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Abstract. We are proposing in this paper a more general network
modeling framework for complex system representation by introducing
Stochastic Pretopology, a result of the combination of Pretopology the-
ory and Random Sets. After giving the definition and some examples
for building stochastic pretopology in many situations, we show how this
approach generalizes graph, random graph, multi-relational networks and
we present an application by giving Pretopology Cascade Model as a gen-
eral model for information diffusion process that can take place in more
complex networks such as multi-relational networks or stochastic graphs.
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1 Introduction

Complex system is a system composed of many interacting parts, such that
the collective behavior of its parts together is more than the “sum” of their
individual behaviors [10]. The topology of complex systems (who interact with
whom) is often specified in terms of networks that are usually modeled by graphs,
composed by vertices or nodes and edges or links. Graph theory has been widely
used the conceptual framework of network models, such as random graphs, small
world networks, scale-free networks [5,11].

However, having more complicated non-regular topologies, complex systems
need a more general framework for their representation [10]. To overcome this
issue, we propose using Stochastic Pretopology built from the mixing between
Pretopology theory and Random Sets theory. Pretopology [2] is a mathematical
tool for modeling the concept of proximity which allows us to follow structural
transformation processes as they evolve while random sets theory [9,12] provides
the good ways for handling what happens in a stochastic framework at the sets’
level point ot views.
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In this paper, after recalling basics of pretopology and the definition of graphs
in the Berge sense [3], we first show pretopology as an extension of graph theory
which leads us to the definition of pretopology networks as a general frame-
work for network representation. Connected to random sets theory, we then give
the definition of Stochastic Pretopology and propose different ways for building
such a pretopology that is useful for modeling the topological structure of com-
plex systems in different spaces such as metric space, valued or binary relation
spaces. These models can be convenient to handle phenomena in which collective
behavior of a group of elements can be different from the summation of element
behaviors composing the group. After presenting Independent Cascade model [6]
and Independent Threshold model [7] under stochastic pretopology language, we
will propose pretopological information diffusion model as a general diffusion
model that can take place in more complex networks such as multi-relational
networks or stochastic graphs. Stochastic graphs presented in this paper are
defined by extending the definition of graph in the Berge sense [3] G = (V, Γ ).
In this approach, by considering Γ function as a finite random set defined from
a degree distribution, we give a general graph-based network model in which
Erdős-Rényi model and scale-free networks are special cases.

The rest of this paper is organized as follows: Sect. 2 briefly recalls basic
concepts of pretopology theory prepared for building stochastic pretopology in
Sect. 3; we then conclude by presenting an application of stochastic pretopology
in information diffusion.

2 Pretopology as a Group Modeling in Complex
Networks

For modeling the dynamic processes on complex networks, topology theory is not
suitable since the idempotent property of its closure function makes it impossible
for changing unless changing the topological structure. So, we propose in this
section a new insight on networks modeling with pretopology theory. Pretopology
[2] is considered as an extension of topology obtained by the relaxing of its
axiomatic. The pretopology is a tool for modeling the concept of proximity that
allows monitoring step by step the evolution of a set. It establishes a powerful
tools for the structure analysis, classification, and multi-criteria clustering [4].
It also applies for group modeling in social networks. Based on set theory, by
considering a group of elements as a set, pretopology formalism allows us to
consider a group as a whole independent entity.

2.1 Pseudo-Closure Function

Definition 1. We call pseudo-closure defined on a set V , any function a(.) from
P(V ) into P(V ) such as:

(P1): a(∅) = ∅;
(P2): A ⊂ a(A) ∀A,A ⊂ V

(V, a) is then called pretopological space.
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Pseudo-closure allows, for each of its applications, to add elements to a set
departure according to defined characteristics. The starting set gets bigger but
never reduces. There are different ways to build a pseudo-closure function.

(a) V is equipped with a metric. When space V is equipped with a metric
d, we can build a pseudo-closure function a(.) on V with a closed ball of center
x and radius r (B(x, r) = {y ∈ V |d(x, y) ≤ r}):

∀A ∈ P(V ), a(A) = {y ∈ V |B(x, r) ∩ A �= ∅} (1)

The pseudo-closure a(A) is a set of all elements y ∈ V such that y is within
a distance of at most radius r from at least one element of A.

(b) The elements of V are linked by a valued relation. In order to model
certain problems such as model in weighted graph, we often need the space V
are bound by a valued relation. For instance, we can define an real value ν on
relations as a function from V ×V → R as: (x, y) → ν(x, y). The pseudo-closure
a(.) can build such as:

∀A ∈ P(V ), a(A) = {y ∈ V − A|
∑

x∈A

ν(x, y) ≥ s} ∪ A; s ∈ R (2)

(c) The elements of V are linked by n reflexive binary relations. Sup-
pose we have a family (Ri)i=1,...,n of binary reflexive relations on a finite set V .
For each relation Ri, we can define pretopological structure by considering the
following subset: ∀i = 1, 2, . . . , n,∀x ∈ V, Vi(x) defined by:

Vi(x) = {y ∈ V |xRi y}
We can define the pseudo-closure a(.) by:

∀A ∈ P(V ), a(A) = {x ∈ V |∀i = 1, 2, . . . , n, Vi(x) ∩ A �= ∅} (3)

(d) The elements of V are equipped with a neighborhood function. Let
us consider a multivalued function Γ : V → P(V ) as a neighborhood function.
Γ (x) is a set of neighborhoods of element x. We define a pseudo-closure a(.) as
follows:

∀A ∈ P(V ), a(A) = A ∪ (
⋃

x∈A

Γ (x)) (4)

2.2 Pretopology as an Extension of Graph Theory

(a) Graphs in the Berge sense. By using the knowledge from multivalued
function, Claude Berge [3] defined a graph such as:

Definition 2. A graph, which is denoted by G = (V, Γ ), is a pair consisting of
a set V of vertices or nodes and a multivalued function Γ mapping V into P(V ).

The pair (x, y), with y ∈ Γ (x) is called an arc or edge of the graph. We
therefore can also denote a graph by a pair G = (V,E), which V is a set of
nodes and E is a set of edges. Conversely, if we denote a graph as G = (V,E),
we can define the Γ function as: Γ (x) = {y ∈ V |(x, y) ∈ E}. Γ (x) is a set of
neighbors of node x.



Stochastic Pretopology as a Tool for Topological Analysis 105

(b) Pretopology as an extension of Graph theory. In this part, we show
reflexive graph (V, Γ ) which is a special case of pretopology. More specifically, as
it is known, a finite reflexive graph (V, Γ ) complies the property: ∀A ⊂ V, a(A) =
∪x∈Aa({x}) where pseudo-closure function defined as a(A) = ∪x∈AΓ (x). For this
reason, graph may be represented by a VD-type pretopological space. Conversely,
we can build a pretopology space (V, a) presented a graph such as: a(A) = {x ∈
V |Γ (x) ∩ A �= ∅} where Γ (x) = {y ∈ V |xR y} built from a binary relation
R on V . Therefore, a graph (V, Γ ) is a pretopological space (V, a) in which the
pseudo-closure function built from a binary relation or built from a neighborhood
function in Eq. (4).

By using a graph, a network is represented with only one binary relation.
In the real world, however, a network is a structure made of nodes that are
tied by one or more specific types of binary or value relations. As we show in
the previous, by using pretopology theory, we can generalize the definition of
complex network such as:

Definition 3 (Pretopology network). A pretopology network, which is denoted
by G(Pretopo) = (V, a), is a pair consisting of a set V of vertices and a pseudo-
closure function a(.) mapping P(V ) into P(V ).

3 Stochastic Pretopology (SP)

Complex systems usually involve structural phenomena, under stochastic or
uncontrolled factors. In order to follow these phenomena step by step, we need
concepts which allow modelling dynamics of their structure and take into account
the factors’ effects. As we showed in the previous section, we propose to use pre-
topology for modelling the dynamics of phenomena; the non idempotents of
its pseudo-closure function makes it suitable for such a modelling. Then, we
introduce stochastic aspects to handle the effects of factors influencing the phe-
nomena. For that, we propose using a theory of random sets by considering that,
given a subset A of the space, its pseudo-closure a(A) is considered as a random
set. So, we have to consider the pseudo-closure not only as a set transform but
also as a random correspondence.

Stochastic pretopology was first basically introduced in Chap. 4 of [2] by
using a special case of random set (the simple random set) to give three ways to
define stochastic pretopology. We have also given some applications of stochastic
pretopology such as: modeling pollution phenomena [8] or studying complex net-
works via a stochastic pseudo-closure function defined from a family of random
relations [1]. Since we will deal with complex networks in which set of nodes V
is a finite set, we propose in this paper another approach for building stochastic
pretopology by using finite random set theory [12].

From now on, V denotes a finite set. (Ω,A,P) will be a probability space,
where: Ω is a set, representing the sample space of the experiment; A is a σ-
algebra on Ω, representing events and P : Ω → [0, 1] is a probability measure.
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3.1 Finite Random Set

Definition 4. A finite random set (FRS) with values in P(V ) is a map X :
Ω → P(V ) such as

X−1({A}) = {ω ∈ Ω : X(ω) = A} ∈ A for any A ∈ P(V ) (5)

The condition (5) is often called measurability condition. So, in other words,
a FRS is a measurable map from the given probability space (Ω,A, P ) to P(V ),
equipped with a σ-algebra on P(V ). We often choose σ-algebra on P(V ) is
the discrete σ-algebra E = P(P(V )). Clearly, a finite random set X is a ran-
dom element when we refer to the measurable space (P(V ), E). This is because
X−1(E) ⊆ A since ∀A ∈ E ;X−1(A) = ∪A∈AX−1(A).

3.2 Definition of Stochastic Pretopology

Definition 5. We define stochastic pseudo-closure defined on Ω × V , any
function a(.,.) from Ω × P(V ) into P(V ) such as:

(P1): a(ω, ∅) = ∅ ∀ω ∈ Ω;
(P2): A ⊂ a(ω,A) ∀ω ∈ Ω,∀A,A ⊂ V ;
(P3): a(ω,A) is a finite random set ∀A,A ⊂ V

(Ω × V, a(., .)) is then called Stochastic Pretopological space.

By connecting the finite random set theory [9,12], we can build stochastic
pseudo-closure function with different ways.

3.3 SP Defined from Random Variables in Metric Space:

By considering a random ball B(x, ξ) with ξ is a non-negative random variable,
we can build a stochastic pseudo-closure a(.) in metric space such as:

∀A ∈ P(V ), a(A) = {x ∈ V |B(x, ξ) ∩ A �= ∅} (6)

3.4 SP Defined from Random Variables in Valued Space:

We present two ways to build stochastic pseudo-closure by extending the defi-
nition of pseudo-closure function on valued space presented in Eq. (2). Firstly,
by considering threshold s is a random variable η, we can define a stochastic
pseudo-closure a(.) such as:

∀A ∈ P(V ), a(A) = {y ∈ V − A|
∑

x∈A

ν(x, y) ≥ η} ∪ A (7)

where threshold η is random variable.
Secondly, by considering the weight function ν(x, y) between two elements

x, y as a random variable, we can define a stochastic pseudo-closure a(.) such
as:

∀A ∈ P(V ), a(A) = {y ∈ V − A|
∑

x∈A

νΩ(x, y) ≥ s} ∪ A (8)

where νΩ(x, y) is a random variable.
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3.5 SP Defined from a Random Relation Built from a Family
of Binary Relations

Suppose we have a family (Ri)i=1,...,m of binary reflexive relations on a finite set
V . We call L = {R1, R2, . . . , Rm} is a set of relations. Let us define a random
relation R : Ω → L as a random variable:

P (R(ω) = Ri) = pi; pi ≥ 0;
m∑

i=1

pi = 1.

For each x ∈ V , we can build a random set of neighbors of x with random
relation R:

ΓR(ω)(x) = {y ∈ V |xR(ω) y}
We can define a stochastic pseudo-closure a(.,.) such as:

∀A ∈ P(V ), a(ω,A) = {x ∈ V |ΓR(ω)(x) ∩ A �= ∅} (9)

3.6 SP Defined from a Family of Random Relations

We can extend the previous work by considering many random relations. Suppose
we have a family (Ri)i=1,...,n of random binary reflexive relations on a set V . For
each x ∈ V , we can build a random set of neighbors of x with random relation
Ri, i = 1, 2, . . . , n:

ΓRi(ω)(x) = {y ∈ V |xRi(ω) y}
We can define a stochastic pseudo-closure a(., .) such as:

∀A ∈ P(V ), a(ω,A) = {x ∈ V |∀i = 1, 2, . . . , n, ΓRi(ω)(x) ∩ A �= ∅} (10)

3.7 SP Defined from a Random Neighborhood Function

Let us consider a random neighborhood function as a random set Γ : Ω ×
V → P(V ). Γ (ω, x) is a random set of neighborhoods of element x. We define a
stochastic pseudo-closure a(.,.) as follows:

∀A ∈ P(V ), a(ω,A) = A ∪ (
⋃

x∈A

Γ (ω, x)) (11)

We have shown in this section how we construct stochastic pseudo-closure func-
tions for various contexts. That is to say how proximity with randomness can be
delivered to model complex neighborhoods formation in complex networks. In
the two next sections, we will show how stochastic pretopology can be applied
for modeling dynamic processes on complex networks by representing classical
information diffusion models under stochastic pretopology language and then
proposing Pretopology Cascade Model as a general information diffusion model
in which complex random neighborhoods set can be captured by using stochastic
pseudo-closure functions.
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4 Stochastic Pretopology as a General Information
Diffusion Model on Single Relational Networks

Information diffusion has been widely studied in networks, aiming to model the
spread of information among objects when they are connected with each other.
In a single relational network, many diffusion models have been proposed such as
tipping model, threshold models, cascade models, . . . [5,11]. We assume a network
G = (V, Γ,W ), where W : V × V → R is weight function. W (x, y) is the weight
of edge between two nodes x, y in threshold model or the probability of node y
infected from node x in cascade model.

The diffusion process occurs in discrete time steps t. If a node adopts a new
behaviour or idea, it becomes active, otherwise it is inactive. An inactive node
has the ability to become active. The set of active nodes at time t is considered
as At. We present in the following two scenarios in which stochastic pretopol-
ogy as extensions of both Independent Cascade (IC) model [6] and Independent
Threshold (IT) model [7].

4.1 Stochastic Pretopology as an Extension of IC Model

Independent Cascade model. Under the IC model, at each time step t where
Anew

t−1 is the set of newly activated nodes at time t−1, each x ∈ Anew
t−1 infects the

inactive neighbors y ∈ Γ (x) with a probability W (x, y).

Representing IC model under stochastic pretopology language: We can
represent IC model by giving a definition of stochastic pretopology based on two
definitions in subsection 3.4,3.7: we firstly define a random set of actived nodes
from each node x ∈ Anew

t−1 and then use a random neighbor function to define the
random active nodes in the time t. Specifically, Anew

t is defined via two steps:

i. For each x ∈ Anew
t−1 , set of actived nodes from x, Γ (active)(x), defined as:

Γ (active)(x) = {y ∈ Γ (x)|W (x, y) ≥ η}; η ∼ U(0, 1) (12)

ii. The set of newly active nodes, Anew
t , defined as:

Anew
t = a(Anew

t−1 ) − At−1;At = At−1 ∪ a(Anew
t−1 ) (13)

where:
a(Anew

t−1 ) = Anew
t−1

⋃
(

⋃

x∈Anew
t−1

Γ (active)(x)) (14)

4.2 Stochastic Pretopology as an Extension of IT Model

Independent Threshold model: Under the IT model, each node y selects a
randomly threshold θy ∼ U(0, 1). Then, at each time step t where At−1 is the set
of nodes activated at time t − 1 or earlier, each inactive node y becomes active
if

∑
x∈Γ−1(y)∩At−1

W (x, y) ≥ θy where Γ−1(y) = {x ∈ V |y ∈ Γ (x)}.
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Representing IT model under stochastic pretopology language: We can
represent IC model by giving a definition of stochastic pretopology such as:

At = a(At−1) = {y ∈ V −At−1|
∑

x∈Γ−1(y)∩At−1

W (x, y) ≥ η}∪At−1; η ∼ U(0, 1)

5 Pretopology Cascade Models for Modeling Information
Diffusion on Complex Networks

Most of information diffusion models are defined via node’s neighbors. In general,
at each time step t, the diffusion process can be described in two steps:

Step 1: define set of neighbors N(At−1) of set of active nodes At−1.
Step 2: each element x ∈ N(At−1) − At−1 will be influenced by all elements in

At−1 to be active or not active node by following a diffusion rule.

We consider the way to define set of neighbors N(At−1) in step 1. In classi-
cal diffusion model with complex network represented by a graph G = (V, Γ ),
N(At−1) is often defined such as: N(At−1) = ∪x∈At−1Γ (x). By using the con-
cepts of stochastic pretopology theory introducted in the Sect. 3, the information
diffusion process can be generalized by defining a set of neighbors N(At−1) as
a stochastic pseudo-closure function N(At−1) = aΩ(At−1). We therefore pro-
pose the Pretopological Cascade Model presented in the following as a general
information diffusion model which can be captured more complex random neigh-
borhoods set in diffusion processes.

Definition 6. Pretopological Cascade model:
Under the Pretopological Cascade model, at each time step t, the diffusion process
takes place in two steps:

Step 1: define set of neighbors N(At−1) of At−1 as a stochastic pseudo-closure
function N(At−1) = aΩ(At−1).

Step 2: each element x ∈ N(At−1)−At−1 will be influenced by At−1 to be active
or not active node by following a “diffusion rule”.

For defining N(At−1) in step 1, we can apply different ways to define stochas-
tic pseudo-closure function presented in Sect. 3. “Diffusion rule” in step 2 can
be chosen by various ways such as:

– Probability based rule: element x infects the inactive elements y ∈ N(At−1)
with a probability Px,y.

– Threshold rule: inactive elements y ∈ N(At−1) will be actived if sum of all
influence of all incoming elements of y greater than a threshold θy.

We present in the following two examples of the pretopological cascade model:
the first takes place in a stochastic graph by defining random neighbors sets
based on nodes’ degree distribution and the second takes place in multi-relational
networks where random neighbors set is built from a family of relations.
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5.1 Pretopological Cascade Model on Stochastic Graphs

Definition 7 (Stochastic Graph). A stochastic graph, which is denoted by GΩ =
(V, ΓΩ) is a pair consisting of a set V of vertices and a finite random set ΓΩ

mapping Ω × V into P(V ).

The random neighbor function ΓΩ in the definition 7 can be defined in a general
way from finite random set theory [12]. Since the nodes’ degree distribution is
necessary for studying network structure, we propose here the way to defining
the random neighbor function ΓΩ via two steps:

1. Defining probability law of the cardinality of ΓΩ (in fact, ΓΩ is a degree
distribution of network).

Prob(|ΓΩ | = k) = pk for k = 1, 2, . . . ,∞ (15)

2. Assigning probability law on V k for k = 1, 2, . . . ,∞
Prob(Γ (1)

Ω = x(1), . . . , Γ
(k)
Ω = x(k)||ΓΩ | = k) for x(1), . . . , x(k) ∈ V (16)

We can see some classical network models are specical cases of this kind of
stochastic graph. For example, we have Erdős-Rényi model if |ΓΩ | ∼ U(0, 1)
and scale-free networks model when |ΓΩ | follows a power-law distribution. We
also have other network models by using other probability distributions such as
Poisson distribution, Geometry distribution, Binomial distribution, etc.

Pretopological cascade model on Stochastic Graph. Under the Pretopo-
logical Cascade model on stochastic graph, at each time step t, each x ∈ At−1

generates a random number of neighbors η following a degree distribution given
by the Eq. (15) and then generates random neighbors set ΓΩ(x) following a point
distribution given by the Eq. (16); after that x infects the inactive neighbors
y ∈ ΓΩ(x) with a probability Px,y.

5.2 Pretopological Cascade Model on Multi-relational Networks

Multi-relational network. A multi-relational network can be represented as a
multi-graph, which allows multiple edges between node-pairs. A multi-relational
network, which is denoted by G(multi) = (V, (Γ1, Γ2, . . . , Γm)), is a pair consisting
of a set V of vertices and a set of multivalued functions (Γi)i=1,2,...,m mapping
V into 2V . Γi is a neighbor function following the relation Ri.

Defining Random neighbors set on Multi-relational network. Let us
define a random index η takes values on {1, 2, . . . ,m} such as a random variable:

P (η = i) = pi; i = 1, 2, . . . ,m; pi ≥ 0;
m∑

i=1

pi = 1 (17)

We define a random neighbor function Γη based on random index η such as:
Γη = Γi if η = i. For each x ∈ V , we can build a random set of neighbors of x:
Γη(x) = Γi(x) if η = i, i = 1, 2, . . . ,m.
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Pretopological cascade model on Multi-relational network. Under the
pretopological cascade model on multi-relational networks, at each time step t,
each x ∈ At−1 generates a random index η given by the Eq. (17) then generates
random neighbors set Γη(x); after that x infects the inactive neighbors y ∈ Γη(x)
with a probability Px,y.

We can extend this model by choosing randomly a set Sη ⊂ {1, 2, . . . ,m} and
then using interset or union operator to generate a random set of neighbors of
x. For example, we can define Γη(x) = ∪ki∈Sη

Γki
(x) or Γη(x) = ∩ki∈Sη

Γki
(x).

6 Conclusion

In this paper, we proposed Stochastic Pretopology as a general mathematical
framework for complex systems analysis. The advantage of this approach is that
we can not only deal with uncontrolled factors by using random sets but also work
with a set as a whole entity, not as a combination of elements. We illustrate our
approach by introducing various ways to define a stochastic pseudo-closure func-
tion in many situations. Furthermore, we presented an application by proposing
Pretopology Cascade Model, a general information diffusion model which can
apply on diffirent kinds of complex networks such as stochastic graphs, multi-
relational networks. A point not discussed in this paper which can be seen as a
perspective is practical aspects of the proposed model. In future works can be
developed a software library for implementing stochastic pretopology algorithms
and applying the proposed model for real-world complex systems.
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