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Abstract. We use the concept of approximation introduced by D.T Luc et al. [ 1 ] as
generalized derivative for non-Lipschitz vector functions to consider vector problems
with non-Lipschitz data under inclusion constraints. Some calculus of approximations
are presented. A necessary optimality condition, type of KKT condition, for local
efficient solutions of the problems is established under an assumption on regularity.
Applications and numerical examples are also given.
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1 Introduction

Several problems in optimization, variational analysis and other fields of mathematics
concern generalized equations of the form

0 ∈ F (x), (1)

where F : X ⇒ Y is a set-valued map and X,Y are normed spaces. For instant, a
inclusion constraint of the form

g(x) ∈ K, (2)

where g : X → Y and K ⊂ Y , can be rewritten as (1) if we set

F (x) := g(x)−K.

A more typical example is a constraint system of equalities/inequalities{
gi(x) ≤ 0, i = 1, . . . , n.

hj(x) = 0, j = 1, . . . , k,
(3)

where gi, hj : X → R. We can rewrite (3) as (1) by setting

g := (g1, . . . , gn, h1, · · · , hk)

K := Rn+ × {0Rk}
F (x) := g(x) +K.

Vector optimization problems with inclusion constraint (1) have been studied by sev-
eral authors (see, [ 5 ], [ 2 ], [ 3 ], [ 6 ]). In [ 5 ], objective functions are assumed locally
Lipschitz. Second order optimality conditions are considered in [ 2 ], [ 3 ], [ 6 ].

In this paper we consider the vector problem

min f(x) s.t. 0 ∈ F (x), (P)
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where f : X → Rm is a non-Lipschitz vector function. We shall use the concept of
approximation introduced in [1 ] as generalized derivatives to investigate the problem.
In the next section we recall some properties of locally Lipschitz set-valued maps. The
definition and some calculus of approximation are presented in Section 3. Section 4
is devoted for establishing a necessary optimality condition, type of KKT’s condition,
for local efficient solution to (P). Applications and examples are also given.

Let X be a normed space and let A ⊂ X. We denote by BX , SX , clA, coA the
closed unit ball in X, the unit sphere in X, the closure of A and the convex hull of
A, respectively.

2 Preliminaries

In this section we assume that X,Y are Hilbert spaces and F : X ⇒ Y is a locally
Lipschitz set-valued map with nonempty, closed and convex values. We recall that F
is said to be locally Lipschitz at x̄ ∈ X if there exist a neighborhood U of x̄ and a
positive number α satisfying

F (x1) ⊂ F (x2) + αBY (0, ‖x1 − x2‖), ∀x1, x2 ∈ U.

The distant function of F is defined by

dF (x) := inf{‖y‖ : y ∈ F (x)},∀x ∈ X.

It is a continuous function since F is locally Lipschitz. Let x ∈ X be arbitrary. Set

Y ∗F (x) := {y∗ ∈ Y ∗ : | sup
y∈F (x)

〈y∗, y〉 < +∞}

Y ∗F := {y∗ ∈ Y ∗ : | sup
y∈F (x)

〈y∗, y〉 < +∞, ∀x ∈ X},

where Y ∗ is the topological dual space of Y .

Lemma 2.1 Y ∗F (x) is not depend on x.

Proof. Let x ∈ X be arbitrary. Set

S := {x′ ∈ X : Y ∗F (x′) = Y ∗F (x)}.

We note that in a Hilbert space the image of any ball under a continuous linear
functional is bounded. Then S is open since F is locally Lipschitz. Also by the
locally Lipschitz assumption of F , every cluster point of S is contained in S. Hence
S is closed. Obviously S 6= ∅. Hence, S = X since every normed space is connected.

So we have Y ∗F = Y ∗F (x), ∀x ∈ X. Note that Y ∗F is a convex cone. For y∗ ∈ Y ∗F ,
define a support function of F by the rule

CF (y∗, x) := sup
y∈F (x)

〈y∗, y〉, ∀x ∈ X.

Since F is locally Lipschitz it can be verified that CF (y∗, .) is locally Lipschitz, too.
We say that F has the Cl-property ( [5]) if the set-valued map (y∗, x) ∈ Y ∗F ×X →

∂CF (y∗, x) ⊂ X∗ is u.s.c, where X∗, Y ∗ are endowed with the weak∗-topology and

X with the strong topology, that is, if xn → x in X, y∗n
w∗→ y∗ in Y ∗F , x∗n

w∗→ x∗ with
x∗n ∈ ∂CF (y∗n, xn), then x∗ ∈ ∂CF (y∗, x). ( Where ∂CF (y∗, x) denotes the Clarke
generalized gradient of the support function CF (y∗, .) at x. )

We now recall and establish some useful properties of the distant function and
support functions of F .
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Lemma 2.2 ([5, Proposition 3.1]) Assume that F has the Cl-property. If dF (x) > 0,
then there exists y∗ ∈ Y ∗F ∩ S∗Y such that{

∂dF (x) ⊂ −∂CF (y∗, x).

dF (x) = −CF (y∗, x).

Lemma 2.3 Let x̄ ∈ X be arbitrary. If {y∗n} ⊂ Y ∗F , y∗n
w∗→ y∗, then

CF (y∗, x̄) ≤ lim sup
n→∞

CF (y∗n, x̄).

Proof. By the definition of support functions, one can find a sequence {ym} ⊂ F (x̄)
with

lim
m→∞

〈y∗, ym〉 = CF (y∗, x̄).

Since
lim
n→∞

〈y∗n, ym〉 = 〈y∗, ym〉, ∀m

one can choose a subsequence {y∗nm}m such that

lim
m→∞

〈y∗nm , ym〉 = CF (y∗, x̄)

which implies

CF (y∗, x̄) ≤ lim sup
m→∞

CF (y∗nm , x̄) ≤ lim sup
n→∞

CF (y∗n, x̄).

Lemma 2.4 For every x̄ ∈ X, y∗ ∈ Y ∗F , there exists a neighborhood U of x̄ satisfying

CF (y∗, x̄) ≤ CF (y∗, x) + α‖y∗‖‖x− x̄‖,∀x ∈ U,

where α is a Lipschitz constant of F at x̄.

Proof. Since F is locally Lipschitz at x̄ there exist a neighborhood U of x̄ and a
positive number α satisfying

F (x̄) ⊂ F (x) + α‖x− x̄‖BY , ∀x ∈ U.

Let y ∈ F (x̄) is arbitrary. One can find y′ ∈ F (x), u ∈ BY such that

y = y′ + α‖x− x̄‖u.

Therefore,
〈y∗, y〉 = 〈y∗, y′〉+ α‖x− x̄‖〈y∗, u〉

≤ CF (y∗, x) + α‖x− x̄‖‖y∗‖
which implies

CF (y∗, x̄) ≤ CF (y∗, x) + α‖y∗‖‖x− x̄‖.

3 Approximation

Assume that X,Y are normed spaces. Let {An}n∈N be a sequence of subsets of Y .
We say that {An} converges to {0}, denoted An → 0, if

∀ε > 0,∃N : n ≥ N ⇒ An ⊂ BY (0, ε).

Let x̄, u ∈ X. A sequence {xn} ⊂ X is said to converge to x̄ in the direction u,
denoted xn →u x̄, if

∃tn ↓ 0, un → u such that xn = x̄+ tnun, ∀n.

Let r : X ⇒ Y . We say that r has limit 0 as x converges to 0 in direction u, denoted
lim
x→u0

r(x) = 0, if
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∀ {xn} ⊂ X, xn →u 0 ⇒ r(xn)→ {0}.

Denote by L(X,Y ) the space of continuous linear mappings from X to Y . For A ⊂
L(X,Y ), y∗ ∈ Y ∗ and x ∈ X, set A(x) := {a(x) : a ∈ A}, (y∗ ◦A)(x) := y∗[A(x)].

Let f : X → Y and x̄ ∈ X. The following definition of approximation is a version
of [ 1 , Definition 3.1] with a minor change.

Definition 3.1 A nonempty subset Af (x̄) ⊂ L(X,Y ) is called an approximation of
f at x̄ ∈ X if for every direction u 6= 0, there exists a set-valued map ru : X ⇒ Y
with lim

x→u0
ru(x) = 0, such that for every sequence {xn} ⊂ X converging to x̄ in the

direction u,

f(xn) ∈ f(x̄) +Af (x̄)(xn − x̄) + ‖xn − x̄‖ru(xn − x̄),

for n sufficiently large.

The concept of approximation was first given by Jourani and Thibault [ 7 ] in a
stronger form. It requires that

f(x) ∈ f(x′) +Af (x̄)(x− x′) + ‖x− x′‖r(x, x′),

where r(x, x′) → 0 as x, x′ → x̄. Allali and Amahroq [ 8 ] gives a weaker definition
by taking x′ = x̄ in the above relation. It is clear from the above definitions that
an approximation in the sense of Jourani and Thibault is an approximation in the
sense of Allali and Amahroq, which, in its turn, is an approximation in the sense of
Definition 3.1. However, the converse is not true in general as shown in [ 1 ]. The
definition by Jourani and Thibault evokes the idea of strict derivatives and is very
useful in the study of metric regularity and stability properties, while Definition 3.1
is more sensitive to behavior of the function in directions and so it allows to treat
certain questions such as existence conditions for a larger class of problems.

We note that the Clarke generalized gradient locally Lipschitz functions on Ban-
nach spaces, by [ 9 ], is an approximation in the sense of Allali and Amahroq. Hence,
it is also an approximation in the sense of Definition 3.1. Now we establish some basic
calculus for approximations which will be needed in the sequel. The next two lemmas
are immediate from Definition 3.1.

Lemma 3.1 Let f, g : X → Y . If f, g admit Af (x̄), Ag(x̄), respectively, as approxi-
mations at x̄ ∈ X, then f+g, (f, g) admit Af (x̄)+Ag(x̄), Af (x̄)×Ag(x̄), respectively,
as approximations at x̄ (where (f, g)(x) := (f(x), g(x))).

Lemma 3.2 Let f : X → Y . If Af (x̄) is an approximation of f at x̄ ∈ X, then, for
every y∗ ∈ Y ∗, y∗ ◦Af (x̄) is an approximation of y∗ ◦ f at x̄.

For a set-valued map r : X ⇒ Y , we set

Mr(x) := sup{‖z‖ : z ∈ r(x)}, ∀x ∈ X.

Lemma 3.3 Let f : X → Y , g : Y → R. Assume that Af (x̄) is an bounded
approximation of f at x̄ ∈ X and g is differentiable at ȳ := f(x̄). Then Dg(ȳ)◦Af (x̄)
is an approximation of g ◦ f at x̄.

Proof. Since g is differentiable at ȳ we have the following representation

g(y) = g(ȳ) +Dg(ȳ)(y − ȳ) + ‖y − ȳ‖s(y − ȳ),

where s : Y → R satisfies lim
z→0

s(z) = 0. Let u ∈ X \ {0} be arbitrary. By assumption

one can find a set-valued map ru : X → Y with lim
x→u0

r(x) = 0 such that for every

sequence xn →u x̄, we have

f(xn) ∈ f(x̄) +Af (x̄)(xn − x̄) + ‖xn − x̄‖ru(xn − x̄),
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for n sufficiently large. Denote

M := sup{‖φ‖ : φ ∈ Af (x̄)}.

We have

g[f(xn)] = g[f(x̄)] +Dg(ȳ)[f(xn)− f(x̄)] + ‖f(xn)− f(x̄)‖s[f(xn)− f(x̄)]

∈ g[f(x̄)] +Dg(ȳ)[Af (x̄)(xn − x̄) + ‖xn − x̄‖ru(xn − x̄)]+

+ ‖f(xn)− f(x̄)‖s[f(xn)− f(x̄)]

= g ◦ f(x̄) + [Dg(ȳ) ◦Af (x̄)](xn − x̄) + ‖xn − x̄‖[Dg(ȳ) ◦ ru](xn − x̄)+

+ ‖f(xn)− f(x̄)‖s[f(xn)− f(x̄)]

⊂ g ◦ f(x̄) + [Dg(ȳ) ◦Af ](x̄)(xn − x̄) + ‖xn − x̄‖[Dg(ȳ) ◦ ru](xn − x̄)+

+ ‖xn − x̄‖[0,M +Mru(xn − x̄)]s[f(xn)− f(x̄)]

= g ◦ f(x̄) + [Dg(ȳ) ◦Af (x̄)](xn − x̄) + ‖xn − x̄‖r′u(xn − x̄),

where,
r′u(x) := Dg(ȳ) ◦ ru(x) + [0,M +Mru(x)]s′(x)

with s′(x) := s[f(x + x̄) − f(x̄)]. It can be verified that lim
x→u0

r′u(x) = 0. The lemma

is proved.
Let f1, f2 : X → R. For every x ∈ X, put

h(x) := max{f1(x), f2(x)}

and
J(x) := {i | fi(x) = h(x)}.

Lemma 3.4 Assume that f1, f2 is continuous at x̄ ∈ X. If Af1(x̄) and Af2(x̄) are
approximations of f1 and f2 at x̄, respectively , then

Ah(x̄) := ∪
i∈J(x̄)

Afi(x̄)

is an approximation of h at x̄

Proof. Let u ∈ X \ {0} be arbitrary. By the definition of approximation, there
exist maps ru, su : X ⇒ R with lim

x→u0
ru(x) = 0, lim

x→u0
su(x) = 0 such that for every

sequence {xn} ⊂ X converging to x̄ in the direction u, one has

f1(xn) ∈ f1(x̄) +Af1(x̄)(xn − x̄) + ‖xn − x̄‖ru(xn − x̄) (4)

f2(xn) ∈ f2(x̄) +Af2(x̄)(xn − x̄) + ‖xn − x̄‖su(xn − x̄) (5)

for n sufficiently large. One of the following cases holds.
i) J(x̄) = {1, 2}. Set tu(x) = ru(x) ∪ su(x),∀x ∈ X. From (4) and (5) one has

h(xn) ∈ h(x̄) + (Af1(x̄) ∪Af2(x̄))(xn − x̄) + ‖xn − x̄‖tu(xn − x̄)

for n sufficiently large. Since lim
x→u0

tu(x) = 0, Af1(x̄) ∪ Af2(x̄) is an approximate of h

at x̄.
ii) J(x̄) = {1}. Since f1, f2 are continuous at x̄, we have f1(xn) > f2(xn) for n

sufficiently large. It implies that

h(xn) ∈ h(x̄) +Af1(x̄)(xn − x̄) + ‖xn − x̄‖ru(xn − x̄).

Hence Af1(x̄) is an approximate of h at x̄.
iii) J(x̄) = {2}. Analogously, we have Af2(x̄) is an approximate of h at x̄. The

lemma is proved.
Let φ : X → R.
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Lemma 3.5 Assume that X is a reflexive space. If x̄ ∈ X is a local minimum of φ
and φ admits Aφ(x̄) as an approximation at x̄, then

0 ∈ cl coAφ(x̄).

Proof. Suppose on the contrary that 0 /∈ cl coAφ(x̄). Since X is reflexive, by using
the strong separation Theorem, one can find a vector u ∈ X \ {0} and a positive
number ε satisfying

〈x∗, u〉 ≤ −ε, ∀x∗ ∈ Aφ(x̄).

Corresponding to the direction u, there exists a set-valued map ru : X ⇒ R with
lim
x→u0

ru(x) = 0 such that for every sequence xn →u x̄, one has

f(xn) ∈ f(x̄) +Aφ(x̄)(xn − x̄) + ‖xn − x̄‖ru(xn − x̄)

for sufficiently large n. Since xn := x̄+ 1
nu→u x̄, we get

n[f(xn)− f(x̄)] ∈ Aφ(x̄)(u) + ‖u‖ru(xn − x̄) ⊂ (−∞,− ε
2

]

for sufficiently large n. We have a contradiction.

4 Optimality condition

In this section we assume that X,Y are Hilbert spaces and that Rm is ordered by a
closed, convex cone C which is not a subspace. We denote by C ′ the polar cone of C,
that is,

C ′ := {z∗ ∈ Rm : 〈z∗, c〉 ≥ 0, ∀c ∈ C}.

Let f : X → Rm and let F : X ⇒ Y be locally Lipschitz with Y ∗F is weak∗-closed.
We consider the problem

min f(x) s.t. 0 ∈ F (x). (P)

Set
S := {x ∈ X : 0 ∈ F (x)}.

We recall that a vector x̄ ∈ S is called a local efficient solution of Problem (P) if there
exist a neighborhood V of x̄ such that

x ∈ S ∩ V ⇒ f(x) /∈ f(x̄)− (C \ (C ∩ −C)).

Problem (P) is said to be regular at a feasible point x̄ (see, [ 5 ]) if there exist a
neighborhood U of x̄ and positive numbers δ, γ such that for every x ∈ U, y∗ ∈
Y ∗F , x

∗ ∈ ∂CF (y∗, x), there exists η ∈ BX(0, δ) satisfying

CF (y∗, x) + 〈x∗, η〉 ≥ γ‖y∗‖. (6)

Firstly, we establish some results which will be used in the proof of the main result
of the section. Let A ⊂ Rm be a nonempty set. Consider the support function of A

s(A, x) := sup
a∈A
〈a, x〉.

For each x ∈ Rm we set

I(x) := {a ∈ A : 〈a, x〉 = s(A, x)}.

Proposition 4.1 Assume that A is compact. Then s(A, .) is differentiable at x̄ ∈
Rm if and only if I(x̄) is a singleton. In this case,

∇s(A, .)(x̄) = a

with a is the unique element of I(x̄).
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Proof. Since A is compact, I(x) 6= ∅,∀x and s(A, .) is a convex function with the do-
main is Rm, consequently, s(A, .) is locally Lipschitz on Rm. Hence, by Rademacher’s
Theorem, s(A, .) is differentiable almost everywhere (in the sense of Lebesgue mea-
sure) on Rm. Denote by M the set of all points at which s(A, .) is differentiable.

For the ’only if’ part, assume that s(A, .) is differentiable at x̄. Let ā ∈ I(x̄) and
v ∈ Rm be arbitrary. We have

〈∇s(A, .)(x̄), v〉 = lim
t↓0

s(A, x̄+ tv)− s(A, x̄)

t

= lim
t↓0

sup
a∈A
〈a, x̄+ tv〉 − 〈ā, x̄〉

t

≥ lim
t↓0

〈ā, x̄+ tv〉 − 〈ā, x̄〉
t

= 〈ā, v〉.

This implies ā = ∇s(A, .)(x̄). Hence,

I(x̄) = {∇s(A, .)(x̄)}.

For the ’if’ part, assume that I(x̄) is a singleton and its unique element is denoted
by ā. Firstly, we show that the set-valued map I : x → I(x) is u.s.c. at x̄. Indeed,
suppose on the contrary then one can find a number ε > 0 and a sequence {xn}
converging to x̄ such that

I(xn) * B(ā, ε).

Let an ∈ I(xn) \ B(ā, ε). Since A is compact, we may assume that an → a, for some
a ∈ A with a 6= ā. Since 〈an, xn〉 ≥ 〈ā, xn〉, taking the limit, we have 〈a, x̄〉 ≥ 〈ā, x̄〉.
Hence, 〈a, x̄〉 = s(A, x̄) which implies a = ā. We get a contradiction.

Now, let {xn} ⊂ M such that xn → x̄, ∇s(A, .)(xn) → x∗, for some x∗ ∈ Rm.
From the proof of the ’only if’ part, we have I(xn) = {∇s(A, .)(xn)}. Then the upper
semicontinuity of I at x̄ implies x∗ = ā, and consequently, ∂s(A, .)(x̄) = {ā} = I(x̄).
Therefore s(A, .) is differentiable at x̄ and ∇s(A, .)(x̄) = ā. The proof is complete.

Let a ∈ Rm. We define a set-valued map Φ : X ⇒ Rm as follows.

Φ(x) := f(x) + a+ C.

Lemma 4.1 We have

dΦ(x) = [s(C ′ ∩BRm , .) ◦ (f + a)](x),∀x ∈ X.

If dΦ(x) > 0, then there exists a unique element z∗ ∈ C ′ ∩BRm such that

dΦ(x) = 〈z∗, f(x) + a〉.

Furthermore, ‖z∗‖ = 1.

Proof. Firstly, we prove that, for every x ∈ X,

dΦ(x) = max
y∗∈−C′∩BRm

− sup
y∈Φ(x)

〈y∗, y〉. (7)

Indeed, since Φ(x) is closed and convex, there exists a unique element ȳ ∈ Φ(x) such
that dΦ(x) = ‖ȳ‖ and

〈ȳ, y〉 ≥ 〈ȳ, ȳ〉, ∀y ∈ Φ(x). (8)

For every y∗ ∈ −C ′ ∩BRm , we have

− sup
y∈Φ(x)

〈y∗, y〉 = inf
y∈Φ(x)

〈−y∗, y〉 ≤ 〈−y∗, ȳ〉 ≤ ‖ȳ‖ = dΦ(x).
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Therefore
dΦ(x) ≥ max

y∗∈−C′∩BRm
− sup
y∈Φ(x)

〈y∗, y〉. (9)

If 0 ∈ Φ(x), then by choosing y∗ = 0 ∈ −C ′ ∩BRm , we have

dΦ(x) = − sup
y∈Φ(x)

〈y∗, y〉. (10)

(9) and (10) imply (7).
If 0 /∈ Φ(x), then by taking (8) into account and choosing ȳ∗ = − ȳ

‖ȳ‖ ∈ −C
′∩SRm ,

we have
〈ȳ∗, y〉 ≤ 〈ȳ∗, ȳ〉 = −‖ȳ‖,∀y ∈ Φ(x).

Hence
dΦ(x) = − sup

y∈Φ(x)

〈ȳ∗, y〉. (11)

(9) and (11) imply (7).
For every y∗ ∈ −C ′ ∩BRm , one has

sup
y∈Φ(x)

〈y∗, y〉 = 〈y∗, f(x) + a〉 (12)

which together (7) give

dΦ(x) = max
z∗∈C′∩BRm

〈z∗, f(x) + a〉 = [s(C ′ ∩BRm , .) ◦ (f + a)](x).

Now we consider the case when dΦ(x) > 0, or equivalently, 0 /∈ Φ(x). From (11)
and (12) one has

dΦ(x) = − sup
y∈Φ(x)

〈ȳ∗, y〉 = 〈z∗, f(x) + a〉

with z∗ = −ȳ∗ = ȳ
‖ȳ‖ ∈ C

′∩SRm . Suppose that we have y∗ ∈ C ′∩BRm also satisfying

dΦ(x) = 〈y∗, f(x) + a〉 = − sup
y∈Φ(x)

〈−y∗, y〉 = inf
y∈Φ(x)

〈y∗, y〉.

Then

〈y∗, ȳ〉 ≥ dΦ(x) = 〈 ȳ
‖ȳ‖

, ȳ〉

which implies

〈y∗ − ȳ

‖ȳ‖
, ȳ〉 ≥ 0.

Set c = y∗ − ȳ
‖ȳ‖ . We have

1 ≥ ‖y∗‖2 = ‖c+
ȳ

‖ȳ‖
‖2 = ‖c‖2 + ‖ ȳ

‖ȳ‖
‖2 + 2〈c, ȳ

‖ȳ‖
〉 ≥ 1 + ‖c‖2.

Hence, c = 0 which implies y∗ = z∗.

Lemma 4.2 Let x̄ ∈ X. If dΦ(x̄) > 0 and f admits Af (x̄) as a bounded approxima-
tion at x̄, then there exists z∗ ∈ C ′ ∩ SRm such that z∗ ◦ Af (x̄) is an approximation
of dΦ at x̄, where z∗ ◦Af (x̄) := {〈z∗, ξ(.)〉 : ξ ∈ Af (x̄)} .

Proof. By Lemma 4.1,

dΦ = [s(C ′ ∩BRm , .) ◦ (f + a)]

and there exists a unique element z∗ ∈ C ′ ∩BRm satisfying

s(C ′ ∩BRm , f(x) + a) = 〈z∗, f(x) + a〉.
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Moreover, ‖z∗‖ = 1. By Proposition 4.1, the support function s(C ′ ∩BRm , .) is differ-
entiable at ȳ = f(x̄) + a and

∇s(C ′ ∩BRm , .)(ȳ) = z∗.

Hence, by Lemma 3.3 and Lemma 3.1, z∗ ◦Af (x̄) is an approximation of dΦ at x̄.
Define

φ(x) := f(x) + C, ∀x ∈ X.

Lemma 4.3 If f is continuous, then so is dφ.

Proof. Suppose to the contrary that dφ is not continuous. Then there exist x̄ ∈ X,
ε > 0 and a sequence {xn} ⊂ X such that

xn → x̄

dφ(xn) /∈ dφ(x̄) + (−ε, ε), ∀n.

Without loss of generality, we may assume one of the following cases holds.
i) dφ(xn) ≤ dφ(x̄)− ε, ∀n. Since C is closed and convex, for every n, one can find

a point cn ∈ C satisfying

f(xn) + cn ∈ BRm(0, dφ(x̄)− ε). (13)

It can be verified that

[BRm(f(x̄),
ε

2
) + C] ∩BRm(0, dφ(x̄)− ε) = ∅.

By the continuity of f , there exists xn such that

f(xn) ∈ BRm(f(x̄),
ε

2
).

Hence,
f(xn) + cn /∈ BRm(0, dφ(x̄)− ε)

which contradicts (13).
ii) dφ(x̄) ≤ dφ(xn)− ε, ∀n. Analogously, we also get a contradiction. The lemma

is proved.

Assumption 1 : ∃ε > 0 : ∪
x∈BX(x̄,ε)

coAf (x) is relatively compact.

Assumption 2 : coAf is closed at x̄, i.e., if xn → x̄, w∗n → w∗ with w∗n ∈ coAf (xn),
then w∗ ∈ coAf (x̄).

Theorem 4.1 Assume that F has the Cl-property and f is continuous. Suppose
that f admits an approximation Af (x) at every x in a neighborhood of x̄ ∈ X which
fulfills Assumptions 1,2. If x̄ is a local efficient solution of (P)and (P) is regular at x̄,
then there exist z∗ ∈ C ′ \ {0}, y∗ ∈ Y ∗F such that{

0 ∈ z∗ ◦ coAf (x̄)− ∂CF (y∗, .)(x̄)

CF (y∗, x̄) = 0.

Proof. Our proof is similar to the ones used in [ 10 ] and [ 5 ]. Since C is not a
subspace, one can find c ∈ C with ‖c‖ = 1 and

c /∈ −C. (14)

For every x ∈ X, define

φn(x) := f(x)− f(x̄) +
1

n
c+ C.

hn(x) := max{dφn(x), dF (x)}.
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We see that hn(x̄) ≤ 1
n + inf

x∈X
hn(x). By Lemma 4.3, dφn is continuous and hence, hn

is too. Then by Ekeland’s Variational Principle one can find xn ∈ X such that{
‖xn − x̄‖ ≤ 1√

n

hn(xn) ≤ hn(x) + 1√
n
‖xn − x‖, ∀x ∈ X.

Therefore xn is a minimum of the function hn(x) + 1√
n
‖xn − x‖. By Lemma 3.5 and

Lemma 3.3,

0 ∈ cl co[Ahn(xn) +
1√
n
BX∗ ].

Taking Lemma 3.4 into account, there exist wn ∈ X∗, λn ∈ [0, 1] such that wn → 0
and

wn ∈ λncoAdφn
(xn) + (1− λn)∂dF (xn) +

1√
n
BX∗ ,

where, λn = 0 if dF (xn) > dφn(xn) and λn = 1 if dF (xn) < dφn(xn).

Note that hn(xn) > 0, otherwise f(xn) − f(x̄) + 1
nc ∈ −C, dF (xn) = 0. Then

0 ∈ F (xn) ( since F (xn) is closed ) and by the assumption on x̄, f(x̄)− f(xn) ∈ −C.
This implies c ∈ −C which contradicts (14).

By Lemma 2.2 and Lemma 4.2, there exist z∗n ∈ C ′ ∩ SRm , y
∗
n ∈ Y ∗F ∩ (SY ∗ ∪ {0})

such that

wn ∈ λnz∗n ◦ coAf (xn)− (1− λn)∂CF (y∗n, xn) +
1√
n
BX∗ . (15)

dF (xn) = −CF (y∗n, xn). (16)

We may assume that λn → λ ∈ [0, 1], z∗n → z∗0 ∈ C ′ ∩ SRm and that

y∗n
w∗→ y∗0 ∈ Y ∗F (17)

(since {y∗n} is bounded and Y ∗F is weak∗-closed). Letting n→∞, by Assumptions 1,2
and by the Cl-property of F , we have

0 ∈ z∗ ◦ coAf (x̄)− ∂CF (y∗, x̄),

where
z∗ = λz∗0 ∈ C ′, y∗ = (1− λ)y∗0 ∈ Y ∗F . (18)

We shall show that λ > 0, then consequently, z∗ 6= 0. Indeed, from (15), for every n,
we can find x∗1n ∈ coAf (xn), x∗2n ∈ ∂CF (y∗n, xn), x∗3n ∈ BX∗ satisfying

wn = λnz
∗
nx
∗
1n − (1− λn)x∗2n +

1√
n
x∗3n. (19)

By regularity, for n sufficiently large, there exists ξn ∈ δBX such that

CF (y∗n, xn) + 〈x∗2n, ξn〉 ≥ γ. (20)

(19) and (20) imply

〈λnz∗nx∗1n +
1√
n
x∗3n − wn, ξn〉 ≥ (1− λn)(γ − CF (y∗n, xn)).

Taking (16) into account, we have

〈λnz∗nx∗1n − wn, ξn〉+
1√
n
δ ≥ (1− λn)(γ + dF (xn)). (21)

By Assumption 1, ∃η > 0 such that ‖x∗1n‖ ≤ η, for n sufficiently large. Then from
(21) one has

λnηδ ≥ 〈wn, ξn〉 −
1√
n
δ + (1− λn)(γ + dF (xn)).
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Since lim
n→∞

dF (xn) = dF (x̄) = 0, letting n→∞ gives

ληδ ≥ (1− λ)γ

which implies

λ ≥ γ

ηδ + γ
> 0.

Finally, by combining Lemma 2.3, Lemma 2.4 and (16) we have

CF (y∗, x̄) ≤ lim sup
n→∞

CF ((1− λn)y∗n, x̄) ≤ lim
n→∞

(−(1− λn)dF (xn)) = 0.

Since 0 ∈ F (x̄) the converse inequality is obvious. Hence, CF (y∗, x̄) = 0. The proof
is complete.

A special case of Theorem 4.1 when Y is finitely dimensional is remarkable.

Theorem 4.2 Suppose that the assumptions of Theorem 4.1 are fulfilled and that
Y is finitely dimensional. If x̄ is a local efficient solution of (P), then there exist
z∗ ∈ C ′, y∗ ∈ Y ∗F with (z∗, y∗) 6= (0, 0) such that{

0 ∈ z∗ ◦ coAf (x̄)− ∂CF (y∗, .)(x̄)

CF (y∗, x̄) = 0.

If, in addition, (P) is regular at x̄, then z∗ 6= 0.

Proof. The proof is the same as the one of Theorem 4.1 with some notices as
follows.

+ The expression (17)

y∗n
w∗→ y∗0 ∈ Y ∗F

in the proof of Theorem 4.1 is replaced by

y∗n → y∗0 ∈ Y ∗F ∩ (SY ∗ ∪ {0})

since y∗n ∈ Y ∗F ∩ (SY ∗ ∪ {0}) and Y ∗ is finitely dimensional.
+ If y∗0 = 0, then λ = 1.
+ Then from equalities (18)

z∗ = λz∗0 ∈ C ′, y∗ = (1− λ)y∗0 ∈ Y ∗F

(where z∗0 ∈ SRm) we deduce (z∗, y∗) 6= (0, 0).

We now present some applications of Theorem 4.2 to non-Lipschitz vector prob-
lems with constraints (2) or (3). Firstly, consider the following problem

min f(x) s.t. g(x) ∈ K, (P′)

where f : Rn → Rm and g : Rn → Rl is a locally Lipschitz vector function and
K ⊂ Rl is a closed convex cone. Set

F (x) := g(x)−K, ∀x ∈ Rn.

We can verified that

Y ∗F = K ′

CF (y∗, x) = 〈y∗, g(x)〉, ∀x ∈ Rn, y∗ ∈ K ′,

where K ′ is the polar cone of K. Since ∂CF (y∗, x) = y∗◦∂g(x), F has the Cl-property.
Then we have immediately from Theorem 4.1.

11



Corollary 4.1 Assume that f is continuous. Suppose that f admits an approxi-
mation Af (x) at every x in a neighborhood of x̄ ∈ X such that Assumptions 1,2 are
fulfilled. If x̄ is a local efficient solution of (P′), then there exist z∗ ∈ C ′, y∗ ∈ K ′ with
(z∗, y∗) 6= (0, 0) such that{

0 ∈ z∗ ◦ coAf (x̄)− y∗ ◦ ∂g(x̄)

〈y∗, g(x̄)〉 = 0.

If, in addition, (P′) is regular at x̄, then z∗ 6= 0.

Next, we consider the following problem

min f(x) s.t.

{
gi(x) ≤ 0, i = 1, ..., n

hj(x) = 0, j = 1, ..., k,
(P′′)

where f : Rl → Rm is a non-Lipschitz vector function and gi, hj : X → R are locally
Lipschitz functions. Set

K := Rn+ × {0k}
φ(x) := (g1(x), ..., gn(x), h1(x), ..., hk(x))

F (x) := φ(x) +K,

where Rn+ is the nonnegative orthant cone of Rn, 0k is the origin of Rk. Then φ, F
are locally Lipschitz. We can see that the inclusion constraint 0 ∈ F (x) is equivalent
to the system of equality/inequality constraints

gi(x) ≤ 0, i = 1, ..., n

hj(x) = 0, j = 1, ..., k.

We have

Y ∗F = −K ′ = (−Rn+)× Rk

CF (y∗, x) = 〈y∗, φ(x)〉, ∀y∗ ∈ Y ∗F

∂CF (y∗, x) = y∗ ◦ ∂φ(x) ⊂
n∑
i=1

y∗i ∂gi(x) +

k∑
j=1

y∗n+j∂hj(x̄), ∀y∗ ∈ Y ∗F , x ∈ Rl,

where y∗ = (y∗1 , ..., y
∗
n+k). Since the Clarke generalized Jacobian ∂φ is closed at any

point, it can verified that F has the Cl-property. For every feasible solution x of
Problem (P′′) and y∗ ∈ Y ∗F , we have

CF (y∗, x) = 0⇔ 〈y∗, φ(x)〉 = 0⇔
n∑
i=1

y∗i gi(x̄) = 0.

Then the following corollary is immediate from Theorem 4.2.

Corollary 4.2 Assume thatf is continuous. Suppose that f admits an approxima-
tion Af (x) at every x in a neighborhood of x̄ ∈ X such that Assumptions 1,2 are
fulfilled. If x̄ is a local efficient solution of (P′′), then there exist z∗ ∈ C ′, λ1, ..., λn ≥
0, µ1..., µk ∈ R not all zero such that

0 ∈ z∗ ◦ coAf (x̄) +
n∑
i=1

λi∂gi(x̄) +
k∑
j=1

µj∂hj(x̄),

n∑
i=1

λigi(x̄) = 0.

If, in addition, (P′′) is regular at x̄, then z∗ 6= 0.
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If f is locally Lipschitz, then the Clarke generalized Jacobian ∂f(x) is also an ap-
proximation and Assumptions 1,2 are satisfied. Then from Corollary 4.2 we have

Corollary 4.3 Assume that f is locally Lipschitz. If x̄ is a local efficient solution
of (P′′), then there exist z∗ ∈ C ′, λ1, ..., λn ≥ 0, µ1..., µk ∈ R not all zero such that

0 ∈ z∗ ◦ ∂f(x̄) +
n∑
i=1

λi∂gi(x̄) +
k∑
j=1

µj∂hj(x̄),

n∑
i=1

λigi(x̄) = 0.

If, in addition, (P′′) is regular at x̄, then z∗ 6= 0.

Example 4.1 Let H be a Hilbert space with a countable base {ei : i = 1, 2, ..}
satisfying

〈ei, ej〉 =

{
1, i = j

0, i 6= j.

For a ∈ H, set
φa(x) := 〈a, x〉, ∀x ∈ H.

Define functions f = (f1, f2) : H → R2, g : H → R as follows. For every x =
∞∑
i=1

tiei,

f1(x) :=


|t1|, t1 ≤ 1

1 +
√
t1 − 1, 1 < t1 ≤ 2

1 + t1
2 , t1 > 2

f2(x) := t1

g(x) := ‖x‖2 − 1.

Then we can verify that

Af1(x) :=



{φe1}, 0 < t1 < 1

{tφe1 : t ∈ [0,+∞)}, t1 = 1

{ 1
2
√
t1−1

φe1}, 1 < t1 ≤ 2

{ 1
2φt1}, t1 > 2

{−φe1}, t1 < 0

{tφe1 : t ∈ [−1, 1]}, t1 = 0,

Af2(x) := {φe1}

are approximations of f1, f2 at x, respectively. Hence, by Lemma 3.1 we have

Af (x) = Af1(x)×Af2(x) =



{(φe1 , φe1)}, 0 < t1 < 1

{(tφe1 , φe1) : t ∈ [0,+∞)}, t1 = 1

{( 1
2
√
t1−1

φe1 , φe1)}, 1 < t1 ≤ 2

{( 1
2φt1 , φe1)}, t1 > 2

{(−φe1 , φe1)}, t1 < 0

{(tφe1 , φe1) : t ∈ [−1, 1]}, t1 = 0

is an approximation of f at x. We see that Assumptions 1,2 are fulfilled at every

x =
∞∑
i=1

tiei with t1 6= 1. The function g is locally Lipschitz and differentiable with

the derivative Dg(x) = 2φx.
Assume that R2 is ordered by the cone R2

+. We consider the problem

min f(x) s.t. g(x) ≤ 0. (P1)
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Noting that F (x) := g(x) + R+ has the Cl-property and (P1) is regular at every x.
Solving the system

∃z∗ ∈ R2
+ \ {0}, ∃λ ≥ 0 :


g(x) ≤ 0

0 ∈ z∗ ◦ coAf (x) + λDg(x)

λg(x) = 0

we obtain the solution set

S = {x =

∞∑
i=1

tiei : t1 ≤ 0} ∩BH(0, 1)

which contain all candidates for a local efficient solution of Problem (P1). Moreover,
by computing we see that actually S coincides with the set of all local efficient solution
of Problem (P1).
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