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Abstract
It is shown that if R is a right automorphism-invariant ring and satisfies ACC on right
annihilators, thenR is a semiprimary ring. By this useful fact, we study finiteness conditions
which ensure an automorphism-invariant ring is quasi-Frobenius (QF). Thus, we prove,
among other results, that: (1) R is QF if and only if R is right automorphism-invariant,
right min-CS and satisfies ACC on right annihilators; (2) R is QF if and only if R is left
Noetherian, right automorphism-invariant and every complement right ideal of R is a right
annihilator; (3) If R is right CPA, right automorphism-invariant and every complement right
ideal of R is a right annihilator, then R is QF.

Keywords Automorphism-invariant ring · NCS ring · QF ring
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1 Introduction

A ring R is said to be a QF-ring if R is right or left Artinian and right or left self-injective.
QF-rings form an important class of associative rings known for its application to represen-
tation theory of finite groups. A ring R is called right mininjective if, for any minimal right
ideal I of R, every R-homomorphism from I to R extends to an R-homomorphism from R

to R. In [19, Lemma 2.3], it is shown that if R is a right minsymmetric ring with ACC on
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right annihilators in which Soc(RR) ≤e RR , then R is semiprimary (a ring R is called right
minsymmetric if for any minimal right ideal kR of R, Rk is a minimal left ideal of R). By
this useful lemma, it is also proved that if R is a left and right mininjective ring with ACC
on right annihilators in which Soc(RR) ≤e RR , then R is QF (see [19, Theorem 2.5]).

In [15], Lee and Zhou introduced the notion of an automorphism-invariant (sub)-
module. They defined a submodule N of M to be an automorphism-invariant submodule if
σ(N) ≤ N for every automorphism σ of M . A module is called automorphism-invariant
if it is an automorphism-invariant submodule of its injective hull. Some other properties of
automorphism-invariant modules have been studied in [9, 14, 18].

In the present paper, we prove that if R is a right automorphism-invariant ring and satis-
fies ACC on right annihilators, then R is a semiprimary ring (see Theorem 1). By this key
result, we have R is QF if and only if R is right automorphism-invariant, every right ideal of
R is a right annihilator and satisfies ACC on right annihilators (see Theorem 2). As an appli-
cation, we prove in Theorem 2 that if R is a right automorphism-invariant, right CS ring
with ACC on essential right ideals, then R is a QF ring. It is proved, among other results, if
R is a right automorphism-invariant, right CS ring with ACC on essential left ideals, then R

is a QF ring.
According to [10], a ring R is called right CPA if every cyclic right R-module is a direct

sum of a projective module and an Artinian module. We use [10, Theorem 2.1] to show that
ifR is a right CPA and right C2 ring, thenR is right Artinian. As an application, we prove, in
Corollary 2, that a ring R is QF if and only if R is right CPA, right automorphism-invariant
and every complement right ideal of R is a right annihilator.

We next study some properties of right automorphism-invariant rings satisfying ACC on
essential left ideals. It shows that these rings satisfy J (R) a nilpotent ideal ofR, r(J (R)) ≤e

RR and J (R) = lr(J (R)). Then, we show that R is QF if and only if R is left Noetherian,
right automorphism-invariant and every complement right ideal of R is a right annihilator
(Theorem 3).

Throughout this article, unless otherwise stated, all rings have unity and all modules are
unital. A submodule K of an R-module M is said to be a complement to a submodule N of
M if K is maximal with respect to the property that K ∩ N = 0. A submodule N of an R-
module M is called essential in M , denoted by N ≤e M , if for any nonzero submodule L

of M , L ∩ M �= 0. A submodule N of M is called closed in M if it has no proper essential
extension in M . A nonzero module M is called uniform if any two nonzero submodules
of M intersect nontrivially. Dually, M is called hollow, if every proper submodule of M

is small in M . For a nonempty subset X of a ring R, the left annihilator of X in R is
l(X) = {r ∈ R : rx = 0 for all x ∈ X}. For any a ∈ R, we write l(a) for l({a}).
Right annihilators r(X) are defined similarly. We write J (R), Z(RR), Soc(RR), Soc(RR)

for the Jacobson radical of R, the right singular ideal of R, the right socle of R, and the
left socle of R, respectively. We also write N ≤e M and N ≤⊕ M to indicate that N is an
essential submodule of M and a direct summand of M , respectively. For an integer n ≥ 2,
we use Zn to denote the ring of integers modulo n. We also use N to denote the set of
natural numbers. For other concepts of rings and modules not defined here, we refer to the
texts [3, 5, 16, 20].

2 Automorphism-Invariant Rings

LetM be a module. A submoduleN ofM is said to be an automorphism-invariant submodule
if σ(N) ≤ N for every automorphism σ ofM . A module is called an automorphism-invariant
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module if it is an automorphism-invariant submodule of its injective hull [15]. A ring R is
called right automorphism-invariant if RR is an automorphism-invariant module.

It is clear that a right self-injective ring is right automorphism-invariant. The following
example shows that the converse is not true in general.

Example 1 ([7, Example 9]) The ring

R =
{

(xn)n ∈
∞∏

n=1

Z2 : all except finitely many xn are equal to some a ∈ Z2

}

is a commutative automorphism-invariant ring which is not self-injective.

Lemma 1 Assume that R is right automorphism-invariant. If r(x) = r(y) for all x, y ∈ R,
then Rx = Ry.

Proof This is clear.

We recall that a ring R is called semiprimary if the Jacobson radical J (R) of R is
nilpotent and the ring R/J (R) is a semisimple Artinian ring.

Theorem 1 If R is a right automorphism-invariant ring and satisfies ACC on right
annihilators, then R is a semiprimary ring.

Proof Consider the chain
Rx1 ≥ Rx2 ≥ · · ·

of cyclic left ideals of R. Then we have r(x1) ≤ r(x2) ≤ · · · . By hypothesis, there exists
n ∈ N such that r(xn) = r(xn+k) for all k ∈ N. By Lemma 1, Rxn = Rxn+k for all k ∈ N.
Thus R is right perfect.

Now we consider the ascending chain

r(J (R)) ≤ r(J (R)2) ≤ · · · .
By assumption, there is n ∈ N such that r(J (R)n) = r(J (R)n+k) for all k ∈ N. Let
B = J (R)n. Then, r(B) = r(B2) and B2 �= 0. Now, we shall show that J (R) is nilpotent.
Assume J (R) is not nilpotent. Let

S = {r(b)| b ∈ B and Bb �= 0}.
It is easy to see that S is a non-empty set. Then S has a maximal element, say r(b0) where
b0 ∈ B. Now BBb0 = 0 implies that b0R ≤ r(B2) = r(B) and hence Bb0 = 0, a
contradiction. Therefore there exists an element of B, say x, such that Bxb0 �= 0. However,
since r(b0) ≤ r(xb0), the maximality of r(b0) implies that r(b0) = r(xb0). By Lemma 1,
we obtain that Rb0 = Rxb0, i.e., b0 = sxb0 for some s ∈ R or b0(1 − sx) = 0. Since
sx ∈ B ≤ J (R), we have b0 = 0, a contradiction.

For an R-module M , we have the following definitions [16].

(CS) Every submodule of M is essential in a direct summand of M .
(C2) Every submodule of M that is isomorphic to a direct summand of M is itself a direct

summand of M .
(C3) If A and B are two direct summands of M with A ∩ B = 0, then the sum A + B is a

direct summand of M .
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We remark that:

(∗) An automorphism-invariant module need not be CS;
(∗∗) Any automorphism-invariant module satisfies (C2)-condition and so (C3). Hence

an automorphism-invariant CS module is continuous;
(∗ ∗ ∗) A continuous module need not necessarily be automorphism-invariant.

According to Huynh [11], a module M is called NCS if no nonzero complement
submodule is small. A ring R is right NCS if RR is NCS.

Clearly every CS module is NCS, but the converse is not true:

• The Z-module Z2 ⊕ Z8 is NCS but not CS.
• Let K be a division ring and V be a left K-vector space of infinite dimension. Let

S = EndK(V ) and R =
(

S S

S S

)
. Then R is a right NCS ring but not a right CS ring.

For a hollow module M , it can be easily checked that M is NCS if and only if M is
uniform and M is CS.

In [11], Huynh showed that:

Proposition 1 Let R be a semiperfect ring. If R is right NCS, then R is a right CS ring.

Recall that a module M is called pseudo-injective if, for any submodule A of M , every
monomorphism A → M can be extended to some element of End(M) [13].

Lemma 2 ([7, Theorem 16]) A module M is automorphism-invariant if and only if it is
pseudo-injective.

A ring R is called right min-CS if every minimal right ideal is essential in a direct
summand of RR [17].

A ring R is called rightmininjective if lr(a) = Ra, where aR is a simple right ideal of R.
An idempotent element e of R is called local idempotent if End(eR) is a local ring.

Theorem 2 The following statements are equivalent for a ring R:

1. R is QF.
2. R is right automorphism-invariant, every complement right ideal of R is a right

annihilator and satisfies ACC on right annihilators.
3. R is right automorphism-invariant, right NCS and satisfies ACC on right annihilators.
4. R is right automorphism-invariant, right min-CS and satisfies ACC on right annihila-

tors.
5. R is right automorphism-invariant and satisfies ACC on right annihilators with eR is

uniform for any local idempotent e ∈ R.

Proof (1) ⇒ (2) and (1) ⇒ (5) are obvious.
(2) ⇒ (3) By Theorem 1, the ring R is semiprimary. Since R is right pseudo-injective

by Lemma 2, R is right mininjective and so Soc(RR) ≤ Soc(RR). It follows that R is left
Kasch by [17, Lemma 1.48]. Thus R is right continuous [21, Theorem 10].

(3) ⇒ (4) By Theorem 1, the ring R is semiprimary. Since a semiprimary ring is right
and left perfect, R is right CS by Proposition 1. Hence R is right min-CS.
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(4) ⇒ (1) By Theorem 1, the ring R is semiprimary. Assume that Soc(RR) = ⊕i∈I Si ,
where each Si is simple for any i ∈ I . Since R is right min-CS, there exist idempotent
elements ei of R such that Si essential in eiR. Note that {eiR}i∈I is an independent fam-
ily since {Si}i∈I is an independent family. Hence ⊕i∈I eiR is essential in RR . By (∗∗), we
obtain that ⊕i∈I eiR is a local direct summand of RR . Since R satisfies ACC on right anni-
hilators, we have ⊕i∈I eiR is a closed submodule of RR by [5, Lemma 8.1(1)]. By (∗∗),
we obtain that RR = ⊕i∈I eiR and each eiR is uniform. Hence R is right self-injective by
[1, Lemma 3.5]. Thus R is QF.

(5) ⇒ (1) As we pointed out in the proof of (2) ⇒ (3), the ring R is semiperfect. Hence
R = ⊕n

i=1eiR where ei are local idempotent elements. By the hypothesis, eiR is uniform
for all i = 1, 2, . . . , n. It follows that R is right self-injective by [1, Lemma 3.5].

Recall that a right CS ring with ACC on essential right ideals is a right Noetherian ring
[6, Corollary 18.7]. We have the following result:

Corollary 1 The following statements are equivalent for a ring R:

1. R is QF.
2. R is a right automorphism-invariant, right CS ring with ACC on essential right ideals

(or left ideals).

A ring R is called right CPA if every cyclic right R-module is a direct sum of a projective
module and an Artinian module [10].

Proposition 2 If R is a right CPA and right C2 ring, then R is right Artinian.

Proof By [10, Theorem 2.1], R has a direct decomposition

RR = A ⊕ U(1) ⊕ · · · ⊕ U(n),

where A is an ideal of R such that AR is Artinian and each U(i) is a uniform right R-module
with Soc(U(i)

R ) = 0. We will prove that U(i) = 0 for every i. Assume U(i) �= 0 for some
i. Take 0 �= x ∈ U(i). Since R is right CPA, xR = PR ⊕ BR where PR is projective and
BR is Artinian. However Soc(xRR) = 0 which implies that B = 0, i.e., xR is projective.
It follows that r(x) is a direct summand of RR . Thus xR is a direct summand of RR by
condition C2. So

R = xR ⊕ I,

where I ≤ RR . Therefore,

U(i) = (xR ⊕ I ) ∩ U(i) = xR ⊕
(
I ∩ U(i)

)
.

Since xRR �= 0 and U(i) is uniform, we obtain I ∩ U(i) = 0. So U(i) = xR for each
0 �= x ∈ U(i), which implies that U(i) is simple, a contradiction since Soc(U(i)

R ) = 0.
Hence U(i) = 0, i = 1, 2, . . . , n, and so R = A. Therefore R is a right Artinian ring.

Corollary 2 If R is right CPA, right automorphism-invariant and every complement right
ideal of R is a right annihilator, then R is QF.

Proof It follows immediately from Theorem 2 and Proposition 2.

Author's personal copy



T.C. Quynh et al.

The series of higher left socles {Sl
α} of a ring R are defined inductively as

Sl
1 = Soc(RR)

and

Sl
α+1/S

l
α = Soc(R(R/Sl

α))

for each ordinal α ≥ 1.

Lemma 3 If R is a right automorphism-invariant ring, then J (R) = Z(RR) and R/J (R)

is a von Neumann regular ring.

Proof By [8, Proposition 1].

The following lemma is inspired by Lemma 9 in [4].

Proposition 3 If R is a right automorphism-invariant ring and satisfies ACC on essential
left ideals, then

(1) r(J (R)) ≤e RR ,
(2) J (R) is nilpotent,
(3) J (R) = lr(J (R)).

Proof (1) Since R has ACC on essential left ideals, the ring R/Soc(RR) is left Noetherian
(see [2, 6] or [12]). There exists k > 0 such that Sl

k = Sl
k+1 = · · · and R/Sl

k is a right
Noetherian ring. Now we show that Sl

k ≤e RR . Assume that xR ∩Sl
k = 0 for some 0 �= x ∈

R. Let R̄ = R/Sl
k and lR̄(ā) be a maximal element of the set {lR̄(ȳ)| 0 �= y ∈ xR}. Since

Sl
k = Sl

k+1, we get Soc(R̄R̄) = 0, and so R̄ā is not simple as a left R̄-module. Thus there
exists t ∈ R such that 0 �= R̄t̄ ā < R̄ā.

If āt̄ ā = 0̄, then ata ∈ aR ∩ Sl
k = 0, and so ata = 0. If r(a) = r(ta), then Ra = Rta

by Lemma 1, a contradiction. Thus r(a) < r(ta). Then there exists b ∈ R such that ab �= 0
and tab = 0. It follows that 0 �= ab ∈ xR and lR̄(ā) < lR̄(ab), a contradiction.

If āt̄ ā �= 0̄, then 0 �= R̄āt̄ ā < R̄ā. We have R is right automorphism-invariant, and so if
r(ata) = r(b), b ∈ R then b ∈ Rata. It follows that r(a) < r(ata). Let c ∈ r(ata) \ r(a).
Then 0 �= ac ∈ xR, āt̄ ∈ lR̄(ac) \ lR̄(ā), a contradiction.

Thus Sl
k ≤e RR and hence r(J (R)) ≤e RR (since Sl

k ≤ r(J (R))).
(2) See [4, Lemma 9(ii)].
(3) By Lemma 3, Z(RR) = J (R). On the other hand, for any x ∈ lr(J (R)), then

r(J (R)) ≤ r(x). We have that r(J (R)) ≤e RR and obtain that r(x) ≤e RR . This gives
x ∈ Z(RR) = J (R). So lr(J (R)) ≤ J (R). We deduce that lr(J (R)) = J (R).

Using Proposition 3, we obtain another characterization of QF-rings as follows.

Theorem 3 The following statements are equivalent for a ring R:

1. R is QF.
2. R is left Noetherian, right automorphism-invariant and every complement right ideal

of R is a right annihilator.
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Proof (1) ⇒ (2), (3), (4) This is obvious.
(2) ⇒ (1) As R is left Noetherian, R/J (R) is also a left Noetherian ring. Thus R/J (R)

is a semisimple Artinian ring, since R/J (R) is a von Neumann regular ring by Lemma 3.
By Proposition 3, J (R) is nilpotent and so R is semiprimary. Thus R is a left Artinian ring
which implies that R satisfies ACC on right annihilators. By assumption, every complement
right ideal of R is a right annihilator. Thus R is QF by Theorem 2.
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