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Abstract. The purpose of this paper is to investigate the time complexity of problem of con-
structing a relation scheme by hypergraphs and dense families. We prove that the time complexity
of this problem is exponential in the number of attributes.
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1. INTRODUCTION

The relational datamodel introduced by Codd [3] in 1970 is one of the most powerful
database models. The basic concept of this model is a relation. It is a table, every row
of which corresponds to a record and every column to an attribute. Semantic constraints
between sets of attributes play a very important role in logical and structural investigations
of the relational datamodel, in both practice and theory. The most important of these
constraints is functional dependency (FD for short). Informally, FD means that some
attributes’ values can be unambiguously reconstructed by the others.

Armstrong relations are objects of interest in relational database theory (see, e.g.
[1, 4]). The following problem plays an important role in the theory of relational database
design.

Problem 1.1 (Constructing a relation scheme). Let R relation on U . Construct a relation
scheme S = (U, F ) such that R is the Armstrong relation of S.

Hypergraph theory (see, e.g., [2]) is an important subfield of discrete mathematics
with many relevant applications in both theoretical and applied computer science.

The dense families of database relations were introduced by Järvinen [6]. Järvinen
has characterized FDs and minimal keys of relations in terms of dense families. The
method of Järvinen is very effective.

We will prove the following result by means of hypergraphs and dense families.

Theorem 1.1. The time complexity of constructing a relation scheme is exponential in
the number of attributes.
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The rest of the paper is organized as follows: in Section 2, some basic concepts
and results of the theory of relational databases are given. In Sections 3 and 4, we first
introduce some basic concepts and properties of hypergraphs and dense families. Next,
we prove some basic results of hypergraphs and dense families. In Section 5, we prove
Theorem 1.1. The final Section is the conclusion.

2. RELATIONAL DATABASES

In this section, we show some key concepts of the theory of relational databases,
which can be found in [1, 3].

Let U = {a1, a1,..., an} be a nonempty finite set of attributes. A map dom associates
with each ai ∈ U its domain dom(ai). A relation Ron U is a subset of Cartesian product
dom(a1)× dom(a2)× ... × dom(an).

We can think of a relation R on U as being a set of tuples: R = {h1, h2,..., hm},

hj : U →
n⋃

i=1

dom(ai), hj(ai) ∈ dom(ai),j = 1, 2, ...,m.

The concept of FD between sets of attributes was introduced by Armstrong [1]. A
FD on U is a statement of the form X → Y , where X, Y ⊆ U . The FD X → Y holds in
a relation R if

(∀hi, hj ∈ R)(hi(X) = hj(X) ⇒ hi(Y ) = hj(Y )).

We also say that R satisfies the FD X → Y .
Let FR be a family of all FDs that holds in R.
R be a relation on U and K ⊆ U . And K is called a minimal key of R if it satisfies

two following conditions:

(K1) K → U ∈ FR,
(K2) 6 ∃ K ′ ⊂ K such that K ′ → U ∈ FR.

The subset K which satisfies only (K1) is called a key of R.
Note that a relation may have several minimal keys. Denote KR the set of all

minimal keys of R.
It is clear that F = FR satisfies

(F1) X → X ∈ F,
(F2) (X → Y ∈ F, Y → Z ∈ F ) ⇒ (X → Z ∈ F ),
(F3) (X → Y ∈ F, X ⊆ V, W ⊆ Y ) ⇒ (V → W ∈ F ),
(F4) (X → Y ∈ F, V → W ∈ F ) ⇒ (X ∪ V → Y ∪ W ∈ F ),
∀X, Y, Z, V, W ⊆ U.

A family of FDs satisfying (F1) - (F4) is called a f -family on U .
FR clearly is an f -family on U . It is known [1] that if F is an arbitrary f -family,

then there is a relation R on U such that FR = F .
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Given a family F of FDs on U , there exists an unique minimal f -family F+ that
contains F . It can be seen that F+ contains all FDs which can be derived from F by the
rules (F1) - (F4).

A relation scheme S is a pair (U, F ), where U is a nonempty finite set of attributes
and F is a set of FDs on U .

Denote X+= {a ∈ U : X → {a} ∈ F+}. X+ is called the closure of X on S.
Let S = (U, F ) be a relation scheme. Clearly, if S = (U , F ) is a relation scheme,

then there is a relation R on U such that FR = F+ (see, [1]). Such a relation is called an
Armstrong relation of S. Evidently, all FDs of S hold in R.

Subset K of U is called a key of S if K → U ∈ F+. K is a minimal key of S if K is
a key of S and any proper subset of K is not a key of S. KS denote the set of all minimal
keys of S.

S = (U, F ) is in BCNF if X → {a} ∈ F+ for X+ 6= U and a /∈ X . If a relation
scheme is changed to a relation then we have the definition of BCNF for that relation.

3. HYPERGRAPHS

In this section, we introduce some basic concepts and results of hypergraphs which
will be needed in next sections. The concepts and facts given in this section can be found
in [2, 4].

Let U be a nonempty finite set and put P (U) be the family of all subsets of U (its
power set). The family H= {E1, E2,..., Em} ⊆ P (U) is called a hypergraph on U if Ei 6= ∅
holds for all i (in [2] it is required that

n⋃

i=1

Ei = U

but in the present paper this requirement is not necessary.)
The elements of U are called vertices, and the sets E1, E2, ..., Em the edges of the

hypergraph H .
A hypergraph H is called simple if it satisfies

∀Ei, Ej ∈ H : Ei ⊆ Ej ⇒ i = j.

It can be seen that KR, KS are simple hypergraphs.
In this paper we always assume that if a simple hypergraph H plays the role of

the set of minimal keys (resp. antikeys, i.e., maximal non-keys), then H 6= ∅ and ∅ /∈ H

(resp. ∅, U /∈ H). We consider the comparison of two attributes as an elementary step
of algorithms. Thus, if we assume that subsets of U are represented as sorted lists of
attributes, then a Boolean operation on two subsets requires at most |U | elementary steps.

Let H be a hypergraph on U . Then min(H) denotes the set of minimal edges of H

with respect to set inclusion, i.e.,

min(H) = {Ei ∈ H :6 ∃ Ej ∈ H : Ej ⊂ Ei}.
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It is clear that, min(H) is a simple hypergraph. Furthermore, min(H) is uniquely
determined by H .

A set T ⊆ U is called a transversal of H (sometimes it is called hitting set) if it
meets all edges of H , i.e.,

∀E ∈ H : T ∩ E 6= ∅.
A transversal T of H is called minimal if no proper subset T ′ of T is a transversal.
The family of all minimal transversals of H is called the transversal hypergraph of

H , and denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.
The following algorithm finds the family of all minimal transversals of a given hy-

pergraph (by induction).

Algorithm 3.1 [5].
Input: Let H = {E1, E2, ..., Em} be a hypergraph on U .
Output: T r(H).
Method:
Step 0 : We set L1 := {{a}: a ∈ E1}. It is obvious that L1 = Tr({E1}).
Step q+1 : (q < m) Assume that

Lq = Sq ∪ {B1, B2, ..., Btq},

where Bi ∩ Eq+1 = ∅, i = 1, 2, ..., tq and Sq = {A ∈ Lq: A ∩ Eq+1 6= ∅}.
For each i (i = 1, 2, ..., tq) constructs the set {Bi∪ {b}| b ∈ Eq+1}. Denote them

by Ai
1, A

i
2, ..., A

i
ri
(i = 1, 2, ..., tq). Let

Lq+1 = Sq ∪ {Ai
p : A ∈ Sq ⇒ A 6 ⊂Ai

p, 1 ≤ i ≤ tq, 1 ≤ p ≤ ri}

Theorem 3.1 [5]. For every q (1 ≤ q ≤ m)Lq = Tr({E1, E2 , ..., E q}), i.e., Lm = Tr(H).
The determination of Tr(H) based on our algorithm does not depend on the order

of E1, E2, ..., Em.
Proposition 3.2 [5]. The time complexity of finding Tr(H) of a given hypergraph H is
(in general) exponential in the number of elements of U .

Now we investigate some results about hypergraphs.
Let H be a simple hypergraph on U . We define a set H−1 as follows:

H−1 = {A ∈ P (U) : (B ∈ H) ⇒ (B 6 ⊆A) and (A ⊂ C) ⇒ (∃B ∈ H)(B ⊆ C)}.

It is easy to see that if H−1 is a hypergraph on U , then H−1 is a simple hypergraph.
For each subset A of U , we define A = U\A. For every family A ⊆ P(U), the

complemente family of A is A = {A : A ∈ A} on U .
We then have following important relationship [8]:

Proposition 3.3. Let H be a simple hypergraph on U. Then

H−1 = Tr(H).

Now let K be a Sperner system on U (i.e. A, B ∈ K implies A 6 ⊆B). Denote

s(K) = min{m : |R| = m, KR = K}.
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Theorem 3.4 ([4]). √
2|K−1| ≤ s(K) ≤ |K−1| + 1.

Because a simple hypergraph is also a Sperner system, from Theorem 3.4 and Propo-
sition 3.3, we have the following corollary.
Corollary 3.1. Let H be a simple hypergraph on U . Then

√
2|Tr(H)| ≤ s(H) ≤ |Tr(H)| + 1.

Now we assume that U = {a1, a2, ..., an}(n > 1). Thus we have the following
remark.
Remark 3.1. Let us take a partition U = X1 ∪ X2 ∪ · · · ∪ Xm ∪ W , where m = [n

3 ] and
|Xi| = 3(1 ≤ i ≤ m).

We set
H = {B : |B| = 2, B ⊆ Xi for some i} if |W | = 0.
H = {B : |B| = 2, B ⊆ Xi for some i : 1 ≤ i ≤ m − 1 or B ⊆ Xm ∪ W} if |W | = 1.
H = {B : |B| = 2, B ⊆ Xi for some i : 1 ≤ i ≤ m or B = W} if |W | = 2.

It can be seen that H is a simple hypergraph on U and n − 1 ≤ |H | ≤ n + 2.
By Proposition 3.3, we have

Tr(H) = {A : |A ∩ Xi| = 1 for all i} if |W | = 0.
Tr(H) = {A : |A ∩ Xi| = 1(1 ≤ i ≤ m − 1) and |A ∩ (Xm ∪ W )| = 1} if |W | = 1.
Tr(H) = {A : |A ∩ Xi| = 1(1 ≤ i ≤ m) and |A ∩ W | = 1} if |W | = 2.

Thus, |Tr(H)| < 3[n
4
].

Set K = (Tr(H))−1, we obtain

K = {C : |C| = n − 3, C ∩ Xi = ∅ for some i} if |W | = 0.
K = {C : |C| = n − 3, C ∩ Xi = ∅ for some i(1 ≤ i ≤ m − 1)
or |C| = n − 4, C ∩ (Xm ∪ W ) = ∅} if |W | = 1.

K = {C : |C| = n − 3, C ∩ Xi = ∅ for some i(1 ≤ i ≤ m) or |C| = n − 2, C ∩ W ) = ∅}
if |W | = 2.

It is easy to see that | K | ≤ m + 1.

4. DENSE FAMILIES

In this section, we introduce some basic concepts and results about dense families
of database relations [6, 7].

The notion of dense family of a database relation is defined in [6] as follows:
Let R be a relation on U . We say that a family D ⊆ P (U) of attribute sets is

R-dense (or dense in R) if FR = FD .
The problem is how to find dense families. Järvinen [5] guarantees the existence of

at least one dense family. In the sequel we denote LFR
simply by LR, i.e.,

LR = {X+
R : X ⊆ U},
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where X+
R= {a ∈ U : X → {a} ∈ FR}.

Propositon 4.1 ([6]). (1) The family LR is R-dense.
(2) If D is R-dense, then D ⊆ LR.

In [6] J. Järvinen proved the following important theorem:
Theorem 4.2. Let R be a relation on U . If D ⊆ P (U) is R-dense, then the following
conditions hold

(1) K is a key of R if and only if it contains an element from each set in {A : A ∈
D, A 6= U}.

(2)K is a minimal key of R if and only if it is minimal with respect to the property
of containing an element from each set in {A : A ∈ D, A 6= U}.

Now we investigate some results about dense families. In [7] we also presented
another dense family of database relations.

Let R = {h1, h2,..., hm} be a relation on U , and ER the equality set of R, i.e.,

ER = {Eij : 1 ≤ i < j ≤ m}

where Eij= {a ∈ U : hi(a) = hj(a)}.
Proposition 4.3 ([7]). The equality set ER is R-dense.

It is easy to see that the dense family ER has at most m(m−1)
2 elements.

In [8] we proved the following important result.
Theorem 4.4. Let R be a relation on U. Then

KR = Tr(min(ER)).

We present an effective application of Theorem 4.4, which is the algorithm of finding
all minimal keys of a given relation.
Algorithm 4.1.
Input: a relation R = {h1, h2, ..., hm} on U = {a1, a2, ..., an}.
Output: KR.
Method:
Step 1. Construct the equality set

ER = {Eij : 1 ≤ i < j ≤ m}

where Eij = {a ∈ U : hi(a) = hj(a)}.
Step 2. Compute the complement of ER as follows:

ER = {Eij : Eij ∈ ER}.

Denote elemens of ER by N1, N2, ..., Nk.
Step 3. From ER compute the family min(ER) = {Ni ∈ ER :6 ∃Nj ∈ ER : Nj ⊂ Ni}.
Step 4. By Algorithm 3.1 we construct the set KR = Tr(min(ER)).

By Algorithm 3.1 and Theorem 4.4, we have KR = Tr(min(ER)). It can be seen
that the time complexity of our algorithm is the time complexity of Algorithm 3.1.
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From Algorithm 4.1, we have the following application, which is the following algo-
rithm of finding a BCNF relation scheme S from a given relation R in BCNF such that
F+ = FR, i.e., R is an Armstrong relation of S.
Algorithm 4.2.
Input: Let R be a BCNF relation on U = {a1, a2,..., an}.
Output: A BCNF relation scheme S = (U , F ) such that R is an Armstrong relation of S.
Method:
Step 1. By Algorithm 4.1 constructs KR.
Step 2. Denoting elements of KR by K1, K2, ..., Km. We construct a relation scheme as
follows: S = (U, F ), where F = {K1 → U , K2 → U,..., Km → U}.

Clearly, S is in BCNF and R is an Armstrong relation of S.
Note that in BCNF class a relation R is an Armstrong relation of relation scheme

S (i.e. FR = F+) if and only if KR = KS .
It can be seen that the time complexity of Algorithm 4.2 is the time complexity of

Algorithm 4.1.

5. PROOF OF THEOREM 1.1

The time complexity of constructing relation scheme in BCNF class is exponential
in the number of attributes. Indeed, we shall prove that:

Claim 1: There is an algorithm of finding a BCNF relation scheme S from a given
BCNF relation R such that R is an Armstrong relation of S, and the time complexity of
this algorithm is exponential in the number of attributes.

Claim 2: There exists a BCNF relation R such that the number of elements of F

of any BCNF relation scheme S = (U, F ) so that R is an Armstrong relation of S is
exponential in the number of attributes.

For Claim 1: We have Algorithm 4.2.
For Claim 2: By Remark 3.1 we have |K| ≤ m + 1. Set M = {C\{a} : C ∈ K,

a ∈ U}. Denote elements of M by C1, ..., Ct. Construct a relation R = {h0, h1, ..., ht}
as follows:

for all a ∈ U, h0(a) = 0

hi(a) =
{

0 if a ∈ Ci,
i otherwise ,

∀i = 1, 2, ..., t.

It is easy to see that
|R| ≤ (m + 1)|U |+ 1.

Now we construct a relation scheme S = (U, F ) with F = {A → U : A ∈ Tr(H)}.
It is clear that S is in BCNF, |F | > 3[n

4
] and R is an Armstrong relation of S.

Hence we can always construct a BCNF relation R in which the number of rows of
R is at most (m + 1)|U | + 1 but for any BCNF relation scheme S = (U, F ) such that R

is an Armstrong relation of S, the number of elements of F is exponential in the number
of attributes.
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Because BCNF relation (resp. relation scheme) class is subset class of relations
(resp. relation scheme), hence, from the above proof it is clear that the time complexity
of constructing relation scheme is exponential in the number of attributes.

The proof is complete. �

6. CONCLUSION

In this paper we investigated the time complexity of constructing a relation scheme
by hypergrahs and dense families. First, we gave an algorithm which from a given BCNF
relation R finds a BCNF relation scheme S such that R is an Armstrong relation of S.

Next, we proved that in BCNF class the time complexity of problem which from a given
BCNF relation R finds a BCNF relation scheme S such that R is an Armstrong relation
of S is exponential in the number of attributes. Because BCNF relation (resp. relation
scheme) class is subset class of relation (resp. relation scheme), the time complexity of
constructing a relation scheme is exponential in the number of attributes.
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