\mathcal{M}=\{C \backslash\{a\}: C \in \mathcal{K}$, $a \in U\}$. Denote elements of \mathcal{M} by C_{1}, \ldots, C_{t}. Construct a relation $R=\left\{h_{0}, h_{1}, \ldots, h_{t}\right\}$ as follows:

$$
\text { for all } a \in U, h_{0}(a)=0
$$

$$
h_{i}(a)=\left\{\begin{array}{l}
0 \text { if } a \in C_{i}, \\
i \text { otherwise },
\end{array} \quad \forall i=1,2, \ldots, t .\right.
$$

It is easy to see that

$$
|R| \leq(m+1)|U|+1 .
$$

Now we construct a relation scheme $S=(U, F)$ with $\mathrm{F}=\{A \rightarrow U: A \in \overline{\operatorname{Tr}(H)}\}$. It is clear that S is in BCNF, $|F|>3^{\left[\frac{n}{4}\right]}$ and R is an Armstrong relation of S.

Hence we can always construct a BCNF relation R in which the number of rows of R is at most $(m+1)|U|+1$ but for any BCNF relation scheme $S=(U, F)$ such that R is an Armstrong relation of S, the number of elements of F is exponential in the number of attributes.

Because BCNF relation (resp. relation scheme) class is subset class of relations (resp. relation scheme), hence, from the above proof it is clear that the time complexity of constructing relation scheme is exponential in the number of attributes.

The proof is complete.

6. CONCLUSION

In this paper we investigated the time complexity of constructing a relation scheme by hypergrahs and dense families. First, we gave an algorithm which from a given BCNF relation R finds a BCNF relation scheme S such that R is an Armstrong relation of S. Next, we proved that in BCNF class the time complexity of problem which from a given BCNF relation R finds a BCNF relation scheme S such that R is an Armstrong relation of S is exponential in the number of attributes. Because BCNF relation (resp. relation scheme) class is subset class of relation (resp. relation scheme), the time complexity of constructing a relation scheme is exponential in the number of attributes.

REFERENCES

1. W.W. Armstrong, Dependency structure of database relationship, in the book: Information Processing 74, North-Holland Pub. Co., Amsterdam, 1974, p. 580.
2. C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland Pub. Co., Amsterdam, 1989.
3. E.F. Codd, Comm. ACM 13, 377 (1970).
4. J. Demetrovics and V. D. Thi, Annales Univ. Sci. Budapest. Sect. Comp. 19, 119 (2000).
5. J. Demetrovics and V.D. Thi, Computers and Artificial Intelligence 18, 191 (1999).
6. J.Järvinen, Dense families and key functions of database relation instances, in the book: Freivalds R. (Ed.) Fundamentals of Computation Theory, Proceedings of the 13th International Symposium, Lecture Notes in Computer Science 2138, SpringerVerlag, Heidelberg, 2001, p. 184.
7. V.D. Thi and N.H. Son, Vietnam Journal of Computer Science and Cybernetics 21 130 (2005).
8. N.H. Son, Annales Univ. Sci. Budapest., Sect. Comp. 26, 79 (2006).

Corresponding author: Vu Duc Thi, Institute of Information Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Rd., Hanoi, Vietnam, E-mail: vdthi@ioip.vast.ac.vn

