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In this research, we exploit a novel approach for propagation processes on a network related to
textual information by using topic modeling and pretopology theory. We ¯rst introduce the

textual agent's network in which each agent represents a node which contains speci¯c properties,

particularly the agent's interest. Agent's interest is illustrated through the topic's probability

distribution which is estimated based on textual information using topic modeling. Based on
textual agent's network, we proposed two information di®usion models. The ¯rst model, namely

Textual-Homo-IC, is an expanded model of independent cascade model in which the probability

of infection is formed on homophily that is measured based on agent's interest similarity. In
addition to expressing the Textual-Homo-IC model on the static network, we also reveal it on

dynamic agent's network where there is transformation of not only the structure but also the

node's properties during the spreading process. We conducted experiments on two collected

datasets from NIPS and a social network platform, Twitter, and have attained satisfactory
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results. On the other hand, we continue to exploit the dissemination process on a multi-rela-

tional agent's network by integrating the pseudo-closure function from pretopology theory to

the cascade model. By using pseudo-closure or stochastic pseudo-closure functions to de¯ne the
set of neighbors, we can capture more complex kind of neighbors of a set. In this study, we

propose the second model, namely Textual-Homo-PCM, an expanded model of pretopological

cascade model, a general model for information di®usion process that can take place in more

complex networks such as multi-relational networks or stochastic graphs. In Textual-Homo-
PCM, pretopology theory will be applied to determine the neighborhood set on multi-relational

agent's network through pseudo-closure functions. Besides, threshold rule based on homophily

will be used for activation. Experiments are implemented for simulating Textual-Homo-PCM
and we obtained expected results. The work in this paper is an extended version of our paper

[T. K. T. Ho, Q. V. Bui and M. Bui, Homophily independent cascade di®usion model based on

textual information, in Computational Collective Intelligence, eds. N. T. Nguyen, E. Pimenidis,

Z. Khan and B. Trawiski, Lecture Notes in Computer Science, Vol. 11055 (Springer Interna-
tional Publishing, 2018), pp. 134–145] presented in ICCCI 2018 conference.

Keywords: Complex network; information di®usion; independent cascade model; agent-based
model; latent Dirichlet allocation; author–topic model; pretopology; stochastic pretopology;

pretopological cascade model.

1. Introduction

In recent years, research on the process of information di®usion through social net-

works has attracted the attention of researchers with applications in various ¯elds

including computer science, economy, and biology. Information propagation has

been extensively researched in networks, with the objective of observing the infor-

mation spreading among objects when they are connected with each other. Recently,

there are numerous di®usion models which have been proposed including the linear

threshold (LT) model,1 independent cascade (IC) model2 and so on. The IC model

has been used extensively since it is the simplest cascade model and is successful at

explaining di®usion phenomena in social networks.2 The propagation process in IC

occurs in discrete time steps t which include two major substeps: determine inactive

neighborhood set �outðuÞ of newly active nodes u at step t� 1 and each inactive node

v 2 �outðuÞ will be infected by u with a probability P ðu; vÞ. In IC, each edge is

associated with a probability of infection independently which is usually assigned by

a uniform distribution.3–5 Nevertheless, perhaps from the fact that the infected

probability from one object to another depends on the similarity or homophily

among them, for instance, the probability that two scientists in the common ¯eld

incorporate to write a paper is higher in comparison with the di®erent ¯elds. In

another instance, a user A on Twitter ¯nds it easy to follow user B when A has

common interests with B. Therefore, we estimate the probability of infection based

on similarity or homophily.

Homophily is the tendency of individuals to associate with similar others.6,7 There

are two principal approaches to measure homophily including the ¯rst one based on a

single characteristic and the combination of multiple features for the second. For the

¯rst approach, homophily is classi¯ed into two types including status homophily and

value homophily in which the former refers to the similarity in socio-demographic

2 T. K. T. Ho, Q. V. Bui & M. Bui
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traits, such as race, age, gender, etc., while the similarity in internal states for the

latter, such as opinions, attitudes, and beliefs.6,7 Besides, Laniado et al. analyzed the

presence of gender homophily in relationships on the Tuenti Spanish social network.8

On the other hand, with the second approach, Aiello et al.9 discovered homophily

from the context of tags of social networks including Flickr, Last.fm, and aNobii.

Additionally, Cardoso et al.10 explored homophily from hashtags on Twitter. How-

ever, in general, these methods have not exploited the textual information related to

users yet while it contains signi¯cant information for similarity analysis, for instance,

based on the content of papers, we can de¯ne whether the authors research in the

same narrow subject or not, or we can determine which are common interests be-

tween two users on Twitter based on their tweets. For that reason, we propose a

method of homophily measurement based on textual content. A fundamental tech-

nology for text mining is vector space model (VSM)11 where each document is

represented by word-frequency vector. Nevertheless, two principal drawbacks of

VSM are the high dimensionality as a result of the high number of unique terms in

text corpora and insu±ciency to capture all semantics. Therefore, topic modeling

was proposed to solve these issues. Recently, there are dissimilar methods of topic

modeling which include latent Dirichlet allocation (LDA),12author–topic model

(ATM),13 etc. In this study, we chose LDA and ATM to estimate the topic's prob-

ability distribution of users.

In this study, we ¯rst propose an expanded model of independent cascade model,

namely Textual-Homo-IC. The ¯rst step of the propagation process is network

construction. We construct a heterogeneous network related to textual information,

namely textual agent's network, where each node is represented by an agent. In

textual agent's network, each agent contains speci¯c characteristics including ID,

neighbors, and topic's probability distribution. Textual information of users will be

used to estimate the topic's distribution using topic modeling. Besides, there may be

one or more relations between agents. In Textual-Homo-IC, we just consider the

spreading process on single-relational textual agent's network, and mainly focus on

infected probability estimation from an active object to inactive another based on

their similarity or homophily. Particularly, homophily is measured based on the

topic's distribution of agents. Textual-Homo-IC is demonstrated on static and dy-

namic textual agent's networks in which the network structure and characteristics of

agents have remained during the propagation process for the former while there is a

variation for the latter. Some experiments were implemented on co-author network

and Twitter with the combinations of two methods LDA and ATM for estimating

topic's distribution of users and two distance measurements Hellinger distance and

Jensen–Shannon divergence for measuring homophily. On the static networks, the

results demonstrated that the e®ectiveness of Textual-Homo-IC outperforms in

comparison with random di®usion. Additionally, our results also illustrated the

°uctuation of the active number for the di®usion process on a dynamic network

instead of attaining and remaining in a stable state on a static network.

A Novel Approach for Information Di®usion on Complex Network 3

V
ie

tn
am

 J
. C

om
p.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
71

.2
52

.1
52

.1
93

 o
n 

06
/1

6/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



In addition, we propose an expanded model of pretopological cascade model

(PCM) from our previous research,14 namely Textual-Homo-PCM. Textual-Homo-

IC is the standard IC model with infected probability based on textual homophily;

however, we just exploit spreading phenomena on single-relational textual agent's

network. Therefore, we continue to exploit the propagation process on multi-

relational textual agent's network. In the previous study,14 we proposed a general

PCM model which is a cascade di®usion model on complex networks including sto-

chastic graph or multi-relational network using stochastic pretopology (SP) theory.

Stochastic pseudo-closure function de¯ned is utilized to determine neighborhood set

for the spreading process. The predecessor of stochastic pretopology is pretopology15

which is a mathematical tool for modeling the concept of proximity. It is usually used

for analyzing and modeling the structure of a complex network. The core of pre-

topology is the propagation operator called pseudo-closure function. It is usually

de¯ned for neighborhood collection. However, the phenomena in a complex system

do not always conform to a certain mechanism that contains stochastic or uncon-

trolled factors. Therefore, in addition to modeling the dynamics of structural phe-

nomena by pretopology, stochastic pretopology was also proposed with a

combination of pretopology and random set theory.14,15 In this study, we will illus-

trate in detail the PCM on multi-relational textual agent's network namely Textual-

Homo-PCM in which we take into account a multi-relational textual agent's network

as a complex network, and apply pretopology theory and stochastic pretopology in

neighborhood determination through various pseudo-closure functions including

strong, weak, and stochastic pseudo-closure. Besides, we apply the threshold rule to

di®usion based on homophily. Several experiments were conducted on co-author

network and Twitter. Experimental results illustrated the impact of neighborhood

set determination on multi-relation networks for spreading process performance.

The structure of our paper is organized as follows: Section 2 reviews the prelim-

inaries. Section 3 illustrates the textual agent's network construction. Textual-Homo-

IC models are proposed in Sec. 4 with experiments, results, and evaluation. Section 5

demonstrates Textual-Homo-PCM with experiments, results, and discussion. Finally

we conclude our work in Sec. 6.

2. Preliminaries

2.1. The independent cascade

2.1.1. Model de¯nition

We assume a network G ¼ ðV ;�;WÞ, where:

. V is a set of vertices.

. � : V ! PðV Þ is a neighborhood function. PðV Þ is the power set of set V :

– �ðxÞ is the set of outcoming neighborhoods of node x.

– ��1ðxÞ is the set of incoming neighborhoods of node x.

4 T. K. T. Ho, Q. V. Bui & M. Bui
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. W : V � V ! R is the weight function:

– In LT model, Wðx; yÞ is the weight of edge between two nodes x and y.

– In IC model, Wðx; yÞ is the probability of node y infected from node x.

The di®usion process occurs in discrete time steps t. If a node adopts a new behavior

or idea, it becomes active, otherwise it is inactive. An inactive node has the ability to

become active. The sets of active nodes, and newly active nodes at time t are con-

sidered as At and Anew
t , respectively. The tendency of an inactive node x to become

active is positively correlated with the number of its active incoming neighbors

��1ðxÞ. Also, we assume that each node can only switch from inactive state to active

state, and an active node will remain active for the rest of the di®usion process.

In general, we start with an initial seed set A0 and through the di®usion process, for a

given inactive node x, its active neighbors attempt to activate it. The process runs

until no more activations occur.

2.1.2. Independent cascade model

In IC model, there is a probability of infection associated with each edge. Wðx; yÞ is
the probability of node x infecting node y. This probability can be assigned based on

the frequency of interactions, geographic proximity, or historical infection traces.

Each node, once infected, has the ability to infect its neighbor in the next time step

based on the probability associated with that edge. At each time step t, each node

x 2 Anew
t�1 infects the inactive neighbors y 2 �ðxÞ with a probability Wðx; yÞ. The

propagation continues until no more infection can occur (see Algorithm 2.1).

2.2. Agent-based model

An agent-based model (ABM) is a class of computational models for simulating

the actions and interactions of autonomous agents. ABM has been utilized in

numerous ¯elds, for instance, biology, ecology, and social science.16 ABM contains

G = (V, Γ, W ) A0

G, A0

t ← 0, Atotal ← A0, A
new ← A0

t ← t + 1 At ← ∅
u ∈ Anew

At(u) ← {vinactive ∈ Γ(u) q ≤ W (u, vinactive)}; q ∼ U(0, 1)
u v W (u, v)

At ← At ∪ At(u)

Atotal ← Atotal ∪ At Anew ← At

Atotal

A Novel Approach for Information Di®usion on Complex Network 5
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three principal elements including agents, their environment, and interactive

mechanisms among agents. First, agents are heterogeneous entities which comprise

diverse characteristics and behaviors. Second, agent's environment is a space that is

responsible for re°ecting the structure of the overall system and supplying

agents their perceptions and enabling their actions. Third, interaction is a form of

information exchange among agents which resulted in perception and behavior.

Particularly, the essence of an ABM is the dynamics of the global system emerges

from the local interactions among its composing parts.

2.3. Topic modeling

2.3.1. LDA

LDA12 is a generative statistical model of a corpus. In LDA, each document may be

taken into account as a combination of multiple topics and each topic is demonstrated

by a probability distribution of words. The generative model of LDA, which is

described with a graphical model in Fig. 1(a), proceeds as follows:

(1) Choose distribution over topics �i � Dirichlet(�) for each document.

(2) Choose distribution over words �j � Dirichlet(�) for each topic.

(3) For each of the word position i, j:

(3.1) Choose a topic zij � Multinomial(�i).

(3.2) Choose a word wi;j � Multinomial(�zi;j).

2.3.2. ATM

ATM13 is a generative model for documents that expands LDA to incorporate

author's information. Each author is associated with a mixture of topics where topics

are multinomial distributions over words. The words in a collaborative paper are

assumed to be the result of a mixture of the authors' topics. The generative model of

ATM, which is described with a graphical model in Fig. 1(b), proceeds as follows:

(1) For each author a ¼ 1; . . . ;A choose �a � Dirichlet(�). For each topic t ¼
1; . . . ;T choose �t � Dirichlet(�).

(2) For each document d ¼ 1; . . . ;D:

(2.1) Given the vector of authors ad.

(2.2) For each word i ¼ 1; . . . ;Nd:

(2.2.1) Choose an author xdi � Uniform(ad).

(2.2.2) Choose a topic zdi � Discrete(�xdi).

(2.2.3) Choose a word wdi � Discrete(�zdi).

2.3.3. Update process of LDA and ATM

LDA and ATM can be updated with additional documents after training has

been ¯nished. This update procedure is executed by expectation maximization

6 T. K. T. Ho, Q. V. Bui & M. Bui
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(EM) ��� iterating over new corpus until the topics converge. This process is equal to

the online training of Ho®man et al.17 There are already several available packages

for topic modeling including topicmodels or lda in R or Gensima in Python. In this

study, we chose Gensim for training and updating the topic modeling.

2.4. Pretopology theory

2.4.1. Pretopological notions

De¯nition 2.1. A pretopological space is an ordered pair ðX; aÞ, whereX is a set and

a : PðXÞ ! PðXÞ is a pseudo-closure operator, satisfying the two following axioms:

(P1) að;Þ ¼ ; (Preservation of Nullary Union).

(P2) A � aðAÞ, 8A;A � X (Extensivity).

It is important to note that, by de¯ning pseudo-closure að�Þ (see Fig. 2(a)), we do not
suppose that it is an idempotent transform. Then, conversely as it happens in

topology, we can compute: aðAÞ; aðaðAÞÞ; aðaðaðAÞÞÞ; . . . ; akðAÞ (see Fig. 2(b)). So,

pseudo-closure allows, for each of its applications, to add elements to a set departure

according to de¯ned characteristics. The starting set gets bigger but never reduces.

De¯nition 2.2. Let ðX; aÞ be a pretopological space, 8A;A � X. A is a closed

subset if and only if aðAÞ ¼ A.

De¯nition 2.3. Given a pretopological space ðX; aÞ, call the closure ofA, when it exists,

the smallest closed subset of X which contains A. The closure of A is denoted by F ðAÞ.
Closure is very important because of the information it gives about the in°uence

or reachability of a set, meaning, for example, that a set A can in°uence or reach the

elements in FðAÞ, but not further (see Fig. 2(b)).

ahttps://pypi.python.org/pypi/gensim.

(a) LDA. (b) ATM.

Fig. 1. Text mining methods: LDA and ATM.
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Hence, it is necessary to build pretopological spaces in which the closure always

exists. We present in the following di®erent types of pretopological spaces which are

less general than the basic ones but for which, good properties are ful¯lled by

neighborhoods as well as allowing the existence of closure.

2.4.2. Pretopological spaces

De¯nition 2.4. A pretopology space ðX; aÞ is called V-type space if and only if

ðP3Þ ðA � BÞ ) ðaðAÞ � aðBÞÞ; 8A;B 2 PðXÞ ðIsotonicÞ: ð1Þ
De¯nition 2.5. A Pretopology space ðX; aÞ is called VD-type space if and only if

ðP4Þ aðA [BÞ ¼ aðAÞ [ aðBÞ; 8A � X; 8B � X ðAdditiveÞ: ð2Þ
De¯nition 2.6. A pretopology space ðX; aÞ is called VS-type space if and only if

ðP5Þ aðAÞ ¼
[
x2A

aðfxgÞ; 8A � E: ð3Þ

2.4.3. Pretopology and binary relationships

Suppose we have a family ðRiÞi¼1;...;n of binary re°exive relations on a ¯nite setX. We

call L ¼ fR1;R2; . . . ;Rng as a set of relations. For each relation Ri, we can de¯ne

pretopological structure by considering the following subset: 8 i ¼ 1; 2; . . . ;n,

8x 2 X, ViðxÞ is de¯ned by

ViðxÞ ¼ fy 2 X jxRi yg:
Then, the pseudo-closure að�Þ is de¯ned by

aðAÞ ¼ fx 2 X j 8 i ¼ 1; 2; . . . ;n;ViðxÞ \A 6¼ ;g; 8A � X: ð4Þ

(a) Pseudo-closure of A. (b) Closure of A.

Fig. 2. Pseudo-closure and closure functions.

8 T. K. T. Ho, Q. V. Bui & M. Bui
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Pretopology de¯ned on X by að�Þ using the intersection operator is often called the

strong pretopology. Figure 3 gives an example for strong pretopology built from two

relationships.

Proposition 2.1. að�Þ determines on X a pretopological structure and the space

ðX; aÞ is of V -type pretopological space.

Please refer to the work of Belmandt15 for more details about pretopology theory and

to the work of Bui et al.14 for some other ways to build pseudo-closure function in di®erent

spaces such as metric space, valued space, and space equipped with a neighbors function.

2.5. Stochastic pretopology

Stochastic pretopology was ¯rst basically introduced in Chap. 4 of the book Basics of

Pretopology15 by utilizing simple random set to propose three ways for de¯ning

stochastic pretopology. There are some applications of stochastic pretopology in-

cluding modeling pollution phenomena18 or studying complex networks via a sto-

chastic pseudo-closure function de¯ned from a family of random relations.19

Additionally, in our previous research,14 we proposed another approach for building

stochastic pretopology by using ¯nite random set (FRS) theory.20

2.5.1. Finite random set

From now on, V denotes a ¯nite set. ð�;A;PÞ will be a probability space, where: � is

a set, representing the sample space of the experiment; A is a �-algebra on �,

representing events; and P : � ! ½0; 1� is a probability measure.

De¯nition 2.7. An FRS with values in PðV Þ is a map Y : � ! PðV Þ such that

Y �1ðfAgÞ ¼ f! 2 � : Y ð!Þ ¼ Ag 2 A for any A 2 PðV Þ: ð5Þ

Fig. 3. Pseudo-closure of A in a binary space.

A Novel Approach for Information Di®usion on Complex Network 9
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The condition (5) is often called measurability condition. So, in other words, an

FRS is a measurable map from the given probability space ð�;A;PÞ to PðV Þ,
equipped with a �-algebra on PðV Þ. We often choose that �-algebra on PðV Þ is the
discrete �-algebra E ¼ PðPðV ÞÞ. Clearly, a ¯nite random set Y is a random element

when we refer to the measurable space ðPðV Þ; EÞ. This is because Y �1ðEÞ � A since

8A 2 E, Y �1ðAÞ ¼ S
A2AY �1ðAÞ.

2.5.2. De¯nition of stochastic pretopology

De¯nition 2.8. We de¯ne stochastic pseudo-closure de¯ned on �� V , any function

að�; �Þ from �� PðV Þ into PðV Þ, such that:

(P1) að!; ;Þ ¼ ;, 8! 2 �;

(P2) A � að!;AÞ, 8! 2 �, 8A;A � V ;

(P3) að!;AÞ is a ¯nite random set, 8A;A � V .

ð�� V ; að�; �ÞÞ is then called the stochastic pretopological space.

Please refer to the work of Bui et al.14 for some ways to build stochastic pseudo-

closure function in di®erent situations such as relational spaces, metric spaces,

valued spaces, and spaces equipped with a neighbors function.

3. Agent's Network Related to Textual Information

(Textual Agent's Network)

3.1. Textual agent's network construction

In this study, the network that we take into account for spreading process is the

agent's network related to textual information, namely textual agent's network. A

textual agent's network is given by GðV ; ðRiÞi¼1;2;...;n; ðEiÞi¼1;2;...;nÞ in which V is the

set of agents representing the nodes, ðRiÞi¼1;2;...;n is a family of relations, and

ðEiÞi¼1;2;...;n is a set of edges among nodes corresponding to relations. Particularly,

each agent in textual agent's network contains textual information, for instance,

users on Twitter or authors on collaboration network. Construction of a textual

agent's network will be illustrated in detail through the following steps.

3.1.1. Text analysis with topic modeling

Since we consider a network related to textual information where each user contains

textual content, therefore technologies for text mining need to be used. A funda-

mental technology is VSM,11 but there are two principal drawbacks including the

high dimensionality as a result of the high number of unique terms in text corpora

and insu±ciency to capture all semantics. Therefore, topic modeling has been pro-

posed to solve these issues. In this study, we chose two methods of topic modeling

LDA and ATM to estimate the topic's probability distribution of users.

10 T. K. T. Ho, Q. V. Bui & M. Bui
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3.1.2. De¯ning agents

Each agent represents each node in the network. Agents are heterogeneous

entities with three principal properties including ID, Neighbors, and TP-Dis (topic's

probability distribution). LDA and ATM can be utilized to estimate the TP-Dis of

users from their textual information. Depending on textual information that each

agent owns, they have di®erent probability distribution for the topic which is

considered as agent's interest on the topic.

3.1.3. De¯ning relations

We take into account the agent's network with a family of relations ðRiÞi¼1;2;...;n

which contains the subsets of real relations and hidden relations. Besides real links

such as \follow", co-author, friend, etc., we consider the hidden link based on the

property TP-Dis of agents. By using topic modeling, each agent may be character-

ized by its topic distribution and also be labeled by the topic with the highest

probability. In this subsection, we use this information to de¯ne the relations be-

tween two agents based on the way we consider the \similarity" between them. First,

based on the label information, we can consider connecting agents if they have the

same label. However, in some cases the probability of label topic is very small and it

is not really good if we use this label to represent agent's interest. Hence, we just use

the label information if its probability is higher than the threshold p0. We de¯ne

the major topic of each agent as follows:

De¯nition 3.1. MTPðaiÞ is the major topic of agent ai if MTPðaiÞ is the topic with
highest probability in the topic distribution of agent ai and this probability is greater

than the threshold p0, p0 � 1=K, where K is the number of topics:

MTPðaiÞ ¼ fk j �ik ¼ max
j

�ij and �ik � p0g: ð6Þ

Considering two agents am, an with their major topics MTPðamÞ, MTPðanÞ, we
see that am is close to an if they have the same major topic. So, we proposed a

de¯nition of binary relationship RMTP of two agents based on their major topics as

follows:

De¯nition 3.2. Agent am has the binary relationship RMTP with an if am and an
have the same major topic.

To demonstrate the dynamics of textual agent's network, we exploit not only the

structure of the network but also agent's properties. First, the structure of the

network can be transformed with the appearance of new agents or new connections.

Moreover, topic's distribution of agents can °uctuate since agents own more text

information through the interactive process. The problem is how to update the

transformation of topic's distribution of users after a time period based on the

existing topic modeling. In LDA, to make an estimate of topic's distribution of users,

we consider each user corresponds to each document. Therefore, we cannot utilize the

A Novel Approach for Information Di®usion on Complex Network 11
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update mechanism of LDA to update topic's distribution of users when users have

more documents in interaction. Instead of unusable update mechanism of LDA, we

can make use of ATM to estimate topic's distribution of users and simultaneously

update the mechanism to update topic's distribution of users since each author can

own various documents.

3.2. Homophily measure

In this study, we estimate homophily between two agents based on their topic's

probability distribution. If we consider a probability distribution as a vector, we can

choose some distance measures related to the vector distance such as Euclidean

distance, cosine similarity, Jaccard coe±cient, etc. However, experimental results

in our previous work21 demonstrated that it is better if we choose distance

measures related to the probability distribution such as Kullback–Leibler divergence,

Jensen–Shannon divergence, Hellinger distance, etc. In this study, we chose Hellinger

distance and Jensen–Shannon divergence to measure distance.

Let the probability distributions on k topics P ¼ ðp1; p2; . . . ; pkÞ and Q ¼
ðq1; q2; . . . ; qkÞ correspond to users u and v, respectively.

3.2.1. Hellinger distance

The Hellinger distance is given by

dHðP ;QÞ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk
i¼1

ð ffiffiffiffi
pi

p � ffiffiffiffi
qi

p Þ2
vuut : ð7Þ

The Hellinger distance satis¯es the inequality of 0 	 dHðP ;QÞ 	 1. This distance is a

metric for measuring the deviation between two probability distributions. The dis-

tance is 0 when P ¼ Q. When P and Q are disjoint, it shows the maximum distance

of 1. The lower the value of the Hellinger distance, the smaller is the deviation

between two probability distributions.

3.2.2. Jensen–Shannon divergence

The Jensen–Shannon divergence is given by

dJSðP ;QÞ ¼ 1

2

Xk
i¼1

pi log
2pi

pi þ qi
þ 1

2

Xk
i¼1

qi log
2qi

pi þ qi
: ð8Þ

The Jensen–Shannon divergence is a symmetrized and smoothed version of the

Kullback–Leibler divergence, relative to Shannon's concept of uncertainty or

\entropy" HðP Þ ¼ Pn
i¼1 pi ln pi.

For log base 2, the Jensen–Shannon divergence is bounded by 1: 0 	 dJSðP ;QÞ 	 1.

For log base e, or ln, which is commonly used in statistical thermodynamics, the upper

bound is lnð2Þ : 0 	 dJSðP ;QÞ 	 lnð2Þ.

12 T. K. T. Ho, Q. V. Bui & M. Bui
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3.2.3. Homophily

Since both Hellinger distance and Jensen–Shannon divergence are bounded by 1 and

the lower the value of the Hellinger distance or Jensen–Shannon divergence, the

smaller is the deviation between two probability distributions, therefore, we can

de¯ne the homophily between two users u; v as

Homoðu; vÞ ¼ 1� dðP ;QÞ; ð9Þ
in which dðP ;QÞ is dHðP ;QÞ if we use Hellinger distance or dJSðP ;QÞ if we use

Jensen–Shannon divergence.

4. Homophily Independent Cascade Model Based on Textual Information

(Textual-Homo-IC)

In this section, we proposed an expanded model of independent cascade di®usion

model, namely Textual-Homo-IC. In this model, we concentrate on exploiting the

infected probability estimation based on homophily. Textual-Homo-IC is demon-

strated in detail on both static and dynamic single-relational textual agent's net-

works. We present their steps in more detail in Algorithms 4.1 and 4.2, respectively.

4.1. Random-IC on static single-relational textual agent's network

In this subsection, we illustrate the IC model on a static network with infected

probability based on uniform distribution, namely Random-IC. This model plays as a

benchmark model for comparing the performance with Textual-Homo-IC model that

we will propose at Sec. 4.2. At each step t where Inewest is the set of newly active

nodes at time t� 1, each u 2 Inewest infects the inactive neighbors v 2 �outðuÞ with a

probability Pðu; vÞ randomly. The propagation continues until no more infection can

occur (see Algorithm 4.1).

G = (V, E) I0

G, I0

t ← 0, Itotal ← I0, I
newest ← I0

t ← t + 1 It ← ∅
u ∈ Inewest

It(u) ← {vinactive ∈ ηout(u), p ≤ q}; p, q ∼ U(0, 1)
It ← It ∪ It(u)

Itotal ← Itotal ∪ It Inewest ← It

Itotal

A Novel Approach for Information Di®usion on Complex Network 13
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4.2. Textual-Homo-IC on static single-relational textual agent's network

Propagation mechanism of Textual-Homo-IC on static textual agent's network is

similar to Random-IC, but the di®erence is that each active agent u 2 Inewest

infects the inactive neighbors v 2 �outðuÞ with a probability P ðu; vÞ equal to

Homophilyðu; vÞ instead of a random probability (see Algorithm 4.2).

4.3. Textual-Homo-IC on dynamic single-relational textual

agent's network

Although IC model on the dynamic network has been researched,22,23 the dynamic

concept of a network has only been considered under the structure transformation

while the activated probability from an active node to inactive another is always

¯xed during the spreading process. Therefore, we propose Textual-Homo-IC on a

dynamic textual agent's network in which we can discover not only the variation of

network's structure but also the agent's topics distribution. It can be said that the

infected probability among agents can change over time because of their homophily

transformation.

There is a resemblance in the propagation mechanism of Textual-Homo-IC on the

dynamic network in comparison with the static network; however, in the spreading

process at step t 2 C, textual agent's network G will be updated as shown in Sec. 3

(see Algorithm 4.3).

4.4. Experiments

In this subsection, we implement the experiments to test our models Textual-Homo-

IC on real-data networks. First, the goal of the experiment is to test the performance

of Textual-Homo-IC on static single-relational textual agent's network. Moreover,

we simulate experiments to demonstrate Textual-Homo-IC on dynamic single-relational

textual agent's network. Steps of the experiment are demonstrated sequentially

G = (V, E) I0

G, I0

t ← 0, Itotal ← I0, I
newest ← I0

t ← t + 1 It ← ∅
u ∈ Inewest

It(u) ← {vinactive ∈ ηout(u), p ≤ Homo(u, v)}; p ∼ U(0, 1)
It ← It ∪ It(u)

Itotal ← Itotal ∪ It Inewest ← It

Itotal

14 T. K. T. Ho, Q. V. Bui & M. Bui
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from collecting data, seting up experiments to evaluating the results based on

baseline model.

4.4.1. Data collection

The propose Textual-Homo-IC models have been tested on a well-known social

network platform, Twitter, and co-author network. For Twitter network, we have

aimed for 1,524 users in which links are the follow relations. We crawled over 100

tweets for each user and the textual data stretched from 2011 to April 2018. For co-

author network, we have targeted the authors who have participated in Neural

Information Processing Systems Conference (NIPS) from 2000 to 2012. The dataset

contains 1,740 papers which are contributed by 2,479 scientists.

4.4.2. Experimental setup

First, we de¯ned the number of topics for the whole corpus based on the harmonic

mean of log-likelihood (HLK).24 We calculated HLK with the number of topics in the

range [10, 200] with sequence 10. We realized that the best number of topics is in the

range [40, 100] for Twitter network (Fig. 4(a)) and [50, 90] is in the range (Fig. 5(a))

for co-author network. Therefore, we ran HLK again with the sequence 1 and

obtained the best as 69 for Twitter network (Fig. 4(b)) and as 67 for co-author

network (Fig. 5(b)).

Textual-Homo-IC di®usion is implemented on the static Twitter network and

co-author network. Textual agent's networks with single relation are constructed as

G = (V, E) I0

C = {k1, k2, . . . , kn} ki G n

G

I0, C

t ← 0, Itotal = I0, I
newest = I0

t < n n > max{C}
t ← t + 1; It = ∅

t ∈ C

G Inewest = Itotal

u ∈ Inewest

It(u) ← {vinactive ∈ ηout(u), p ≤ Homo(u, v)}; p ∼ U(0, 1)
It ← It ∪ It(u)

Itotal = Itotal ∪ It Inewest = It

Itotal

A Novel Approach for Information Di®usion on Complex Network 15
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shown in Sec. 3 in which there exist follow relation for Twitter network and co-author

relation for co-author network. For each network, we implemented four experiments

of Textual-Homo-IC with the combinations of two methods for estimating topic's

distribution (LDA and ATM) and two kinds of distance measurements (Hellinger

distance and Jensen–Shannon divergence). Besides, we also conducted Random-IC

as a benchmark to compare the performance with Textual-Homo-IC.

To simulate Textual-Homo-IC on dynamic textual agent's network, we conducted

experiments on the dynamic Twitter network and co-author network. For co-author

network, we collected textual data between 2000 and 2009 for training the corpus

and estimating the author's topic distribution using ATM. Textual agent's network

is formed with the co-author relation. On the other hand, for Twitter network,

textual data is gathered from 2011 to January 2018 for training the corpus. Unfor-

tunately, it is impossible to get the exact date when a user starts to follow

another on Twitter, including from the API or Twitter's Web interface. This leads to

the inability to express the °uctuations in network structure with the follow

(a) No. of topics in the range [10, 200], seq: ¼ 10. (b) No. of topics in the range [40, 100], seq: ¼ 1.

Fig. 4. Log-likelihood for Twitter network.

(a) No. of topics in the range [10, 200], seq: ¼ 10. (b) No. of topics in the range [50, 90], seq: ¼ 1.

Fig. 5. Log-likelihood for co-author network.

16 T. K. T. Ho, Q. V. Bui & M. Bui
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relation. Therefore, we took into account textual agent's network with the relation

RMTP with p0 ¼ 0:1.

The di®usion process on dynamic network starts as soon as a textual agent's

network is formed. For each kind of distance measurement, we implemented four

experiments in which the ¯rst one is the propagation on textual agent's network

without dynamics. The last investigations are those after every 5, 10, and 15 steps of

di®usion when the textual agent's network will °uctuate once the follow mechanism

exists presented in Sec. 3. Textual agent's networks will be updated three times

corresponding to each month from February to April 2018 for the Twitter network

and each year from 2010 to 2012 for the co-author network.

4.4.3. Model evaluation

To evaluate the performance of di®usion models, we can use the number of active

nodes or the active percentage which are the standard metrics in information dif-

fusion ¯eld.22,23 In this research, we utilize the active number to evaluate the per-

formance of spreading models. We compare the performance of proposed Textual-

Homo-IC di®usion model with the baseline model (Random-IC).

4.4.4. Results and discussion

Comparison of Textual-Homo-IC and Random-IC di®usions. The results of

Textual-Homo-IC on static textual agent's networks are shown in Fig. 6. For both

networks, we can see that the active number of Textual-Homo-IC is always greater

than Random-IC in the four cases which are the combinations of two methods

of topic modeling and two distance measurements. First, in Twitter network

(Fig. 6(a)), the number of active agents reaches approximately 650 for Random-IC

di®usion while Textual-Homo-IC attains about 862 for both cases where ATM

combines with the two distances. Particularly, the cases where Textual-Homo-IC

(a) Twitter network. (b) Co-author network.

Fig. 6. Textual-Homo-IC di®usion on static networks.

A Novel Approach for Information Di®usion on Complex Network 17
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incorporates LDA with Hellinger distance and Jensen–Shannon divergence obtain

the higher numbers of active agents in comparison with the cases utilizing ATM, of

about 989 and 1,023 active agents, respectively. On the other hand, in co-author

network (Fig. 6(b)), the number of active agents reaches approximately 700 for

Random-IC di®usion while Textual-Homo-IC attains about 903 for the case using

LDA combined with Jensen–Shannon divergence. Besides, 946 active agents are

reached by making ATM and Jensen–Shannon divergence to collaborate. In addi-

tion, Textual-Homo-IC with ATM and Hellinger distance obtains approximately

1,248 active agents while the highest number belongs to Textual-Homo-IC with LDA

and Hellinger distance, of around 1,369 active agents. In summary, we can conclude

that Textual-Homo-IC di®usion outperforms when compared with Random-IC.

Textual-Homo-IC di®usion on dynamic textual agent's network. Results

are shown in Figs. 7 and 8 which illustrate Textual-Homo-IC di®usions on the dy-

namic Twitter network and co-author network, respectively. For Twitter network,

there is only one agent that can be activated from the seed set on the static network

for both cases of distance measurements. The reason is the number of connections

with RMTP in the initial stage is too low for di®usion. However, if there exists net-

work's transformation in the next three stages with the arrival of many new con-

nections, there is a signi¯cant increase in the active number. For co-author network,

Textual-Homo-IC on a static network reaches a steady state from the 12th step and

seventh step onwards with using Hellinger distance and Jensen–Shannon divergence,

respectively. However, if there is network's °uctuation in the next three stages, the

active number increases signi¯cantly. In short, we can conclude that the propagation

process without dynamics of network reached and maintained the steady state while

there is a signi¯cant transformation in the active number if the textual agent's

network has °uctuation in the di®usion process.

(a) ATM and Hellinger distance. (b) ATM and Jensen–Shannon divergence.

Fig. 7. Textual-Homo-IC di®usion on dynamic Twitter network.

18 T. K. T. Ho, Q. V. Bui & M. Bui
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5. Homophily Pretopological Cascade Model for Information Di®usion

Based on Textual Information (Textual-Homo-PCM)

In Sec. 4, we introduced the propagation process on a social network related to

textual content through Textual-Homo-IC model. Nevertheless, we just consider

spreading process on a single-relational network where the classical way for de¯ning

the neighborhood set of active set A is a union of neighbors of each element in A. In

fact, the di®usion process can take place on a network with numerous di®erent

relations and perhaps that the neighborhood determination may become more

complicated. Therefore, in this section, we will exploit dissemination on multi-

relational textual agent's network. The question is how to de¯ne neighborhood set of

an active set on the multi-relational network.

In our previous research,14 we have proposed PCM as a general cascade

di®usion model that can take place in more complex networks such as multi-

relational networks or stochastic graphs. In PCM, stochastic pretopology is used to

capture random neighborhoods set based on stochastic pseudo-closure function.

Pretopology15 is a theory that generalizes for both topology and graph theories

and is commonly used to model complex propagation phenomena. A usual pseudo-

closure function in pretopology is usually de¯ned for neighborhood aggregation. In

addition to modeling the dynamics of structural phenomena by pretopology theory,

stochastic aspects that a®ect phenomena also were considered. Therefore, stochastic

pretopology was introduced14,15 where there are di®erent approaches for building

stochastic pseudo-closure function by combining pretopology and ¯nite random set

theory.

In this research, we would like to present the PCM on speci¯c network related to

textual information that we called textual agent's network. Therefore, we propose

Textual-Homo-PCM which is PCM on textual agent's network with multi-relations.

Particularly, we introduce more strong and weak pseudo-closure functions built from

(a) ATM and Hellinger distance. (b) ATM and Jensen–Shannon divergence.

Fig. 8. Textual-Homo-IC di®usion on dynamic co-author network.
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pretopology to be utilized to determine the neighborhood set with stochastic pseudo-

closure from PCM.

Therefore, the contributions of this section are as follows:

. We present a method to build three kinds of pseudo-closure function based on the

family of relationships.

. We propose an expanded model of PCM which will be presented on multi-

relational textual agent's network, namely Textual-Homo-PCM, in which strong,

weak pseudo-closure functions built from pretopology and stochastic pseudo-

closure from stochastic pretopology are utilized to determine the neighborhood set.

. We conduct a small experiment with two small datasets to illustrate our approach.

5.1. Building pseudo-closure functions

In Sec. 3, we constructed a textual agent's network GðV ; ðRiÞi¼1;...;n, ðEiÞi¼1;...;nÞ. Let
us consider a family of binary relations between agents ðRiÞi¼1;...;n. For each relation

Ri, we can de¯ne pretopological structure by considering the following subset:

8 i ¼ 1; 2; . . . ;n, 8x 2 X, ViðxÞ is de¯ned by

ViðxÞ ¼ fy 2 X jxRi yg:
Then, the strong pseudo-closure asð�Þ is de¯ned by

asðAÞ ¼ fx 2 X j 8 i ¼ 1; 2; . . . ;n;ViðxÞ \ A 6¼ ;g; 8A � X: ð10Þ
Similarly, we can de¯ne weak pretopology from awð�Þ by using the union operator:

awðAÞ ¼ fx 2 X j 9 i ¼ 1; 2; . . . ;n;ViðxÞ \ A 6¼ ;g; 8A � X: ð11Þ
To building stochastic pseudo-closure function, let us de¯ne a random relation R:

� ! L as a random variable:

PðRð!Þ ¼ RiÞ ¼ pi; pi � 0;
Xn
i¼1

pi ¼ 1:

For each x 2 V , we can build a random set of neighbors of x with the random relation

R:

�Rð!ÞðxÞ ¼ fy 2 V jxRð!Þ yg:
We can de¯ne a stochastic pseudo-closure að�; �Þ as

8A 2 PðV Þ; að!;AÞ ¼ fx 2 V j�Rð!ÞðxÞ \ A 6¼ ;g: ð12Þ
There are three pseudo-closure functions in Eqs. (10)–(12) which are used to

determine the neighborhood set for the spreading process.

5.2. Textual-Homo-PCM

In our approach, from the textual agent's network GðV ; ðRiÞi¼1;...n, ðEiÞi¼1;...nÞ
constructed at Sec. 3, we can build a model namely Textual-Homo-PCM as an

20 T. K. T. Ho, Q. V. Bui & M. Bui
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information di®usion model that integrated pretopology, stochastic pretopology,

topic modeling, and cascade model via three steps:

Step 1: De¯ne pseudo-closure functions based on the family of relations

ðRiÞi¼1;...;n. In this step, we will de¯ne three kinds of pseudo-closure functions

presented in the previous subsection: strong pseudo-closure asð�Þ in Eq. (10), weak

pseudo-closure awð�Þ in Eq. (11), and stochastic pseudo-closure aðw; �Þ in Eq. (12).

Step 2: De¯ne the set of neighbors NðIt�1Þ of active set It�1 at step t� 1 based on

the pseudo-closure functions built from step 1.

Step 3: Each inactive node v 2 NðIt�1ÞnIt�1 will be in°uenced by It�1 to become

an active node based on the threshold rule: each inactive node v 2 NðIt�1ÞnAt�1

will be in°uenced by It�1 to become an active node if the sum of all homophily

from all active nodes in It�1 to it is greater than the activation threshold �v.

We can see that with strong pseudo-closure function in Eq. (10), we can determine

the neighborhood set of active set Itotal by asðAÞ where A ¼ Itotal. A node v 2 V will

become the neighbor of active set Itotal when it has all relations ðRiÞi¼1;...;n with Itotal.

Therefore, a strong pseudo-closure function will narrow the scope of neighborhood

set, leading to slower propagation process. In contrast, weak pseudo-closure function

in Eq. (11) expands the area of neighborhood set since a node v 2 V will become the

neighbor of Itotal when there is just one relationship with Itotal. This can promote the

spreading process faster. Moreover, perhaps that in reality information di®usion

process from one person to another takes place with a stochastic relationship at each

time t. Therefore, we use að!; �Þ from Eq. (12) to determine a random neighborhood

set of active set with a random relation R. The Textual-Homo-PCM algorithm is

presented in Algorithm 5.1.

G(V, (Ri)i=1,...,n, (Ei)i=1,...,n)
I0

G, I0

t ← 0, Itotal ← I0

t ← t + 1 It ← ∅
Nt ← as(Itotal), aw(Itotal) a(ω, Itotal)

v ∈ Nt − Itotal

u∈Itotal
Homo(u, v) > θv

It ← It ∪ {v}
Itotal ← Itotal ∪ It

Itotal
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5.3. Experiments

5.3.1. Data collection

The proposed Textual-Homo-PCM model has been simulated on a well-known social

network platform, Twitter, and the co-author network. For Twitter, we have aimed

for 100 users and crawled over 100 tweets for each user. For the co-author network,

we have targeted 100 authors who have participated in Neural Information Pro-

cessing Systems Conference from 2000 to 2012.

5.3.2. Experimental setup

Textual agent's networks are constructed as shown in Sec. 3 in which there are two

relations R1 and R2 between agents. We use ATM to estimate topic's probability

distribution of agents and Hellinger distance for homophily measurement. For the co-

author network, we consider R1 as co-author relation and the relation RMTP for R2.

For Twitter network, follow and RMTP relation correspond to R1 and R2, respec-

tively. We consider RMTP with probability threshold p0 ¼ 0:35.

The di®usion process will start with a seed set jA0j ¼ 10. One hundred random

samples are used for seed set and the di®usion process is executed 100 times for each

seed set. The spreading follows two major steps in which the ¯rst step is to capture a

set of neighborhoods through pseudo-closure function and apply the threshold rule

based on homophily under the second step. We estimate the activation threshold for

each node v½�ðvÞ� from the product of average homophily on the whole network and

the average degree of v. For random neighborhood set að!; �Þ, we de¯ned random

index distribution ! corresponding to probability distribution ½0:5; 0:5�. In addition

to experiments of Textual-Homo-PCM, we also implement cascade model on single-

relational networks (Textual-Homo-CM) to compare the results.

5.3.3. Results and discussion

Experimental results of Textual-Homo-PCM are shown in Fig. 9. We can see that

cascade di®usions on single-relational textual agent's networks (Textual-Homo-CM)

and Textual-Homo-PCM with að!; �Þ always achieve lower results than Textual-

Homo-PCM with awð�Þ while they reach higher performance in comparison with

Textual-Homo-PCM with asð�Þ. Textual-Homo-PCM with asð�Þ always reaches

lowest performance while the highest result belongs to Textual-Homo-PCM with

awð�Þ. For Twitter network, Textual-Homo-CM obtained 55 and 69 active nodes for

the network with follow and major topic relations, respectively. Besides, Textual-

Homo-PCM with asð�Þ just reached half the value of active number of Textual-Homo-

CM with follow relation while for Textual-Homo-PCM with awð�Þ and að!; �Þ nearly
all nodes are active in the network. Similarity, for co-author network, Textual-Homo-

PCM with asð�Þ obtained the lowest result, approximately 75 active nodes. Next,

Textual-Homo-CM with major topic relation reached slightly higher when compared

with Textual-Homo-PCM with asð�Þ, of around 80 active agents. Finally, the highest

22 T. K. T. Ho, Q. V. Bui & M. Bui
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results belonged to Textual-Homo-CM with co-author and Textual-Homo-PCM with

awð�Þ and að!; �Þ. These results can be explained by the criteria for neighborhood set

determination from pseudo-closure functions that we described in Sec. 5.2. In short,

we can apply pretopology theory and stochastic pretopology to simulate di®usion

process on multi-relational network. There are various ways to determine the

neighborhood set through di®erent pseudo-closure functions. Obviously, the per-

formance of propagation process depends on the criteria combination for neighbor-

hood determination from the pseudo-closure function.

6. Conclusion

In this research, we propose two expanded models of IC di®usion model and PCM,

namely Textual-Homo-IC and Textual-Homo-PCM, respectively. These models are

applied on network related to textual information, namely textual agent's network.

In textual agent's network, each agent corresponds to one node which has speci¯c

properties including ID, neighbors, and topic's probability distribution. Topic

modeling is utilized to estimate the topic's distribution of agents from the textual

content. In Textual-Homo-IC, we just take into account the spreading process on

single-relational textual agent's network and concentrate on estimating the proba-

bility of an active node infecting another inactive one based on their homophily

which is measured from their topic's distribution. Textual-Homo-IC has revealed

details on both static and dynamic single-relational textual agent's networks. Ex-

perimental results demonstrated that the e®ectiveness of Textual-Homo-IC on the

static network outperforms Random-IC. In addition, experiments also illustrated the

°uctuation of active number on the dynamic agent's network instead of reaching and

remaining in a steady state in a static network. On the other hand, we exploit the

spreading process on multi-relational textual agent's network through Textual-

Homo-PCM. In Textual-Homo-PCM, pretopology and stochastic pretopology theory

(a) Twitter network. (b) Co-author network.

Fig. 9. Textual-Homo-PCM di®usion.
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are applied to de¯ne the neighborhood set for spreading by the pseudo-closure

function. Experimental results illustrated that we can combine multi-criteria based

on relations between agents to determinate the neighborhood set, leading to expected

di®usion results. In future works, we will conduct experiments on other large-scale

networks and compare our models with more other baseline models.
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