
www.bmrat.org

Volume 4 Issue S September 2017

Supplement to:

BIOMEDICAL RESEARCH AND THERAPY

International Conference INNOVATIONS IN CANCER RESEARCH AND REGENERATIVE MEDICINE Sept 10 to 13 - Ho Chi Minh city, Vietnam

POSTER

Hydrothermal synthesis of carbon nanodots from millets for cancer cells imaging

Quang Ngo Khoa, Tran Thi Xuan Thuy, Che Thi Cam Ha

Hue College of Sciences, Hue City, Vietnam

Abstract

We presented a green, simple and economical method to synthesize carbon nanodots (C-dots) from millets using hydrothermal synthesis route. The obtained C-dots have average diameter ranging from 6 to 8 nm. Optical measurements showed the formation of hydroxyl, carbonyl/carboxyl, amino functional groups on the particle surfaces, resulting in their high hydrophilicity and bioconjugation. After treatment with C-dots, human cervical and lung cancer cells became bright and exhibited multicolor fluorescence under different excitation wavelength. The achievement demonstrated potential applications of fluorescent C-dots in the field of biomedical application, especially in diagnostic disease techniques.

Keywords

Carbon nanodots, Photoluminescence, Natural biomass, Millets, Hydrothermal method, Biomedical application, human cervical cancer cells, lung cancer cells.

Funding

References

1) Xiaohu G, Lily Y, John AP, Fray FM, Jonathan WS and Shuming N (2005) In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol 16:63-72 2) Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–87153

3) He Y, Lu HT, Sai LM, Su YY, Hu M, Fan CH, Huang W, Wang LH (2008) Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv Mater 20(18):3416–3421

4) Sheila NB and Gary AB (2010) Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49:6726 – 6744

5) Haitao L, Zhenhui K, Yang L and Shuit TL (2012) Carbon nanodots: synthesis, properties and applications. J. Mater. Chem 22:24230–24253

*For correspondence:

chethicamha@yahoo.com

Competing interests: The authors declare that no competing interests exist.

Received: 2017-07-05 Accepted: 2017-08-05 Published: 2017-09-05

Copyright The Author(s) 2017. This article is published with open access by BioMedPress (BMP).

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.