
Multilayer classification of web pages using
Random Forest and semi-supervised Latent

Dirichlet Allocation

Karim Sayadi
University Pierre and Marie Curie

CHArt Laboratory EA 4004
Paris, France

Email: karim.sayadi@upmc.fr

Quang Vu Bui
Ecole Pratique des Hautes Etudes

CHArt Laboratory EA 4004
Paris, France

Email : quang-vu.bui@etu.ephe.fr

Marc Bui
Ecole Pratique des Hautes Etudes

CHArt Laboratory EA 4004
Paris, France

Email : marc.bui@ephe.sorbonne.fr

Abstract—The classification of web pages content is
essential to many information retrieval tasks. In this paper,
we propose a new methodology for a multilayer soft
classification. Our approach is based on the connection
between the semi-supervised Latent Dirichlet Allocation
(LDA) and the Random Forest classifier. We compute
with LDA the distribution of topics in each document
and use the results to train the Random Forest classifier.
The trained classifier is then able to categorize each web
document in different layers of the categories hierarchy.
We have applied our methodology on a collected data set
from dmoz and have obtained satisfactory results.

Index Terms: Semi-Supervised Latent Dirichlet Allo-
cation (LDA), Topic modeling, Web Classification, Ran-
dom Forest.

I. INTRODUCTION

The task of text classification (also known as text
categorization) is a standard problem addressed in ma-
chine learning and statistical Natural Language Process-
ing (NLP) [1]. In this task, a text is assigned to one or
more predefined class (i.e category) labels through a
specific process in which a classifier is built, trained
and then applied to label future incoming texts. Several
Machine Learning algorithms have been applied to text
classification, to name a few : Rocchio’s Algorithm, N-
Nearest Neighbors, Naive Bayes, Decision tree, Support
Vector Machine (SVM), and Neural Network. These
algorithms have showed good results [1], [2].

With the increasing popularity of the web, text
classification was soon applied to web pages motivated
by many information retrieval tasks [3] related to the
web content. The following applications as described
in [4] show this motivation.

First, web pages classification is essential to the
development, expansion, and maintenance of web di-
rectories, such as those provided by Yahoo! 1 or the
Directory Mozilla dmoz ODP (dmoz) 2 which used to

1http://www.yahoo.com
2http://www.dmoz.org

require a considerable human effort to manage. In the
aim of automatically maintain those directory services,
this work [5] applied the Naive Bayes for an automatic
classification based on the content of the home pages of
different web sites. The Naive Bayes approach is easy
to implement and gaves good results [2].

Second, web search engines usually present the
search results in a ranked list. Web pages classification
gives us the possibility to have different ranked results
lists with different categories. This may help the user
to get more insights on what he is looking for when
he does not have a well formulated query. Towards this
effort, the authors of this work [6] used SVM to cluster
the research results into different categories. Although,
their approach showed good results, their clustering was
flat and did not take into account the hierarchy of the
categories.

Third, the task of data extraction from the web, also
known as crawling, is a critical problem due to the
highly heterogeneous data sources. Web pages classi-
fication can help with building a focused web crawler
rather than performing a full crawl which is usually
inefficient. This article [7] presented a good architecture
based on XML to extract data from web sites. This
data extraction requires a solid data validation and error
recovery rules. For now those rules are being manually
edited and the authors emphasized the importance of
using classification techniques to generate the rules.

In order to propose a new approach of the issues
cited above, this paper presents a methodology for
a multilayer soft classification of web pages textual
content. Soft classification refers to a set of probabilities
distribution representing the features of each web page
and multilayer refers to the different layers in the hierar-
chy of categories (see fig. 5.). In contrast to the related
work (section II), our approach (section III) takes into
account all the semantic structures (subsection A.) of
the text in the web page and classify it accordingly
(subsection B.). Our methodology allowed us to obtain
good accuracy results on a Data collection from dmoz
(section IV).978-1-4673-7328-9/15/$31.00 c©2015 IEEE

II. RELATED WORK

Random Forests have been used in different area of
research [8] including : image classification, network
intrusion detection, fraud detection, biological activity
categorization, etc. Nevertheless, few works have been
dedicated to the categorization of web text content using
random forests. We briefly review them in the following.

In [9] the authors employed the Random Forest to
classify web documents into a hierarchy of directories.
The keywords were extracted from the documents and
were used as attributes to learn the random trees.
The authors used a already implemented version of
Random Forest in WEKA 3.5.6 software developed by
the University of Waikato and showed that Random
Forest performed better than other well known learn-
ing methods such as Naive Bayes or the multinomial
regression model.

This work [10] introduced a news article classifi-
cation framework based on Random Forests that are
trained on multimodal features (i.e. textual and visual
features). To extract the textual feature the authors used
an N-gram statistics [3]. Although their multimodal
approach only gave a slight improvement in the results
compared to the random forests trained on the textual
feature, this article proved the capacity of Random
Forest to classify texts based on different types of
attributes.

Towards a common framework for text catego-
rization based on the Random Forest, the authors of
this work [11] presented an improvement in the used
methods for building the random forest. A new feature
extraction method and a tree selection was developed
and synergistically served for making random forest
framework well suited for categorizing text. The au-
thors compared their framework with classical machine
learning methods used for text classification and showed
that their algorithm effectively reduce the upper bound
of the generalization error and improve classification
performance.

The main issue with learning the random forest
classifier is the task of features extraction from the web
documents. The work of [10] used the N-grams method,
and the work of [9] used a bag of word approach
with a simple document frequency selection. In our
work, we chose to use the Latent Dirichlet Allocation
(LDA) because it showed better information rates than
the both approaches [12], [13]. It also allows us to
perform a soft classification with a set of probability
distributions over the possible classes. But, LDA is a
complete unsupervised method that does not allow any
control on the computed features. Thus, we decided to
use a semi-supervised version based on the works of
[14], [15].

III. METHODOLOGY

In this section, we present our methodology for
a soft multilayer classification of text content in web

pages (i.e web documents). The classification is pro-
ceeded as following : we first compute the distribution
of topics and the distribution of words for each topic in
the web documents, this step will allow us to categorize
the web documents in the lower level of the hierarchy
(layer 3 in Fig. 5.). The second step consists of using
the both distributions to learn a classifier and categorize
the web documents in a higher level of the hierarchy
(layer 1 and layer 2 in Fig. 5.).

We present in the first sub-section the semi-
supervised version of the Latent Dirichlet Allocaiton
[12], [14], [15] used in the first step and then we present
in the second sub-section the Random Forest Classifier
[16], [8] used in the second step.

A. Semi-supervised Latent Dirichlet Allocation

We first present the Latent Dirichlet Allocation and
the topic latent variables. Then, we define the semi-
supervised version with the new variables.

1) The Latent Dirichlet Allocation: Latent Dirichlet
Allocation (LDA) by Blei et al. [12] is a generative
probabilistic model for collections of grouped discrete
data. Each group is described as a random mixture over
a set of latent topics where each topic is a discrete
distribution over the collections’s vocabulary. LDA is
applicable to any corpus of grouped discrete data.
In this work, we will refer to the standard Natural
Language Processing (NLP) use case where a corpus
is a collection of documents, and the data are words.
In more details, LDA represents documents as mixtures
of topics that spit out words with certain probabilities.
Unlike traditional clustering algorithms, e.g K-means
and uni-gram models, LDA is a mixed-membership
model which allow data to arise from a mixture of
clusters rather than limiting from one single cluster.

wd,n

z

θθθd

φφφk

α

β

word n

document d

topic k

Fig. 1. Bayesian network (BN) of latent Dirichlet allocation. BN is a
probabilistic graphical model where the observed variable is in gray,
here for example the wd,n word n in the document d. The plates
represent the occurrences of the variables or the pattern.

The generative model of LDA [12] is described with
the probabilistic graphical model [17] in Fig. 1. In this
LDA model, different documents d have different topic

proportions θd. In each position in the document, a
topic z is then selected from the topic proportion θd.
Finally, a word is picked from all vocabularies based on
their probabilities φk in that topic z. θd and φk are two
Dirichlet distribution with α and β as hyperparameters.
We assume symmetric Dirichlet priors with α and β
having a single value.

The hyperparameters specify the nature of the priors
on θd and φk. The hyperparameter α can be interpreted
as a prior observation count of the number of times
a topic z is sampled in document d [18]. The hyper
hyperparameter β can be interpreted as a prior observa-
tion count on the number of times words w are sampled
from a topic z [18], [19].

The advantage of the LDA model is that examining
at the topic level, instead of at the word level, allows
us to gain more insights into the meaningful structure
of documents, since noise can be suppressed by the
process of clustering words into topics. Consequently,
we can utilize the topic proportion in order to organize,
search, and classify a collection of web documents more
effectively.

The key problem in LDA is its posterior inference.
This refers to reversing the defined generative process
and learning the posterior distributions of the latent
variables in the model given the observed data. In LDA,
this amounts to solve the following equation:

p(θ, φ, z|w,α, β) = p(θ, φ, z, w|α, β)
p(w|α, β)

(1)

Unfortunately, this distribution is intractable to compute
[20]. The normalization factor in particular, p(w|α, β),
is intractable. This problem is resolved with a number
of state-of-the-art approximate inference techniques :
Variational Inference and Gibbs Sampling are widely
used in the literature [18]. Within our methodology we
propose to use the Collapsed Gibbs Sampling version.
This version proved its efficiency and simplicity [21].

The collapsed Gibbs sampler for LDA needs to
compute the probability of a topic z being assigned to a
word wi, given all other topic assignments to all other
words. Somewhat more formally, we are interested in
computing the following posterior up to a constant:

p(zi | z−i, α, β, w) (2)

where z−i means all topic allocations except for zi.

P (zi = j|z−i, w) ∝
nwi
−i,j + β

n
(·)
−i,j + V β

ndi
−i,j + α

ndi
−i,· +Kα

(3)

where nwi
−i,j is the number of times word wi was

related to topic j. n(·)−i,j is the number of times all
other words were related with topic j. ndi

−i,j is the
number of times topic j was related with document
di. ndi

−i,· is the number of times all other topics were
related with document di. V is the number of words in

the vocabulary and K is the number of topics. Those
notations were taken from the work of Thomas Griffiths
and Mark Steyvers [21].

φ̂
(w)
j =

n
(w)
j + β

n
(·)
j + V β

(4)

θ̂
(d)
j =

n
(d)
j + α

n
(d)
· +Kα

(5)

Equation (4) is the bayesian estimation of the distribu-
tion of the words in a topic. Equation (5) is the bayesian
estimation of the distribution of topics in documents.

2) The semi-supervised version: LDA is widely
used topic modeling method in the NLP area. How-
ever this methods is unsupervised and therefore does
not allow to include knowledge to guide the learning
process. In this subsection we present a semi-supervised
version of LDA based on the works of [14], [15]. The
supervision of the process is within two levels.

Require: : Labels for key words, Labels for document.
1: loop for each iteration
2: loop for each document d
3: loop for each word w
4: if word labeled then
5: apply equation (7)
6: sample zij form Ti,j based on equation (6)
7: else if document labeled then
8: apply equation (8)
9: sample zij form Ti based on equation (6)

10: else
11: sample zij form T based on equation (3)
12: end if
13: Output : Distribution of the words in a topic φ̂(w)

j and the

distribution of the topics in a document θ̂(d)j .

Fig. 2. The semi-supervised Latent Dirichlet Allocation algorithm

First, we assign labels at a word level: for each
keyword kwi in set of chosen keywords SetKW =
{kw1, kw2, . . . , kwnkv

}, we assign kwi with a new
target topic that is restricted to belong to a set of labels
Ti,j = {Ti,j1 , Ti,j2 , . . . , Ti,jk}. This step gives us the
Wt dictionary where we have for each keywords an
associated array of topics Wt[keyword].

Then, at a document level, we label with one
or several topics a set of chosen documents. In this
step, the new target topic for all words in the labeled
document di in the set of labeled documents DL =
{d1, d2, . . . , dML

} is restricted to belong to the set of
labels Ti = {Ti1 , Ti2 , . . . , Tik}. This step gives us the
Dt dictionary where we have for each labeled document
an associated array of topics Dt[Labeleddoc].

For all words in any unlabeled document and un-
labeled words, the topic is sampled within the whole
topics domain T = {T1, T2, . . . , TK}.

Both labeling actions presents constraints for the
new computed topics. In semi-supervised LDA when
we process a labeled document or a labeled words,

it applies the sampling only on the topics subset of
the labeled entities. Thus, the sampling equation (3) is
modified and replaced by equation (6).

P (zi = j|z−i, w) ∝
nwi
−i,j + β

n
(·)
−i,j + vβ

ndi
−i,j + α

ndi
−i,· + kα

(6)

Where v and k are calculated by the equations (7)
for the labeled word process and the equations (8) for
the labeled document process :

k = |Ti,j | = len(Wt[w]); v = |SetKV | (7)

k = |Ti| = len(Dt[d]); v = V (8)

We note that the sampling with a Gibbs processing
has the same behavior applied on complete sets or
subsets [17]. Our version is similar to the work of
[15] where they used a vector-valued for the hyperpa-
rameters α and β. In our algorithm we used a single
value where β = 0.1 and α = 50/K as in [21] where
they have conducted a series of experiments and have
explained the chosen values. We implemented the semi-
supervised version of LDA, as described in Fig. 2, in
python on top of our own implementation of a standard
LDA and Gibbs sampling inference. This implementa-
tion is a part of our Library AMEUR (Subsection D).

B. Random Forests

Random Forests belong to the machine learning
ensemble methods [22]. The term ’random forests’
originally comes from [23] where in 1995 Ho et al.
proposed a model that aggregate a set of decision tree
built upon a random subsets. However, this approach
encounter an issue in prediction due to overfitting (know
also as overlearning). This problem was approached
by Kleinberg in 1996 [24]. In the same year, Breiman
[25] proposed the Bagging technique which tends to
resolve the problem of overlearning. Bagging improve
the estimate or prediction itself by averaging this pre-
diction over a collection of bootstrap (random training
set) samples. Combing the ideas of decision trees and
ensemble methods[22], Breiman in 2001 [16], gave use
to decision forests, that is, sets of randomly trained
decision trees. Random Forest improve bagging by
reducing the correlation between the sampled trees by
different sources of randomness.

In the random forest, there are two different source
of randomness within the processing of building the
trees. First, the bootstrap is a technique to build a
random set that gives the best accuracy of a parameter
estimate or prediction. We Draw a bootstrap (bagging
: averaging estimators) sample Z∗ of size N from
the training data. Second, the random selection of the
attributes to split each node where we draw uniformly

at random with replacement N data. (Each tree will
have a random different set). The process of building a
random forest is described in Fig.3.

Require: : Data D of N points.
1: loop for each tree b ∈ B trees

Draw a bootstrap sample Z∗ of size N from the training
data.

2: repeat
3: Select m variables at random form the p variables.
4: Pick the best variable/split-point among the m.
5: Split the node into two daughter nodes.
6: until the minimum node size nmin is reached.
7: Output : the set of trees {Tb}B1

Fig. 3. The random forest algorithm

C. Our Contribution

We propose a methodology of classifying web pages
documents. The classification that we perform is a soft
classification, where we take into account, within the
process, the distribution of the words (topics) in each
document and the distribution of the topics in each
document. Thus, we do not classify according to one
single word, or a set of keywords or a single topic.

Our methodology takes into account the whole hier-
archy of the categories that the web documents belong
to, allowing to have a multi-layer classification (see
Fig. 5.). First, we guide the learning process of LDA
by a semi-supervised version to capture the low level
categories of each web documents (Layer 3 in Fig.5.).
This first step gives us a distribution of the different low
level categories for each web document (e.g. Storage,
Open Source, Educational, etc ..). Then, we build a
spread sheet with the low level categories as features
and the higher level categories as values that we want
to predict. Finally, we run the Random Forest Classifier
on a train data set (See the WebDocClassif procedure
in Fig. 4.).

1: procedure MULTILAYERCLASSIF(WebDocs)
2: DocsWordFile ← preProcess(WebDocs)
3: θd ← ss-LDA(DocsWordFile)
4: csvFile ← buildSheet(θd)
5: clf ← RandomForestTrain(csvFile)
6: predictionOfCategories ← predict(clf)
7: end procedure

Fig. 4. This algorithm describes our methodology for classifying
web documents on a multiple layers begin from a low level categories
and ascends to the high level categories. This classification takes into
account the distribution of the topics in the web documents and the
distribution of the words in each topic (i.e soft classification).

D. Implementation in python of the library AMEUR

In this part, we briefly present our research devel-
opment named AMEUR where we have developed a
library written in python.

The topicmodeling module implements generative
models like the Latent Dirichlet Allocation, LDA Gibbs
Sampling, semi-supervised LDA, that allows us to

capture the relationships between discrete data. This
module is used within the AMEUR library for querying
purposes e.g to retrieve a set of documents that are
relevant to a query document or to cluster a set of
documents given a latent-topic query. The computation
of these queries are insured by the connection between
the topicmodeling module and the sklearn module of
the scikit-learn library 3.

The nlp (natural language processing) module im-
plements the necessary functions for getting unstruc-
tured text data of different sources from webpages or
social medias and preparing them as proper inputs for
the algorithms implemented in the rest of the modules
of the library.

In the following we present our experiments and the
accuracy of our results.

Fig. 5. We have 3 layers, in the first layer we have 2 main category
Computer and Games, as we go deep in the layers we have more
categories.

IV. EXPERIMENTS AND RESULTS

A. Data collection and preprocessing

We have collected text content from the home pages
of 60 websites listed in the dmoz web directories. As
described in Fig. 5, we have 15 low level categories
(Layer 3), 5 mid-level categories (Layer 2) and 2 high

3http://scikit-learn.org/stable/

level categories (Layer 1). For each low-level category
we have 4 documents. Before running the ss-LDA and
building the spread sheet for Random Forest, we first
took the text from the home page of each web site and
processed it to get good insights. The data processing
comes in the following steps and it is described in Fig.6.

Require: WebDocs . List of the Web Documents
1: procedure PREPROCESS(WebDocs)
2: for user ∈ userlist do
3: WebText← Decode(UTF8)
4: WebText← HtmlParse()
5: WebText← UrlRemove()
6: WebText← AppoReplace()
7: WebText← StopwordRemove()
8: WebText← HExpRemove()
9: return CreateDocsWordsFile(WebText)

10: end for
11: end procedure

Fig. 6. Data collection and pre-processing for the ss-LDA input

First, the home pages usually contains a lot of
html entities (e.g. < > &), the first step is
to get rid of these entities by using the python library
HTMLParser which converts these entities to standard
html tags. Second, decoding the data in a standard en-
coding format e.g. UTF-8 encoding is widely accepted.
To avoid any disambiguation in the text it is better
to maintain a proper structure of the text with a free
grammar context. Therefore, the third step consist of
converting all the apostrophes into standard lexicons e.g
{(’s: is); (’re : are); (’ll : will); ...}.

The ss-LDA analyzes the data at a word level. We
then need to remove the commonly occurring words
by creating a list of the called stop-words. In the re-
maining steps we remove punctuations, common words
for human expressions and replace the slang words
by their actual meaning. We precise that we have not
used any stemming techniques because we wanted to
keep the different variations of a particular word that
could be in different topics. As for the ss-LDA we
have implemented our own NLP processing version
with Python as described in Fig.6. In the following
subsection, we present our obtained Results.

B. Results

We used the Random Forest implementation of the
Sklearn package available within the Scikit-learn library
4. The computed spread sheet with ss-LDA was divided
into two files : 75% for training and 25% for testing. We
have 15 attributes, corresponding to the 15 lower level
categories (see Fig. 5. Layer 3) and 2 target classes
(Layer 1 and 2 in Fig. 5.).

In our analysis, we compare two strategies of web
pages classification. The first is comparable to a key-
word classification [9] where we don’t take into account
the results of the classification of the layer above (i.e
Layer 1 in Table 1 and Fig. 5.). We called this strategy

4http://scikit-learn.org/stable/

A. The second, is a multi-layer classification where the
results of the classification of the above layer is taken as
an input for the classification of the second layer’s web
pages. We called this strategy B. We also evaluate in
our analysis the effects of the change in the number of
trees and put the results in Table 1 where we averaged
the results of the 10 times executions of the Random
Forest classifier.

Fig. 7. This graph shows the average accuracy of the strategy A and
B of our classification methodology

In the Layer 1 in Table 1 we obtained a classification
rate of 93.93% with a null standard deviation. This
classification of the web pages in the highest layer, is
obtained from the results of the classification in layer
3, where we computed the topics with the ss-LDA. For
the strategy A, Table Layer 2, we obtained a lowest
classification rate of 66.67% and a highest classification
rate of 73.33%. For the strategy B, where we took
the results of classification of Layer 1 (i.e Layer 2.1
corresponds to classification of the computer category
and Layer 2.2 to the Games category), we obtained
a lowest classification rate of 77.78% and a highest
classification rate of 100%. Thus, as mentioned in the
conclusion of the work of [9], the more topics there are,
the less accuracy can be obtained. Our methodology
offer the use of the strategy B that leads to a better
accuracy within the high level description categories
(e.g Layer 1).

V. CONCLUSION AND FUTURE WORK

We presented in this article a novel approach
for classifying the web pages content. The Multi-
Layer classification is a connection between the semi-
supervised Latent Dirichlet Allocation and the Random
Forest Classifier. We obtained a classification rate of
93,33% for the top layer and we improved the results
of the classification rate for the lowest layers with a
minimum variation. In future work we want to apply
this method to a large data set and offer a parallel
solution.

REFERENCES

[1] Fabrizio Sebastiani. Machine learning in automated text
categorization. ACM Comput. Surv., 34(1):1–47, March 2002.

TABLE I. THIS TABLE SHOWS THE CLASSIFICATION RATES OF
OUR METHODOLOGY WITH DIFFERENT PARAMETERS VALUES.

Layer 1
100 trees 200 trees 500 trees 1000 trees

Min 93.3% 93.3% 93.3% 93.3%

Max 100% 100% 100% 93.3%

Average 95.9% 95.9% 95.9% 93.3%

Standard deviation 3.4 3.2 2.8 0

Layer 2 (strategy A)
100 trees 200 trees 500 trees 1000 trees

Min 53.3% 66.6% 66.6% 66.6%

Max 80% 80% 73,3% 73,3%

Average 68% 74% 71,9% 72,6%

Standard deviation 6,8 5,8 2,8 2,1

Layer 2.1 (strategy B)
100 trees 200 trees 500 trees 1000 trees

Min 50% 83.3% 83.3% 83.3%

Max 100% 100% 100% 100%

Average 88.3% 89.9% 86.6% 86.6%

Standard deviation 15.8 8.6 7 7

Layer 2.2 (strategy B)
100 trees 200 trees 500 trees 1000 trees

Min 66.6% 66.6% 66.6% 77.7%

Max 88.8 % 100% 88.8% 88.8%

Average 75.5% 77,7% 78,8% 78,8%

Standard deviation 7 10.4 8.1 3.5

[2] Charu C. Aggarwal and ChengXiang Zhai. A survey of text
classification algorithms. In Mining text data, pages 163–222.
Springer, 2012.

[3] Christopher D. Manning and Prabhakar Raghavan. An Intro-
duction to Information Retrieval, 2009.

[4] Xiaoguang Qi and Brian D. Davison. Web page classification:
Features and algorithms. ACM Computing Surveys, 41(2):1–31,
February 2009.

[5] Ajay S Patil and BV Pawar. Automated classification of
web sites using naive bayesian algorithm. In Proceedings of
the International MultiConference of Engineers and Computer
Scientists, volume 1, 2012.

[6] Hua-Jun Zeng, Qi-Cai He, Zheng Chen, Wei-Ying Ma, and
Jinwen Ma. Learning to cluster web search results. In Proceed-
ings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR
’04, pages 210–217, New York, NY, USA, 2004. ACM.

[7] Jussi Myllymaki. Effective web data extraction with standard
xml technologies. Computer Networks, 39(5):635–644, 2002.

[8] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu.
Decision Forests: A Unified Framework for Classification,
Regression, Density Estimation, Manifold Learning and Semi-
Supervised Learning. Foundations and Trends\r m in Com-
puter Graphics and Vision: Vol. 7: No 2-3, pp 81-227, 2012.

[9] Myungsook Klassen and Nikhila Paturi. Web document clas-
sification by keywords using random forests. In Networked
Digital Technologies, pages 256–261. Springer, 2010.

[10] Dimitris Liparas, Yaakov HaCohen-Kerner, Anastasia
Moumtzidou, Stefanos Vrochidis, and Ioannis Kompatsiaris.
News Articles Classification Using Random Forests and
Weighted Multimodal Features. In David Lamas and Paul
Buitelaar, editors, Multidisciplinary Information Retrieval,
volume 8849, pages 63–75. Springer International Publishing,
Cham, 2014.

[11] Baoxun Xu, Xiufeng Guo, Yunming Ye, and Jiefeng Cheng.
An Improved Random Forest Classifier for Text Categorization.

Journal of Computers, 7(12), December 2012.
[12] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent

dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March
2003.

[13] Hanna M. Wallach. Topic modeling: beyond bag-of-words. In
Proceedings of the 23rd international conference on Machine
learning, pages 977–984. ACM, 2006.

[14] Daniel Ramage, David Hall, Ramesh Nallapati, and Christo-
pher D. Manning. Labeled LDA: A supervised topic model
for credit attribution in multi-labeled corpora. In Proceedings
of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1-Volume 1, pages 248–256.
Association for Computational Linguistics, 2009.

[15] Youwei Lu, Shogo Okada, and Katsumi Nitta. Semi-supervised
Latent Dirichlet Allocation for Multi-label Text Classification.
In Moonis Ali, Tibor Bosse, Koen V. Hindriks, Mark Hoogen-
doorn, Catholijn M. Jonker, and Jan Treur, editors, Recent
Trends in Applied Artificial Intelligence, number 7906 in
Lecture Notes in Computer Science, pages 351–360. Springer
Berlin Heidelberg, 2013.

[16] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32,
October 2001.

[17] Daphne Koller and Nir Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Computation
and Machine Learning. The MIT Press, 2009.

[18] Mark Steyvers and Tom Griffiths. Probabilistic topic models.
Handbook of latent semantic analysis, 427(7):424–440, 2007.

[19] Thomas P. Minka. Estimating a Dirichlet distribution. Techni-
cal report, 2000.

[20] Gregor Heinrich. Parameter estimation for text analysis.
Technical report, 2004.

[21] Thomas L. Griffiths and Mark Steyvers. Finding scientific
topics. Proceedings of the National academy of Sciences of
the United States of America, 101(Suppl 1):5228–5235, 2004.

[22] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence
Review, 33(1-2):1–39, November 2009.

[23] Tin Kam Ho. Random decision forests. In , Proceedings of
the Third International Conference on Document Analysis and
Recognition, 1995, volume 1, pages 278–282 vol.1, August
1995.

[24] E. M. Kleinberg. An overtraining-resistant stochastic modeling
method for pattern recognition. The Annals of Statistics,
24(6):2319–2349, December 1996.

[25] Leo Breiman. Bagging predictors. Machine Learning,
24(2):123–140, August 1996.

