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COHEN–MACAULAYNESS AND CANONICAL MODULE

OF RESIDUAL INTERSECTIONS

MARC CHARDIN, JOSÉ NAÉLITON, AND QUANG HOA TRAN

Abstract. We show the Cohen–Macaulayness and describe the canonical mo-
dule of residual intersections J = a : RI in a Cohen–Macaulay local ring R,
under sliding depth type hypotheses. For this purpose, we construct and study,
using a recent article of Hassanzadeh and the second author, a family of com-
plexes that contains important information on a residual intersection and its
canonical module. We also determine several invariants of residual intersec-
tions as the graded canonical module, the Hilbert series, the Castelnuovo–
Mumford regularity and the type. Finally, whenever I is strongly Cohen–
Macaulay, we show duality results for residual intersections that are closely
connected to results by Eisenbud and Ulrich. It establishes some tight rela-
tions between the Hilbert series of some symmetric powers of I/a. We also
provide closed formulas for the types and for the Bass numbers of some sym-

metric powers of I/a.
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1. Introduction

The concept of residual intersection was introduced by Artin and Nagata in [1],
as a generalization of linkage; it is more ubiquitous, but also harder to understand.
Geometrically, letX and Y be two irreducible closed subschemes of a scheme Z with
codimZ(X) ≤ codimZ(Y ) = s and Y � X. Then Y is called a residual intersection

Received by the editors May 19, 2017, and, in revised form, March 23, 2018.
2010 Mathematics Subject Classification. Primary 13C40, 14M06; Secondary 13D02, 13D40,

13H10, 14M10.
Key words and phrases. Residual intersection, sliding depth, strongly Cohen–Macaulay, appro-

ximation complex, perfect pairing.
Part of this work was done while the second author was visiting the Université Pierre et Marie
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of X if the number of equations needed to define X ∪ Y as a subscheme of Z is the
smallest possible, i.e., s. For a ring R and a finitely generated R-module M , let
μR(M) denote the minimum number of generators of M .

The precise definition of a residual intersection is the following.

Definition 1.1. Let R be a Noetherian ring, let I be an ideal of height g, and let
s ≥ g be an integer.

(1) An s-residual intersection of I is a proper ideal J of R such that ht(J) ≥ s
and J = (a : RI) for some ideal a ⊂ I which is generated by s elements.

(2) An arithmetic s-residual intersection of I is an s-residual intersection J of
I such that μRp

((I/a)p) ≤ 1 for all prime ideals p with ht(p) ≤ s.
(3) A geometric s-residual intersection of I is an s-residual intersection J of I

such that ht(I + J) ≥ s+ 1.

Notice that an s-residual intersection is a direct link if I is unmixed and s = ht(I).
Also any geometric s-residual intersection is arithmetic.

The theory of residual intersections has been a center of interest since the 1980s,
when Huneke repaired in [16] an argument of Artin and Nagata in [1], introducing
the notion of a strongly Cohen–Macaulay ideal: an ideal such that all of its Koszul
homology is Cohen–Macaulay. The notion of strong Cohen–Macaulayness is stable
under even linkage, in particular ideals linked to a complete intersection satisfy this
property.

In [16], Huneke showed that if R is a Cohen–Macaulay local ring, J is a s-
residual intersection of a strongly Cohen–Macaulay ideal I of R satisfying Gs, then
R/J is Cohen–Macaulay of codimension s. Following [1], one says that I satisfies
Gs if the number of generators μRp

(Ip) is at most dim(Rp) for all prime ideals p

with I ⊂ p and dim(Rp) ≤ s− 1, and that I satisfies G∞ if I satisfies Gs for all s.
Later, Herzog, Vasconcelos, and Villarreal in [17] replaced the assumption of strong
Cohen–Macaulayness by the weaker sliding depth condition, for geometric residuals,
but they also showed that this assumption cannot be weakened any further. On the
other hand, Huneke and Ulrich proved in [15] that the condition Gs is superfluous
for ideals in the linkage class of a complete intersection. More precisely, they show
the following.

Theorem ([15]). Let R be a Gorenstein local ring, and let I be an ideal of height g
that is evenly linked to a strongly Cohen–Macaulay ideal satisfying G∞. If J = a : RI
is an s-residual intersection of I, then R/J is Cohen–Macaulay of codimension s
and the canonical module of R/J is the (s− g + 1)th symmetric power of I/a.

Let us notice that, in the proof of this statement, it is important to keep track
of the canonical module of the residual along the deformation argument that they
are using.

A natural question is then to know whether the Gs assumption is at all needed
to assert that residuals of ideals that are strongly Cohen–Macaulay, or satisfy the
weaker sliding depth condition, are always Cohen–Macaulay, and to describe the
canonical module of the residual. In this direction, Hassanzadeh and the second
author remarked in [11] that the following long-standing assertions were, explicitly
or implicitly, conjectured.
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COHEN–MACAULAY RESIDUAL INTERSECTIONS 1603

Conjecture ([4,15,22]). Let R be a Cohen–Macaulay local (or ∗local) ring, and let
I be strongly Cohen–Macaulay, or even let it just satisfy sliding depth. Then, for
any s-residual intersection J = (a : RI) of I, the following hold:

(1) R/J is Cohen–Macaulay.
(2) The canonical module of R/J is the (s− g + 1)th symmetric power of I/a,

if R is Gorenstein, with g = ht(I) ≤ s.
(3) a is minimally generated by s elements.
(4) J is unmixed.
(5) When R is positively graded over a field, the Hilbert series of R/J depends

only upon I and the degrees of the generators of a.

The first item in the conjecture was shown by Hassanzadeh [8] for arithmetic
residual intersections, and thus in particular for geometric residual intersections,
under the sliding depth condition. In a recent article [11], Hassanzadeh and the
second author proved that the second and fifth items in the conjecture hold for the
arithmetic residual intersections of strongly Cohen–Macaulay ideals, and that the
third and fourth items in the conjecture are true if depth(R/I) ≥ dim(R)− s, with
I satisfying the sliding depth condition.

In the text, we will complete the picture by showing that the first and fifth items
in the conjecture hold whenever I satisfies SD1, and that the second item in the
conjecture is true if I satisfies SD2 (SD0 is the sliding depth condition, and SD∞ is
strong Cohen–Macaulayness; see Definition 3.7 for the definition of the intermediate
SDk conditions).

In particular, all items in the conjecture hold for strongly Cohen–Macaulay
ideals. The following puts together part of these results (see 4.5, 4.8, and 6.2).

Theorem. Let (R,m) be a Cohen–Macaulay local ring with canonical module ω.
Assume that J = (a : RI) is an s-residual intersection of I with a ⊂ I and that
ht(I) = g ≤ s = μR(a). Then the following hold:

(i) R/J is Cohen–Macaulay of codimension s if I satisfies SD1.

If furthermore I is strongly Cohen–Macaulay and TorR1 (R/I, ω) = 0,

(ii) ωR/J � Syms−g+1
R (I/a)⊗R ω,

(iii) ωSymk
R(I/a) � Syms−g+1−k

R (I/a)⊗R ω for 1 ≤ k ≤ s− g.

Notice that TorR1 (R/I, ω) = 0 if R is Gorenstein or I has finite projective di-
mension.

A key ingredient of our proofs is a duality result between some of the first
symmetric powers of I/a together with a description of the canonical module of
the residual as in items (ii) and (iii) above. This could be compared to recent
results of Eisenbud and Ulrich that obtained similar dualities under slightly different
hypotheses in [6]. In their work, conditions on the local number of generators
are needed and depth conditions are asked for some of the first powers of the
ideal I, along the lines of [23], and the duality occurs between powers It/aIt−1 in
place of symmetric powers Symt(I/a). Although their results and ours coincide in
an important range of situations, like for geometric residuals of strongly Cohen–
Macaulay ideals satisfying Gs, the domains of validity are quite distinct. We prove
the following (Theorem 6.7).

Theorem. Let (R,m) be a Gorenstein local ring, and let a ⊂ I be two ideals of
R, with ht(I) = g. Suppose that J = (a : RI) is an s-residual intersection of I. If
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I is strongly Cohen–Macaulay, then ωR/J � Syms−g+1
R/J (I/a) and, for all 0 ≤ k ≤

s− g + 1, the following hold:

(i) The R/J-module Symk
R/J(I/a) is faithful and Cohen–Macaulay.

(ii) The multiplication

Symk
R/J (I/a)⊗R/J Syms−g+1−k

R/J (I/a) −→ Syms−g+1
R/J (I/a)

is a perfect pairing.
(iii) Setting A := SymR/J (I/a), the graded R/J-algebra

A := A/A>s−g+1 =

s−g+1⊕
i=0

Symi
R/J(I/a)

is Gorenstein.

The paper is organized as follows.
In Section 2, we collect the notations and general facts about Koszul complexes.

We prove duality results for Koszul cycles in Propositions 2.2 and 2.4. We also
describe the structure of the homology modules of the approximation complexes in
Propositions 2.5 and 2.6.

In Section 3, we construct a family of residual approximation complex, all of the
same finite size, {Mk Z+

• }k∈Z. This family is a generalization of the family {kZ+
• }k∈Z

that is built in a recent article [11] by Hassanzadeh and the second author. We
study the properties of these complexes, in particular complexes ω

kZ+
• , where ω is

the canonical module of R. The main results of this section are Propositions 3.2,
3.3, and 3.5.

In Section 4, we prove one of the main results of this paper: the Cohen–
Macaulayness and the description of the canonical module of residual intersections.
Recall that in [8], Hassanzadeh proved that, under the sliding depth condition,

H0(0Z+
• ) = R/K is Cohen–Macaulay of codimension s, with K ⊂ J,

√
K =

√
J,

and further K = J whenever the residual is arithmetic. First, we consider the
height 2 case and show that under the SD1 condition, there exists an epimorphism

ϕ : H0(
ω

s−1Z+
• ) �� �� ωR/K which is an isomorphism if I satisfies SD2 (Proposi-

tion 4.4). By exploring these complexes, we show that, under the SD1 condition,
K = J ; and therefore, under the SD2 condition, the canonical module of R/J is
H0(

ω
s−1Z+

• ). In a second step, we reduce the general case to the height 2 case. Our
main results in this section are Theorems 4.5 and 4.8.

In Section 5, we study the stability of Hilbert functions and Castelnuovo–
Mumford regularity of residual intersections. Using the acyclicity of 0Z+

• , Propo-
sition 5.1 says that the Hilbert function of R/J depends only on the degrees
of the generators of a and the Koszul homologies of I. The graded structure
of the canonical module of R/J in Proposition 5.3 is the key to deriving the
Castelnuovo–Mumford regularity of residual intersection in Corollary 5.4.

Finally, in Section 6, we consider the case in which I is strongly Cohen–Macaulay.
In Theorem 6.2, we prove that, for 1 ≤ k ≤ s− g,

ωSymk
R(I/a) � Syms−g+1−k

R (I/a)⊗R ω
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COHEN–MACAULAY RESIDUAL INTERSECTIONS 1605

whenever TorR1 (R/I, ω) = 0. In Theorem 6.7, we deduce from this and Lemma 6.6
that, whenever R is Gorenstein, the pairing

Symk
R/J (I/a)⊗R/J Syms−g+1−k

R/J (I/a) −→ Syms−g+1
R/J (I/a)

given by multiplication is a perfect pairing. We derive some tight relations between
the Hilbert series of the symmetric powers of I/a in Corollary 6.8 and give the
closed formulas for the types and for the Bass number of some symmetric powers
of I/a in Corollaries 6.9 and 6.10, respectively.

2. Koszul cycles and approximation complexes

In this section, we collect the notations and general facts about Koszul complexes
and approximation complexes. The reader can consult, for instance, [2, Chapter 1]
and [12, 13, 14, 21]. We give some results on the duality for Koszul cycles and
describe the 0th homology modules of approximation complexes with coefficients
in a module.

Assume that R is a Noetherian ring, and assume that I = (f1, . . . , fr) is an ideal
of R. Let M be a finitely generated R-module. The symmetric algebra of M is
denoted by SymR(M), and the kth symmetric power of M is denoted by Symk

R(M).
We consider S = R[T1, . . . , Tr] as a standard graded algebra over S0 = R. For a
graded S-module N, the kth graded component of N is denoted by N[k]. We make
SymR(I) an S-algebra via the graded ring homomorphism S −→ SymR(I), sending
Ti to fi as an element of SymR(I)[1] = I, and we write SymR(I) = S/L.

For a sequence of elements x in R, we denote the Koszul complex by K•(x;M),
its cycles by Zi(x;M), its boundaries by Bi(x;M), and its homologies by Hi(x;M).
If M = R, then we denote, for simplicity, Ki, Zi, Bi, Hi. To set more notation, when
we draw the picture of a double complex obtained from a tensor product of two
complexes (in the sense of [25, 2.7.1]) in which at least one of them is finite, say,
A⊗B, where B is finite, we always put A in the vertical one and B in the horizontal
one. We also label the module which is in the upright corner by (0, 0) and consider
the labels for the rest, as the points in the third quadrant.

Lemma 2.1. Let R be a ring, and let I = (f1, . . . , fr) be an ideal of R. If I = R,

then Zi �
∧i Rr−1.

Proof. Since I = R, Hi = 0 for all i by [2, Proposition 1.6.5(c)]. The result follows
from the fact that the Koszul complex is split exact in this case. �

Let us recall the conditions Sk of Serre. Let R be a Noetherian ring, and let k be
a nonnegative integer. A finitely generated R-module M satisfies Serre’s condition
Sk if

depth(Mp) ≥ min{k, dimMp}
for every prime ideal p of R.

Let (R,m) be local. The local cohomology modules of an R-module M are
denoted byHi

m(M). These can be computed with the Čech complex C•
m constructed

on a parameter system of R : Hi
m(M) = Hi(M ⊗R C•

m).
Duality results for Koszul homology modules over Gorenstein rings have been

obtained by several authors, for instance in [5,9,18]. For Koszul cycles, the following
holds.
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Proposition 2.2. Let (R,m) be a Noetherian local ring, and let I = (f1, . . . , fr)
be an ideal of R. Suppose that R satisfies S2 and that ht(I) ≥ 2. Then, for all
0 ≤ i ≤ r − 1,

Zi � HomR(Zr−1−i, R).

Proof. The inclusions Zi ↪→ Ki =
∧i Rr and Zr−1−i ↪→ Kr−1−i =

∧r−1−iRr

induce a map

ϕi : Zi × Zr−1−i
�� Ki ×Kr−1−i

�� Kr−1,

where the last map is the multiplication of the Koszul complex, which is a differ-
ential graded algebra, and Im(ϕi) ⊂ Zr−1 � Kr � R. It follows that ϕi induces a
map

ψi : Zi
�� HomR(Zr−1−i, R).

We induct on the height to show that, for every p ∈ Spec(R), (ψi)p is an
isomorphism. If ht(p) < 2, then Ip = Rp, by Lemma 2.1,

(Zi)p �
i∧
Rr−1

p

and

(Zr−1−i)p �
r−1−i∧

Rr−1
p ,

and [2, Proposition 1.6.10(b)] shows that (ψi)p is an isomorphism.
Suppose that ht(p) ≥ 2 and (ψi)q is an isomorphism for all primes contained

properly in p. Replacing R with Rp and m with pRp, we can suppose that ψi is
an isomorphism on the punctured spectrum: the kernel and the cokernel of ψi are
annihilated by a power of m. It follows that Hj

m(Ker(ψi)) = Hj
m(Coker(ψi)) = 0

for j > 0. Since R satisfies S2, depth(Zi) ≥ min{2, depth(R)} = 2. The exact
sequence

0 −→ Ker(ψi) −→ Zi −→ Im(ψi) −→ 0

implies that Ker(ψi) = H0
m(Ker(ψi)) = 0. Observing that

depth(HomR(Zr−1−i, R)) ≥ min{2, depth(R)} = 2,

the exact sequence

0 �� Zi
�� Homr(Zr−1−i, R) �� Coker(ψi) �� 0

implies that Coker(ψi) = H0
m(Coker(ψi)) = 0. �

To fix the terminology we will use, we recall some notations and definitions. Let
(R,m) be a Noetherian local ring. The injective envelope of the residue field R/m
is denoted by E(R/m) (or by E when the ring is clearly identified by the context).
The Matlis dual of an R-module M is the module M∨ = HomR(M,E(R/m)). The
Matlis duality functor is exact, sends Noetherian modules to Artinian modules and
Artinian modules to Noetherian modules, and preserves annihilators.

When the module M is finitely generated, we have M∨∨ � M̂, the m-adic
completion of M, while X � X∨∨ when the module X is of finite length.
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COHEN–MACAULAY RESIDUAL INTERSECTIONS 1607

When R is the homomorphic image of a Gorenstein local ring A, the canonical
module of a finitely generated R-module M, denoted by ωM , is defined by

ωM := Extm−n
A (M,A),

where m = dim(A) and n = dim(M) = dim(R/annR(M)). This module does not
depend on A. By the local duality theorem

Hn
m(M) � ω∨

M .

We are particularly interested in the case in which R admits a canonical module;
hence, in the sequel, we assume that R is the quotient of a Gorenstein ring and
write ω for the canonical module of R. Whenever R is Cohen–Macaulay, ω is a
canonical module of R in the sense of [2, Definition 3.3.1].

If R is a Gorenstein local ring, ω � R, therefore, by Proposition 2.2,

ωZp
� Zr−1−p

for all 0 ≤ p ≤ r − 1. To generalize this result, we will use a result of Herzog and
Kunz.

Lemma 2.3 ([10, Lemma 5.8]). Let (R,m) be a Noetherian local ring, and let M,N

be two finitely generated R-modules. If M̂ � N̂ , then M � N.

We will denote by Zω
i := Zi(f ;ω) the module of ith Koszul cycles, with f =

f1, . . . , fr.

Proposition 2.4. Let (R,m) be a Noetherian local ring of dimension d which is an
epimorphic image of a Gorenstein ring. Suppose that I = (f1, . . . , fr) is an ideal of
R, with ht(I) ≥ 2. Then, for all 0 ≤ p ≤ r − 1,

ωZp
� ZωR

r−1−p.

Moreover, if R satisfies S2, then

ωZ
ωR
p

� Zr−1−p.

Proof. For simplicity, set ω := ωR. First, we consider the truncated complexes

K>p
• : 0 −→ Kr −→ · · · −→ Kp+1 −→ Zp −→ 0.

The double complex C•
m(K

>p
• ) gives rise to two spectral sequences. The second

terms of the horizontal spectral are

2E−i,−j
hor = Hj

m(Hi+p),

and the first terms of the vertical spectral are

0 �� H0
m(Kr) �� · · · �� H0

m(Kp+1) �� H0
m(Zp) �� 0

... · · ·
...

...

0 �� Hd−1
m (Kr) �� · · · �� Hd−1

m (Kp+1) �� Hd−1
m (Zp) �� 0

0 �� Hd
m(Kr) �� · · · �� Hd

m(Kp+1) �� Hd
m(Zp) �� 0.
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Since I annihilates Hi, dim(Hi) = dim(R/I) ≤ dim(R) − ht(I) ≤ d − 2 if

Hi �= 0. Therefore, 2E−i,−j
hor = Hj

m(Hi+p) = 0 for all j > d − 2. The comparison of
two spectral sequences gives a short exact sequence

Hd
m(Kp+2) �� Hd

m(Kp+1) �� Hd
m(Zp) �� 0.(2.1)

By local duality,

Hd
m(Ki) � HomR(Ki, ω)

∨ � (HomR(Ki, R)⊗Rω)∨ � (Kr−i⊗Rω)∨ = Kr−i(f ;ω)
∨.

Thus the exact sequence (2.1) provides an exact sequence

Kr−p−2(f ;ω)
∨ �� Kr−p−1(f ;ω)

∨ �� Hd
m(Zp) �� 0

that gives Hd
m(Zp) � Zω

r−1−p
∨. Then the first isomorphism follows from this iso-

morphism, the local duality, and Lemma 2.3.
The second assertion is proved similarly, by considering the truncated complexes

Kω>p
• : 0 −→ Kr(f ;ω) −→ · · · −→ Kp+1(f ;ω) −→ Zω

p −→ 0

and the double complex C•
m(K

ω>p
• ).

Since I annihilates Hi(f ;ω), dim(Hi(f ;ω)) ≤ dim(R) − ht(I) ≤ d − 2 for all

0 ≤ i ≤ r − 2. Thus Hj
m(Hi(f ;ω)) = 0 for all j > d − 2 and 0 ≤ i ≤ r − 2. By

comparing two spectral sequences, we also obtain a short exact sequence

Hd
m(Kp+2(f ;ω)) �� Hd

m(Kp+1(f ;ω)) �� Hd
m(Z

ω
p ) �� 0.(2.2)

By local duality,

Hd
m(Ki(f ;ω)) � Hd

m(Ki ⊗R ω) � HomR(Ki ⊗R ω, ω)∨

� HomR(Ki,HomR(ω, ω))
∨ � HomR(Ki, R)∨ � K∨

r−i

as HomR(ω, ω) � R since R satisfies S2.
The exact sequence (2.2) provides an exact sequence

K∨
r−p−2

�� K∨
r−p−1

�� Hd
m(Z

ω
p ) �� 0,

which shows that Hd
m(Z

ω
p ) � Z∨

r−1−p. �

Now we describe the 0th homology module of approximation complexes. These
complexes were introduced in [21] and systematically developed in [12, 13]. Recall
that the approximation complex Z•(f ;M) is

0 �� ZM
r ⊗R S(−r) �� · · · �� ZM

1 ⊗R S(−1)
∂T
M �� ZM

0 ⊗R S �� 0,

which can be written

0 �� ZM
r [T](−r) �� · · · �� ZM

1 [T](−1)
∂T
M �� M [T] �� 0,

where T = T1, . . . , Tr, and where ZM
i = Zi(f ;M) is the ith Koszul cycle of

K•(f ;M). By definition,

H0(Z•(f ;M)) � M [T1, . . . , Tr]/LM ,(2.3)

where LM is the submodule of M [T1, . . . , Tr] generated by the linear forms c1T1 +
· · ·+ crTr with (c1, . . . , cr) ∈ ZM

1 .
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COHEN–MACAULAY RESIDUAL INTERSECTIONS 1609

Let F• be a free resolution of R/I of the form

· · · �� F1
δ �� Rr �� R �� 0,

where F1 is the free R-module indexed by a generating set of Z1. By definition,

TorR1 (R/I,M) = ZM
1 /Im(δ ⊗ 1M ) ↪→ Mr/Im(δ ⊗ 1M ),

where 1M denotes the identity morphism on M. Note that δ is induced by the

inclusion i : Z1
� � �� Rr. Therefore, Im(δ ⊗ 1M ) = (i ⊗ 1M )(Z1 ⊗R M), and we

obtain an exact sequence

Z1 ⊗R M
i⊗1M �� ZM

1
�� TorR1 (R/I,M) �� 0.(2.4)

Let L be the submodule of S = R[T1, . . . , Tr] generated by the linear forms
c1T1 + · · ·+ crTr with (c1, . . . , cr) ∈ Z1. Then the exact sequence

0 �� L
θ �� S �� SymR(I) �� 0

provides an exact sequence

L⊗R M
θ⊗1M �� M [T1, . . . , Tr] �� SymR(I)⊗R M �� 0.

The image of θ ⊗ 1M is denoted by LM. It follows that

SymR(I)⊗R M � M [T1, . . . , Tr]/LM.(2.5)

Notice that LM is the submodule of M [T1, . . . , Tr] generated by the linear forms
c1T1 + · · ·+ crTr with (c1, . . . , cr) ∈ Im(δ ⊗ 1M ) ⊂ ZM

1 ; thus LM ⊂ LM .
Let L′ be the submodule of M [T1, . . . , Tr]/LM generated by the linear forms

c1T1 + · · ·+ crTr + LM with (c1, . . . , cr) + Im(δ ⊗ 1M ) ∈ TorR1 (R/I,M). Then

L′ = LM/LM.

It follows that LM = LM + L′. Thus we have already proved the following.

Proposition 2.5. Let R be a Noetherian ring, and let I = (f1, . . . , fr) be an ideal
of R. Assume that M is a finitely generated R-module. Then

H0(Z•(f ;M)) � M [T1, . . . , Tr]/(LM + L′),

where L ⊂ S is the defining ideal of SymR(I) and L′ is spanned by generators of

TorR1 (R/I,M).

Proposition 2.6. Let R be a Noetherian ring, and let I = (f1, . . . , fr) be an ideal
of R. Assume that M is a finitely generated R-module. Then there exists a natural
epimorphism

ϕ : SymR(I)⊗R M �� �� H0(Z•(f ;M))

that equals H0(Z•(f ;R)) � SymR(I) when M = R. Furthermore, ϕ is an isomor-

phism if and only if TorR1 (R/I,M) = 0.

Proof. As LM ⊂ LM , we can define an epimorphism

ϕ : SymR(I)⊗R M �� �� H0(Z•(f ;M))

by (2.3) and (2.5). Moreover, the kernel of ϕ is isomorphic to LM/LM. Thus

TorR1 (R/I,M) = 0 if and only if ϕ is an isomorphism. �

Licensed to University de Barcelona. Prepared on Fri Jul  5 10:08:19 EDT 2019 for download from IP 161.116.100.134.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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3. Residual approximation complexes

Assume that R is a Noetherian ring of dimension d, and that I = (f) =
(f1, . . . , fr) is an ideal of height g. Let a = (a1, . . . , as) be an ideal contained in I
with s ≥ g. Set J = a : RI, set S = R[T1, . . . , Tr], and set g := (T1, . . . , Tr). We
write ai =

∑r
j=1 cjifj and γi =

∑r
j=1 cjiTj . Notice that the γi’s depend on how

one expresses the ai’s as a linear combination of the fi’s. Set γ = γ1, . . . , γs.
Finally, for a graded module N, we define end(N) := sup{μ | Nμ �= 0} and
indeg(N) := inf{μ | Nμ �= 0}.

Let M be a finitely generated R-module. We denote by Z•(f ;M) the approxima-
tion complex associated with f with coefficients in M , and by K•(γ;S) the Koszul
complex associated with γ with coefficients in S. Let DM

• = Tot(Z•(f ;M) ⊗S

K•(γ;S)). Then

DM
i =

i⊕
j=i−s

(ZM
j ⊗R S)(

s
i−j)(−i),

with ZM
j = 0 for j < 0 or j > r, and for j = r unless depthM (I) = 0.

In what follows, we assume that depthM (I) > 0 (hence, ZM
r = 0) in order that

the complexes we construct have length s.
We recall that the kth graded component of a graded S-module N is denoted by

N[k]. We have (DM
i )[k] = 0 for all k < i. Consequently, the complex (DM

• )[k] is

0 �� (DM
k )[k] �� (DM

k−1)[k]
�� · · · �� (DM

0 )[k] �� 0.

The Čech complex of S with respect to the ideal g = (T1, . . . , Tr) is denoted by
C•

g = C•
g(S).

We now consider the double complex C•
g ⊗S DM

• that gives rise to two spectral
sequences. The second terms of the horizontal spectral are

2E−i,−j
hor = Hj

g(Hi(DM
• )),

and the first terms of the vertical spectral are

1
E

−•,−j
ver =

⎧⎨
⎩

0 �� Hr
g(DM

r+s−1)
�� · · · �� Hr

g(DM
1 ) �� Hr

g(DM
0 ) �� 0 if j = r

0 otherwise,

and

Hr
g(DM

i ) �
i⊕

j=i−s

(ZM
j ⊗R Hr

g(S))
( s
i−j)(−i)

by [8, Lemma 2.1]. Since end(Hr
g(S)) = −r, it follows that end(Hr

g(DM
i )) = i − r

if DM
i �= 0, and thus Hr

g(DM
i )[i−r+j] = 0 for all j ≥ 1. Hence, the kth graded

component of 1E−•,−r
ver is the complex

0 �� Hr
g(DM

r+s−1)[k] �� · · · �� Hr
g(DM

r+k+1)[k]
�� Hr

g(DM
r+k)[k]

�� 0.

Comparison of the spectral sequences for the two filtrations leads to the definition
of the complex of length s:

M
k Z+

• : 0 �� M
k Z+

s
�� · · · �� M

k Z+
k+1

τk �� M
k Z+

k
�� · · · �� M

k Z+
0

�� 0,
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wherein

M
k Z+

i =

{
(DM

i )[k], i ≤ min{k, s},
Hr

g(DM
r−1+i)[k], i > k,

and the morphism τk is defined through the transgression. Notice that M
k Z+

• is a
direct generalization of the complex kZ+

• in [11, Section 2.1].
Since Hr

g(M⊗RS) � M⊗RHr
g(S), for any R-module M , M

k Z+
• have, like graded

strands of DM
• , components that are direct sums of Koszul cycles of K•(f ;M).

The structure of M
k Z+

• depends upon the generating sets of I, on the expression
of the generators of a in terms of the generators of I, and on M. The complex R

kZ+
•

considered by Hassanzadeh and the second author in [11] will be denoted by kZ+
•

instead of R
kZ+

• .

Definition 3.1. The complex M
k Z+

• is called the kth residual approximation com-
plex of J = a : RI with coefficients in M.

We consider the morphism

M [T1, . . . , Tr]
s(−1) � M ⊗R Ss(−1)

1M⊗∂γ
1 �� M ⊗R S � M [T1, . . . , Tr],

where ∂γ
1 is the first differential of K•(γ;S), and we denote by γM the image

of 1M ⊗ ∂γ
1 . It is the submodule of M [T1, . . . , Tr] generated by the linear forms

γ1, . . . , γs. Recall from Section 2 that we set L for the defining ideal of SymR(I)
in S, and we set L′ for the module spanned by the linear forms corresponding to
generators of TorR1 (R/I,M).

Proposition 3.2. Let R be a Noetherian ring, and let a ⊂ I be two ideals of R.
Suppose that M is a finitely generated R-module. Then

H0(DM
• ) � M [T1, . . . , Tr]/(LM + L

′ + γM)

and, for all k ≥ 1,

H0(
M
k Z+

• ) � M [T1, . . . , Tr][k]/(LM + L
′ + γM)[k].

Proof. The first isomorphism follows from the definition of DM
• and Proposition 2.5.

The last isomorphism is a consequence of the fact that, for all k ≥ 1, H0(
M
k Z+

• ) =
H0(DM

• )[k] is the kth graded component of H0(DM
• ). �

Proposition 3.3. Let R be a Noetherian ring, and let a ⊂ I be two ideals of R.
Assume that M is a finitely generated R-module. Then, for all k ≥ 1, there exists
a natural epimorphism

ψ : Symk
R(I/a)⊗R M �� �� H0(

M
k Z+

• ).

Furthermore, ψ is an isomorphism if TorR1 (R/I,M) = 0.

Proof. As SymR(I/a) � SymR(I)/aSymR(I) � S/(L + (γ)), we have an exact
sequence

L⊕ (γ)
α �� S �� SymR(I/a) �� 0

Licensed to University de Barcelona. Prepared on Fri Jul  5 10:08:19 EDT 2019 for download from IP 161.116.100.134.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1612 MARC CHARDIN, JOSÉ NAÉLITON, AND QUANG HOA TRAN

which provides a commutative diagram with exact rows

(L⊕ (γ))⊗R M
α⊗1M ��

�
��

M [T] ��

=

��

SymR(I/a)⊗R M ��

=

��

0

L⊗R M ⊕ (γ)⊗R M
θ⊗1M⊕β⊗1M �� M [T] �� SymR(I/a)⊗R M �� 0,

where β is the inclusion (γ) ↪→ S, and hence Im(β ⊗ 1M ) = γM. It follows that

SymR(I/a)⊗R M � M [T]/Im(α⊗ 1M ) � M [T1, . . . , Tr]/(LM + γM).

The natural onto map

M [T1, . . . , Tr]/(LM + γM) �� �� M [T1, . . . , Tr]/(LM + L′ + γM)

provides an epimorphism, for all k ≥ 1,

ψ : Symk
R(I/a)⊗R M �� �� H0(

M
k Z+

• )

by Proposition 3.2. Moreover, TorR1 (R/I,M) = 0 is equivalent to LM = LM. Thus

ψ is an isomorphism if TorR1 (R/I,M) = 0. �

The following remark will be used in the proof of the next proposition.

Remark 3.4. Let M be a module over a ring R. Suppose that N is a quotient of
M [T1, . . . , Tr], with Ti indeterminates of degree 1, by a graded submodule. Then,
for all k ≥ 1,

annR(Nk) ⊂ annR(Nk+1).

Proposition 3.5. Let R be a Noetherian ring, and let a ⊂ I be two ideals of
R. Assume that M is a finitely generated R-module. Then J = a : RI annihilates
H0(

M
k Z+

• ) for all k ≥ 1.

Proof. Fix k ≥ 1. The epimorphism ψ in Proposition 3.3 implies that

annR(Sym
k
R(I/a)⊗R M) ⊂ annR(H0(

M
k Z+

• )).(3.1)

On the other hand, one always has

annR(Sym
k
R(I/a)) ⊂ annR(Sym

k
R(I/a)⊗R M).(3.2)

Notice that SymR(I/a) � SymR(I)/(γ)SymR(I) � S/(L+ (γ)). By Lemma 3.4,

J = annR(I/a) ⊂ annR(Sym
k
R(I/a)).(3.3)

By (3.1), (3.2), and (3.3), J ⊂ annR(H0(
M
k Z+

• )). �

However, the structure of H0(
M
0 Z+

• ) is difficult to determine. We recall a defini-
tion of Hassanzadeh and the second author in [11, Definition 2.1].

Definition 3.6. Let R be a Noetherian ring, and let a ⊂ I be two ideals of R.
The disguised s-residual intersection of I w.r.t. a is the unique ideal K such that
H0(0Z+

• ) = R/K.

To make use of the acyclicity of the kZ+
• complexes, we recall the definition of

classes of ideals that meet these requirements.
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Definition 3.7. Let (R,m) be a Noetherian local ring of dimension d, and let
I = (f1, . . . , fr) be an ideal of height g. Let k ≥ 0 be an integer. Then the following
hold:

(i) I satisfies the sliding depth condition, SDk, if

depth(Hi(f ;R)) ≥ min{d− g, d− r + i+ k} ∀i;
also SD stands for SD0.

(ii) I satisfies the sliding depth condition on cycles, SDCk, if

depth(Zi(f ;R)) ≥ min{d− r + i+ k, d− g + 2, d} ∀i ≤ r − g.

(iii) I is strongly Cohen–Macaulay if Hi(f ;R) is Cohen–Macaulay for all i.

Clearly I is strongly Cohen–Macaulay if and only if I satisfies SDt for all t ≥
r−g. Some of the basic properties and relations between such conditions, SDk and
SDCk, are given in [8, Remark 2.4 and Proposition 2.5], [11, Proposition 2.4]; also
see [14, 17, 24]. It will be of importance to us that SDk implies SDCk+1 whenever
R is a Cohen–Macaulay local ring by [8, Proposition 2.5].

Remark 3.8. Notice that, adding an indeterminate x to the ring and to ideals I
and a, one has (a + (x)) : (I + (x)) = (a : I) + (x) in R[x] and in its localization
at m + (x). Hence, for most statements, one may reduce to the case in which the
height of I is big enough, if needed.

In a recent article [11, Theorem 2.6], Hassanzadeh and the second author proved
the following results. The Cohen–Macaulay hypothesis in this theorem is needed
to show that if, for an R-module M , depth(M) ≥ d − t, then, for any prime p,
depth(Mp) ≥ ht(p)− t; see [24, Section 3.3].

Theorem 3.9. Let (R,m) be a Cohen–Macaulay local ring of dimension d, and let
I = (f1, . . . , fr) be an ideal of height g. Let s ≥ g, and fix 0 ≤ k ≤ min{s, s−g+2}.
Suppose that one of the following hypotheses holds:

(i) r + k ≤ s and I satisfies SD.
(ii) r + k ≥ s+ 1, I satisfies SD, and depth(Zi) ≥ d− s+ k for 0 ≤ i ≤ k.
(iii) I is strongly Cohen–Macaulay.

Then, for any s-residual intersection J = (a : RI), the complex kZ+
• is acyclic. Fur-

thermore, Symk
R(I/a), for 1 ≤ k ≤ s− g+2, and the disguised residual intersection

R/K are Cohen–Macaulay of codimension s.

Notice that condition (iii) is stronger than (i) and (ii). In [8, Theorem 2.11],
Hassanzadeh showed that, under the sliding depth condition SD, K ⊂ J and√
K =

√
J , and further that K = J, whenever the residual is arithmetic.

4. Cohen–Macaulayness and canonical module of residual

intersections

In this section, we will prove two important conjectures in the theory of resi-
dual intersections: the Cohen–Macaulayness of the residual intersections and the
description of their canonical module.

In order to make a reduction to a lower height case and prove the Cohen–
Macaulayness when s = g, we first state the following proposition, which is a trivial
generalization of [17, Lemma 3.5] that only treated the sliding depth condition SD.
The proof goes along the same lines.
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Proposition 4.1. Let (R,m) be a Cohen–Macaulay local ring, let I be an ideal of
height g, and let k ≥ 0 be an integer. Let x1, . . . , x
 be a regular sequence in I.
Let the prime denote the canonical epimorphism R −→ R′ = R/(x1, . . . , x
). Then
I satisfies SDk if and only if I ′ satisfies SDk (in R′). In particular, I is strongly
Cohen–Macaulay if and only if I ′ is strongly Cohen–Macaulay.

Proposition 4.2. Let (R,m) be a Cohen–Macaulay local ring of dimension d, and
let I be an ideal of height g. Let x = x1, . . . , xg be a regular sequence contained in
I, and let J = ((x) : RI). Suppose that R/I is Cohen–Macaulay, and that I satisfies
SD. Then R/J is Cohen–Macaulay of codimension g.

Proof. The proof goes along the same lines as in [17] (where the result is stated in
a weaker form). �

To study the Cohen–Macaulayness of residual intersections in the general case,
we will use the following lemma.

Lemma 4.3. Let (R,m) be a Cohen–Macaulay local ring of dimension d with cano-
nical module ω. Suppose that S = R[T1, . . . , Tr] is the standard graded polynomial
ring over R and that g := S+. Let a ⊂ I = (f1, . . . , fr) be two ideals of R, with
ht(I) = g. If J = (a : RI) is an s-residual intersection of I, then the following hold:

(i) There is a natural graded isomorphism

Hr
g(S) � ∗HomgrS(S(−r), R).

In particular, for all μ ∈ Z,

Hr
g(S)μ � S∗

−μ−r = HomR(S−μ−r, R).

(ii) If g ≥ 2, then depth(kZ+
0 ) = depth(kZ+

s ) = d for all 0 ≤ k ≤ s− 1.
(iii) If g = 2 and I satisfies SD
, then

depth(0Z+
i ) ≥ min{d, d− s+ i+ }

for all 1 ≤ i ≤ s− 1.
(iv) If g ≥ 2, then the following diagram, where the vertical isomorphisms are

induced by the identifications Hd
m(Z∗) � Zω

r−1−∗
∨ in Proposition 2.4, is

commutative for all 0 ≤ k ≤ s− 2:

Hd
m(kZ+

s ) ��

�
��

Hd
m(kZ+

s−1)

�
��

( ω
s−k−1Z+

0 )∨ �� ( ω
s−k−1Z+

1 )∨.

Proof.

(i) This is the graded local duality theorem.
(ii) Since Zr−1 � Z0 = R, depth(kZ+

0 ) = depth(kZ+
s ) = d.

(iii) By [8, Proposition 2.5], I satisfies SDC
+1; that is,

depth(Zj) ≥ min{d− r + j + + 1, d}
for all 0 ≤ j ≤ r − 2.

For any 1 ≤ i ≤ s− 1,

0Z+
i = Hr

g(Dr−1+i)[0] =
r−1⊕

j=r−1+i−s

(
Zj ⊗R Hr

g(S)
)( s

r−1+i−j)
[−r+1−i] .
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Thus 0Z+
i is a direct sum of copies of modules Zδ, . . . , Zr−1, where δ =

max{0, r − 1 + i− s}. Notice that 0 ≤ δ ≤ r − 2. It follows that

depth(0Z+
i ) = min

δ≤j≤r−1
{depth(Zj)} = min{ min

δ≤j≤r−2
{depth(Zj)}, d}

≥ min{d, d− r + δ + + 1} ≥ min{d, d− s+ i+ }.

(iv) We have the following commutative diagrams, for all 0 ≤ k ≤ s− 2,

Hd
m(kZ+

s ) = Hd
m(Hr

g(Dr+s−1))[k]
��

�

��

Hd
m(Hr

g(Dr+s−2))[k] = Hd
m(kZ+

s−1)

�

��
Hd

m(Zr−1) ⊗R Hr
g(S)[k−r−s+1]

��

�

��

Hd
m(Zr−1) ⊗R Hr

g(S)s[k−r−s+2] ⊕ Hd
m(Zr−2)⊗RHr

g(S)[k−r−s+2]

�

��
Zω

0
∨ ⊗R S∗

[s−k−1]
��

�

��

Zω
0

∨ ⊗R (Ss
[s−k−2])

∗ ⊕ Zω
1

∨ ⊗R S∗
[s−k−2]

�

��
(Zω

0 ⊗R S[s−k−1])
∨ ��

�

��

(Zω
0 ⊗R Ss

[s−k−2] ⊕ Zω
1 ⊗R S[s−k−2])

∨

�

��
( ω
s−k−1Z

+
0 )∨ = ((Dω

0 )[s−k−1])
∨ �� ((Dω

1 )[s−k−1])
∨ = ( ω

s−k−1Z
+
1 )∨,

where the first and the last diagrams are commutative by the definitions,
the second diagram is commutative by the natural isomorphisms in item (i)
and Proposition 2.4, and the third diagram is commutative by the natural
isomorphism

Zω
i
∨ ⊗R S∗

[
] � (Zω
i ⊗R S[
])

∨

for all i, ; see [3, II, Section 4, no. 4, Proposition 4]. �

Proposition 4.4. Let (R,m) be a Cohen–Macaulay local ring of dimension d with
canonical module ω, and let I = (f1, . . . , fr) be an ideal of height 2. Suppose that
J = (a : RI) is an s-residual intersection of I, and that K is the disguised s-residual
intersection of I w.r.t. a. If I satisfies SD1, then there exists an epimorphism of
R-modules

φ : H0(
ω

s−1Z+
• ) �� �� ωR/K ,

and φ is an isomorphism if I satisfies SD2.

Proof. Since I satisfies SD1, 0Z+
• is acyclic and R/K is Cohen–Macaulay of di-

mension d− s by Theorem 3.9. By local duality,

(4.1) Hd−s
m (R/K) � ω∨

R/K .

Now the double complex C•
m(0Z+

• ) gives rise to two spectral sequences. The
second terms of the horizontal spectral are

2E−i,−j
hor =

{
Hd−s

m (R/K) if j = d− s and i = 0,

0 otherwise,
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and the first terms of the vertical spectral are

0 0 0 · · · 0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 0 · · · 0 0 0

0 0 0 · · · 0 Hd−s+2
m (0Z+

1 ) 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 Hd−1
m (0Z+

s−2)
�� · · · �� Hd−1

m (0Z+
2 ) �� Hd−1

m (0Z+
1 ) 0

Hd
m(0Z+

s ) �� Hd
m(0Z+

s−1)
�� Hd

m(0Z+
s−2)

�� · · · �� Hd
m(0Z+

2 ) �� Hd
m(0Z+

1 ) �� Hd
m(R)

since depth(0Z+
i ) ≥ d− s+ i+ 1, for all 1 ≤ i ≤ s− 1, by Lemma 4.3(iii).

By the convergence of the spectral sequences, we obtain

(4.2) Hd−s
m (R/K) � ∞E−s,−d

ver ⊂ 2E−s,−d
ver .

By Lemma 4.3(iv), we have the following commutative diagram:

Hd
m(0Z+

s ) ��

�
��

Hd
m(0Z+

s−1)

�
��

( ω
s−1Z+

0 )∨ �� ( ω
s−1Z+

1 )∨.

Therefore,

(4.3) 2E−s,−d
ver � H0(

ω
s−1Z+

• )∨.

By (4.1), (4.2), and (4.3), we can define a monomorphism of R-modules by the
compositions

ω∨
R/K

� �� Hd−s
m (R/K)

� �� ∞E−s,−d
ver

� � �� 2E−s,−d
ver

� �� H0(
ω

s−1Z+
• )∨

which provides an epimorphism

φ : H0(
ω

s−1Z+
• ) −→ ωR/K .

If I satisfies SD2, then depth(0Z+
i ) ≥ min{d, d− s+ i+2}, for all 1 ≤ i ≤ s− 1,

by Lemma 4.3(iii). It follows that

Hd−s
m (R/K) � ∞E−s,−d

ver = 2E−s,−d
ver ,

and thus φ is an isomorphism. �

Now we state our main result, which answers the question of Huneke and Ulrich
in [15, Question 5.7] and also answers the conjecture of Hassanzadeh and the second
author in [11, Conjecture 5.9].
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COHEN–MACAULAY RESIDUAL INTERSECTIONS 1617

Theorem 4.5. Let (R,m) be a Cohen–Macaulay local ring of dimension d, with
canonical module ω, and let a ⊂ I be two ideals of R with ht(I) = g ≤ s. Suppose
that I satisfies SD1 and J = (a : RI) is an s-residual intersection of I. Then R/J
is Cohen–Macaulay of dimension d− s.

Proof. Let K be the disguised s-residual intersection of I w.r.t. a. Since I satisfies
SD1, and hence SD, R/K is Cohen–Macaulay of dimension d− s by Theorem 3.9,
and K ⊂ J by [8, Theorem 2.11]. The proof will be completed by showing that
J ⊂ K.

We first consider the case in which g = 2. By Proposition 4.4, there is the
epimorphism

φ : H0(
ω

s−1Z+
• ) −→ ωR/K .

As R/K is Cohen–Macaulay, annR(ωR/K) = annR(R/K) = K. The epimorphism
φ implies that

annR(H0(
ω

s−1Z+
• )) ⊂ annR(ωR/K) = K.

By Proposition 3.5, J ⊂ annR(H0(
ω

s−1Z+
• )) ⊂ K.

We may always reduce to the case g ≥ 2 by Remark 3.8. If g > 2, then we can
choose a regular sequence a of length g − 2 inside a which is a part of a minimal
generating set of a. Since R is Cohen–Macaulay, by [2, Theorem 2.1.3], R/a is a
Cohen–Macaulay local ring of dimension d− g + 2. Moreover, J/a = a/a : I/a and
μ(a/a) = μ(a)− g + 2; therefore, J/a is an (s− g + 2)-residual intersection of I/a
which is of height 2. Furthermore, I/a satisfies SD1 by Proposition 4.1. Hence,
it follows from the height 2 case that R/J � (R/a)/(J/a) is Cohen–Macaulay of
dimension d− s. �

It follows from the proof of Proposition 3.5 that J ⊂ annR(Sym
k
R(I/a)), for all

k ≥ 1. Then a natural question is, under what conditions does one have

annR(Sym
k
R(I/a)) = J?

It is known that annR(Sym
k
R(I/a)) = J , for all k ≥ 1, whenever J is arithmetic

in [11, Corollary 2.8(iv)]. The next result answers this question.

Corollary 4.6. Let (R,m) be a Cohen–Macaulay local ring of dimension d with
canonical module ω, and let a ⊂ I be two ideals of R with ht(I) = g. Suppose that
J is an s-residual intersection of I, and let 1 ≤ k ≤ s− g + 1.

(i) If I satisfies SD1, then Symk
R(I/a) is a faithful R/J-module.

(ii) If I satisfies strongly Cohen–Macaulay, then Symk
R(I/a) is a maximal

Cohen–Macaulay faithful R/J-module.
Proof.

(i) The proof will be completed by showing that annR(Sym
s−g+1
R (I/a)) ⊂ J. As

in the proof of Theorem 4.5, it suffices to prove that annR(Sym
s−g+1
R (I/a)) ⊂

J in the case g = 2. The inclusions annR(Sym
s−1
R (I/a))⊂ annR(H0(

ω
s−1Z+

• ))
⊂ K = J are demonstrated in the proofs of Proposition 3.5 and Theo-
rem 4.5.

(ii) This follows immediately from Theorems 3.9 and 4.5 and the first item. �

The following example shows that the above corollary does not hold for the
(s− g + 2)th symmetric power of I/a.
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1618 MARC CHARDIN, JOSÉ NAÉLITON, AND QUANG HOA TRAN

Example 4.7 ([11, Example 2.10]). Let R = Q[x, y], let I = (x, y), and let a =
(x2, y2). We set J = a : RI. Using Macaulay2 [7], we see that J = (x2, xy, y2) is a
2-residual intersection (a link, in this case) of I and that

SymR(I/a) � R[T1, T2]/
(
xT1, yT2,−yT1 + xT2

)
.

Thus a free resolution of Sym2
R(I/a) is

0 �� R3 N �� R6 M �� R3 �� Sym2
R(I/a) �� 0,

where

M =

⎛⎝x 0 0 y 0 0
0 x 0 0 y 0
0 0 x 0 0 y

⎞⎠
and

N =

⎛⎜⎜⎜⎜⎜⎜⎝
−y 0 0
0 −y 0
0 0 −y
x 0 0
0 x 0
0 0 x

⎞⎟⎟⎟⎟⎟⎟⎠ .

It follows that

annR(Sym
2
R(I/a)) = (x, y) � J.

We now give a description of the canonical module of residual intersections.

Theorem 4.8. Let (R,m) be a Cohen–Macaulay local ring of dimension d with
canonical module ω, and let a ⊂ I be two ideals of R with ht(I) = g. Suppose

that I satisfies SD2, that Tor
R
1 (R/I, ω) = 0, and that J = (a : RI) is an s-residual

intersection of I. Then the canonical module of R/J is Syms−g+1
R (I/a)⊗R ω.

Proof. We first consider the case in which g = 2. By Proposition 4.4 and Theo-
rem 4.5,

ωR/J � H0(
ω

s−1Z+
• ) � Syms−1

R (I/a)⊗R ω.

The last isomorphism is by Proposition 3.3.
We may always reduce to the case g ≥ 2 by Remark 3.8. If g > 2, then we can

choose a regular sequence a of length g − 2 inside a which is part of a minimal
generating set of a, as in the proof of Theorem 4.5. As a ⊂ I is regular on ω,

TorR1 (R/I, ω) � Tor
R/a
1 (R/I, ω/aω) = 0.

Furthermore, observing that the canonical module of R/a is ω/aω, it follows
from the height 2 case that

ωR/J � Sym
(s−g+2)−1
R/a

(I/a
a/a

)
⊗R/a ωR/a � Syms−g+1

R (I/a)⊗R ω. �

Notice that the hypothesis TorR1 (R/I, ω) = 0 is always satisfied for ideals of
finite projective dimension. In particular, if R is Gorenstein, then ω � R, and
hence TorR1 (R/I, ω) � TorR1 (R/I,R) = 0; therefore, the canonical module of R/J
is the (s−g+1)th symmetric power of I/a. As a consequence, the second conjecture
in the introduction is proved under the SD2 condition.
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Remark 4.9. (i) This is under the assumptions of Theorem 4.8, but I satisfies
only SD1 and not SD2. Then there exists an epimorphism of R-modules

Syms−g+1
R (I/a)⊗R ω �� �� ωR/J .

(ii) In the height 2 case, by using Proposition 4.4, we could omit the assumption

TorR1 (R/I, ω) = 0 in Theorem 4.8. In this case, the canonical module of
R/J is the (s− 1)th graded component of

ω[T1, . . . , Tr]/(Lω + L
′ + γω)

by Proposition 3.2 and Theorem 4.5.

The following example shows that Theorem 4.8 does not hold if I satisfies only
the SD condition.

Example 4.10 ([6, Example 2.9]). Let R = k[[x1, . . . , x5]], and let I be the ideal
of 2× 2 minors of the matrix (

x1 x2 x3 x4

x2 x3 x4 x5

)
.

Then I is of height 3. If we take a to be the ideal generated by four sufficiently
general cubic forms in I, then J = a : RI is a 4-residual intersection. Using
Macaulay2 [7], it is easy to see that I satisfies SD. Moreover, we see that I2/aI
requires 20 generators, whereas ωR/J requires only 16. Thus there is no surjection

ωR/J
�� �� I2/aI; therefore, ωR/J is not isomorphic to Sym2

R(I/a).

Computation of the initial degree of Sym2
R(I/a) and ωR/J shows that there can

be no surjection Sym2
R(I/a) �� �� ωR/J . This shows that the SD1 condition in

Remark 4.9(i) is necessary.

Recall that, in a Noetherian local ring (R,m), the type of finitely generated R-

module M is the dimension of the R/m-vector space Ext
depth(M)
R (R/m,M), and it

is denoted by rR(M), or just r(M). The minimal number of generators of the R-
module M is the dimension of the R/m-vector space R/m⊗R M , and it is denoted
by μ(M). Notice that if M,N are two finitely generated R-modules, then

μ(M ⊗R N) = μ(M)μ(N).

From Theorem 4.8, computing the type of the residual is then a simple compu-
tation that gives the following corollary.

Corollary 4.11. Under the assumptions of Theorem 4.8,

r(R/J) =

(
μ(I/a) + s− g

μ(I/a)− 1

)
r(R).

Thus R/J is Gorenstein if and only if R is Gorenstein and μ(I/a) = 1.

5. Stability of Hilbert functions and Castelnuovo–Mumford

regularity of residual intersections

We now use the resolution 0Z+
• of a residual intersection to provide much in-

formation concerning R/J, like the stability of Hilbert functions and the Casteln-
uovo–Mumford regularity of residual intersections.
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First, we study the stability of the Hilbert functions of residual intersections.
We recall the definitions of the Hilbert function, Hilbert polynomial, and Hilbert
series; the reader can consult, for instance, [2, Chapter 4]. Let M be a graded
R-module whose graded components Mn have finite length for all n. The numerical
function H(M,−) : Z −→ Z with H(M,n) = length(Mn), for all n ∈ Z, is the
Hilbert function, and HM (t) :=

∑
n∈Z

H(M,n)tn is the Hilbert series of M.

If R is assumed to be generated over R0 by elements of degree 1, that is, R =
R0[R1], and M is a finitely generated graded R-module of dimension m ≥ 1, then
there exists a polynomial PM (X) ∈ Q[X] of degree m − 1 such that H(M,n) =
PM (n) for all n � 0. This polynomial is called the Hilbert polynomial of M. We
can write

PM (X) =

m−1∑
i=0

(−1)m−1−iem−1−i

(
X + i

i

)
.

Then the multiplicity of M is defined to be

e(M) =

{
e0 if m > 0,

length(M) if m = 0.

In [4], Eisenbud, Ulrich, and the first author restated an old question of Stanley
in [20] asking for which open sets of ideals a the Hilbert function of R/a depends
only on the degrees of the generators a. More precisely, they consider the following
two conditions:

(A1) Is the Hilbert function of R/a constant on the open set of ideals a generated
by s forms of the given degrees such that ht(a : RI) ≥ s?

(A2) Is the Hilbert function of R/(a : RI) constant on this set?

It is shown in [4, Theorem 2.1] that ideals with some sliding depth conditions in
conjunction with Gs−1 or Gs satisfy these two conditions. In [11, Proposition 3.1],
Hassanzadeh and the second author proved that if (R,m) is a Cohen–Macaulay
graded local ring of dimension d over an Artinian local ring R0, and if a ⊂ I are
two homogeneous ideals, I satisfies SD, and depth(R/I) ≥ d − s, then the above
condition (A1) is satisfied for any s-residual intersection J = (a : RI). It follows
directly from [8, Theorem 2.11], [11, Proposition 3.1] that if I satisfies SD, then,
for any arithmetic s-residual intersection J = (a : RI), the above condition (A2) is
satisfied.

In the next proposition, we will show that the above condition (A2) is satisfied
for any residual intersection under the SD1 condition.

Proposition 5.1. Let (R,m) be a graded Cohen–Macaulay local ring over an Ar-
tinian local ring R0, and let a ⊂ I be two homogeneous ideals with ht(I) = g.
Suppose that I satisfies SD1, and that J = (a : RI) is an s-residual intersection of
I. Then the Hilbert function of R/J satisfies the above condition (A2).

Proof. By Theorems 3.9 and 4.5, the complex 0Z+
• is a resolution of R/J. Hence,

the Hilbert function of R/J can be written in terms of the Hilbert functions of
the components of the complex 0Z+

• , which, according to the definition of 0Z+
• ,

are just some direct sums of Koszul cycles of I shifted by the twists appearing
in the Koszul complex K•(γ;S). Since the Hilbert functions of Koszul cycles are
inductively calculated in terms of those of the Koszul homology modules, the Hilbert
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function of R/J depends only on the Koszul homology modules of I and on the
degrees of the generators of a. �

Next, the important numerical invariant associated with an algebraic or geomet-
ric object is the Castelnuovo–Mumford regularity. Assume that R =

⊕
n≥0 Rn is a

positively graded Noetherian ∗local ring of dimension d over a Noetherian local ring
(R0,m0). Set m = m0 + R+. Suppose that I and a are two homogeneous ideals of
R generated by homogeneous elements f1, . . . , fr and a1, . . . , as, respectively. For
a homogeneous ideal b, the sum of the degrees of a minimal generating set of b is
denoted by σ(b). For a finitely generated graded R-module M, the Castelnuovo–
Mumford regularity of M is defined as reg(M) := max{end(Hi

R+
(M)) + i}. In [8],

Hassanzadeh defined the regularity with respect to the maximal ideal m as
regm(M) := max{end(Hi

m(M)) + i}. He proved that

reg(M) ≤ regm(M) ≤ reg(M) + dim(R0),

for any a finitely generated graded R-module M, whenever R is a Cohen–Macaulay
∗local ring; see [8, Proposition 3.4].

The next proposition improves [8, Theorem 3.6] by removing the arithmetic
hypothesis of residual intersections.

Proposition 5.2. Let (R,m) be a positively graded Cohen–Macaulay ∗local ring
over a Noetherian local ring (R0,m0), and let a ⊂ I be two homogeneous ideals
with ht(I) = g. Suppose that I satisfies SD1. Then, for any s-residual intersection
J = (a : RI),

reg(R/J) ≤ reg(R) + dim(R0) + σ(a)− (s− g + 1)indeg(I/a)− s.

Proof. The proof of this result goes along the same lines as that in [8, Theorem 3.6].
Indeed, Theorem 4.5 implies that R/J is Cohen–Macaulay and is resolved by 0Z+

• .
�

The next proposition improves on the result of Hassanzadeh and the second
author in [11, Proposition 3.3].

Proposition 5.3. Let (R,m) be a positively graded Cohen–Macaulay ∗local ring
over a Noetherian local ring (R0,m0) with canonical module ω. Let a ⊂ I be two
homogeneous ideals with ht(I) = g, and let J = (a : RI) be an s-residual intersection

of I. Suppose that I satisfies SD2 and that TorR1 (R/I, ω) = 0. Then

ωR/J = Syms−g+1
R (I/a)⊗R ω(σ(a)).

Proof. The proof proceeds along the same lines as in the local case. �
The following result is already an improvement of [8, Proposition 3.15], and

also of [11, Proposition 3.3]. We show the equality of the proposed upper bound
for Castelnuovo–Mumford regularity of residual intersections in Proposition 5.2.
This equality is showed by Hassanzadeh for perfect ideals of height 2 [8, Theo-
rem 3.16(iii)].

Corollary 5.4. Under the assumptions of Proposition 5.3,

regm(R/J) = regm(R) + σ(a)− (s− g + 1)indeg(I/a)− s.

In particular, if dim(R0) = 0, then

reg(R/J) = reg(R) + σ(a)− (s− g + 1)indeg(I/a)− s.
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Proof. By Theorem 4.5, R/J is Cohen–Macaulay of dimension d− s. By using the
local duality theorem and Proposition 5.3,

regm(R/J) = end(Hd−s
m (R/J)) + d− s = −indeg(ωR/J) + d− s

= σ(a)− indeg(Syms−g+1
R (I/a)⊗R ω) + d− s

= σ(a)− indeg(Syms−g+1
R (I/a))− indeg(ω) + d− s

= regm(R) + σ(a)− indeg(Syms−g+1
R (I/a))− s

since regm(R) = end(Hd
m(R)) + d = −indeg(ω) + d.

It remains to prove that indeg(Syms−g+1
R (I/a)) = (s− g + 1)indeg(I/a).

Let g1, . . . , g
 be a minimal set of generators of I/a. We have

SymR(I/a)⊗R R/m � (R/m)[Y1, . . . , Y
],

where Yi is the class of gi in SymR(I/a)⊗R R/m.
Suppose that deg(g1) = indeg(I/a). Since

SymR(I/a)⊗R R/m � (R/m)[Y1, . . . , Y
]

is a polynomial ring, we see that Y s−g+1
1 �= 0, and hence gs−g+1

1 �= 0 (this product

in SymR(I/a)) and gs−g+1
1 ∈ Syms−g+1

R (I/a). Thus

indeg(Syms−g+1
R (I/a)) ≤ deg(gs−g+1

1 )

= (s− g + 1) deg(g1) = (s− g + 1)indeg(I/a).

On the other hand, indeg(Syms−g+1
R (I/a)) ≥ (s− g + 1)indeg(I/a). Thus

indeg(Syms−g+1
R (I/a)) = (s− g + 1)indeg(I/a).

The remaining part follows from reg(M) ≤ regm(M) ≤ reg(M) + dim(R0) for
any finitely generated graded R-module M. �

Finally, we close this section by giving some tight relations between the Hilbert
series of a residual intersection and the (s− g + 1)th symmetric power of I/a.

Corollary 5.5. Let (R,m) be a positively graded Cohen–Macaulay ∗local algebra of
dimension d over an Artinian local ring R0 with canonical module ω. Suppose that
a ⊂ I are two homogeneous ideals of R with ht(I) = g, and that J = (a : RI) is an
s-residual intersection of I. Write

HR/J (t) =
P (t)

(1− ta)d−s
, HSyms−g+1

R (I/a)⊗Rω(t) =
Q(t)

(1− ta)d−s
,

with a being the least common multiple of the degrees of the generators of the algebra
R over R0 and P (t), Q(t) ∈ Z[t, t−1], with P (1), Q(1) > 0. If I satisfies SD2 and

TorR1 (R/I, ω) = 0, then

P (t) = tσ(a)+a(d−s)Q(t−1).

In particular, if R is generated over R0 by elements of degree 1—that is, R =
R0[R1]—then

e(R/J) = e(Syms−g+1
R (I/a)⊗R ω).
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Proof. By Proposition 5.3,

ωR/J � Syms−g+1
R (I/a)⊗R ω(σ(a)).

It follows from [2, Corollary 4.4.6] that

HSyms−g+1
R (I/a)⊗Rω(σ(a))(t) = (−1)d−sHR/J (t

−1)

is equivalent to

HSyms−g+1
R (I/a)⊗Rω(t) = (−1)d−stσ(a)HR/J (t

−1).

Thus

Q(t) = tσ(a)+a(d−s)P (t−1)

gives

P (t) = tσ(a)+a(d−s)Q(t−1).

In particular,

e(R/J) = P (1) = Q(1) = e(Syms−g+1
R (I/a)⊗R ω)

by [2, Proposition 4.1.9]. �

6. Duality for residual intersections of strongly Cohen–Macaulay

ideals

Duality for residual intersections traces back to Peskine and Szpiro and the
theory of liaison in [19]. A full picture is given in the recent work of Eisenbud and
Ulrich [6], motivated by previous results of Huneke, Ulrich, and van Straten. The
duality results in [6] are proved under depth hypotheses on powers of the ideal I
and the hypothesis Gs on the local number of generators.

In this section, we show that duality for residual intersections in the case I
is a strongly Cohen–Macaulay ideal, with no hypothesis on the local number of
generators. In this case, the structure of the canonical module of some symmetric
powers of I/a is given. Therefore, we can establish some tight relations between
the Hilbert series of the symmetric powers of I/a, and we give the closed formulas

for the type and for the Bass number of Symk
R(I/a).

First, we prove the duality of residual approximation complexes in the height 2
case.

Proposition 6.1. Let (R,m) be a Cohen–Macaulay local ring of dimension d with
canonical module ω, and let a ⊂ I be two ideals of R. Suppose that I is a strongly
Cohen–Macaulay ideal of height 2, and that J = (a : RI) is an s-residual intersection
of I. Then, for all 0 ≤ k ≤ s− 2,

ωH0(kZ+
• ) � H0(

ω
s−k−1Z+

• ).

Proof. By Theorem 3.9, the complex kZ+
• is acyclic and H0(kZ+

• ) is Cohen–
Macaulay of dimension d− s. Therefore, by local duality,

(6.1) ω∨
H0(kZ+

• )
� Hd−s

m (H0(kZ+
• )).

As I is strongly Cohen–Macaulay of height 2, we have depth(Zi) = d for all
0 ≤ i ≤ r − 1. By the definition of kZ+

• , for all 0 ≤ i ≤ s, kZ+
i is a direct sum of

copies of modules Z0, Z1, . . . , Zr−1; therefore, depth(kZ+
i ) = d. We now consider
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the double complex C•
m(kZ+

• ) that gives rise to two sequences. The second terms
of the horizontal spectral are

2E−i,−j
hor =

{
Hd−s

m (H0(kZ+
• )) if j = d− s and i = 0,

0 otherwise,

and the first terms of the vertical spectral are

1E−i,−j
ver =

⎧⎨
⎩
0 �� Hd

m(kZ+
s ) �� · · · �� Hd

m(kZ+
1 ) �� Hd

m(kZ+
0 ) �� 0 if j = d,

0 otherwise.

By the convergence of the spectral sequences, we obtain

(6.2) Hd−s
m (H0(kZ+

• )) � ∞E−s,−d
ver = 2E−s,−d

ver .

By Lemma 4.3(iv), we have a commutative diagram for all 0 ≤ k ≤ s− 2,

Hd
m(kZ+

s ) ��

�
��

Hd
m(kZ+

s−1)

�
��

( ω
s−k−1Z+

0 )∨ �� ( ω
s−k−1Z+

1 )∨.

Therefore,

(6.3) 2E−s,−d
ver � H0(

ω
s−k−1Z+

• )∨.

By (6.1), (6.2), (6.3), and Lemma 2.3,

ωH0(kZ+
• ) � H0(

ω
s−k−1Z+

• ). �

We now state the main result of this section. Let us recall that if M,N,L are
three R-modules, then a morphism ϕ : M ⊗R N −→ L is a perfect pairing if
ψ1 : M −→ HomR(N,L), sending m to ψ1(m) : n �→ ϕ(m ⊗ n), and ψ2 : N −→
HomR(M,L), sending n to ψ2(n) : m �→ ϕ(m⊗ n), are two isomorphisms.

Theorem 6.2. Let (R,m) be a Cohen–Macaulay local ring of dimension d, with
canonical module ω, and let a ⊂ I be two ideals of R with ht(I) = g. Suppose that
J = (a : RI) is an s-residual intersection of I. If I is strongly Cohen–Macaulay and

TorR1 (R/I, ω) = 0, then, for all 1 ≤ k ≤ s− g, the following hold:

(i) The canonical module of Symk
R(I/a) is Syms−g+1−k

R (I/a)⊗R ω.
(ii) There is a perfect pairing

(Symk
R(I/a)⊗R ω)⊗R Syms−g+1−k

R (I/a) −→ Syms−g+1
R (I/a)⊗R ω.

Proof.

(i) First, we treat the case g = 2. By Proposition 6.1, for all 1 ≤ k ≤ s− 2,

ωSymk
R(I/a) � H0(

ω
s−k−1Z+

• )

� Syms−k−1
R (I/a)⊗R ω.

The last isomorphism follows from Proposition 3.3.
Now we may suppose that g ≥ 2 by Remark 3.8. If g > 2, then we choose

a regular sequence a of length g − 2 inside a which is a part of a minimal
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generating set of a, as in the proof of Theorem 4.8. As I/a is strongly
Cohen–Macaulay by Proposition 4.1, it follows from the height 2 case that

ωSymk
R(I/a) � ω

Symk
R/a

( I/a
a/a

)
� Sym

(s−g+2)−k−1
R/a

(I/a
a/a

)
⊗R/a (ω/aω)

� Syms−g+1−k
R (I/a)⊗R ω.

(ii) It suffices to prove that, for all 1 ≤ k ≤ s− g,

Symk
R(I/a)⊗R ω � HomR

(
Syms−g+1−k

R (I/a), Syms−g+1
R (I/a)⊗R ω

)
.

As Syms−g+1−k
R (I/a) is a maximal Cohen–Macaulay R/J-module by Corol-

lary 4.6(ii) and Syms−g+1
R (I/a) ⊗R ω is the canonical module of R/J by Theo-

rem 4.8,

ωSyms−g+1−k
R (I/a) � HomR

(
Syms−g+1−k

R (I/a), Syms−g+1
R (I/a)⊗R ω

)
.

The conclusion follows from (i). �

In particular, if the residual intersections are geometric, we obtain the following
results, which could be compared to those of [6, Theorem 2.2].

Corollary 6.3. Let (R,m) be a Gorenstein local ring of dimension d, and let a ⊂ I
be two ideals of R. Assume that I is a strongly Cohen–Macaulay ideal of height
g, and that J = (a : RI) is a geometric s-residual intersection of I. Then, for all
1 ≤ k ≤ s− g,

(i) the canonical module of Ik/aIk−1 is Is−g+1−k/aIs−g−k, and
(ii) there is a perfect pairing

Ik/aIk−1 ⊗R Is−g+1−k/aIs−g−k −→ Is−g+1/aIs−g.

Proof. It is an immediate translation from Theorem 6.2, in view of the facts that
Symk

R(I/a) � Ik/aIk−1 by [11, Corollary 2.11] and ωR � R. �

Notice that the pairing in this corollary, and in the main theorem above need not
be given by multiplication. However, Eisenbud and Ulrich proved that, in many
situations in which our results apply, the multiplication indeed produces a perfect
pairing. In this regard, an example they provide is interesting.

Example 6.4 ([6, Example 2.8]). Let R = k[[x, y, z]], where k is an infinite field
and I = (x, y)2. If a is generated by three sufficiently general elements of degree
3 in I, then J = a : RI is a 3-residual intersection. Using Macaulay2 [7], they
verified that I is strongly Cohen–Macaulay; hence, ωR/J � Sym2

R(I/a). Moreover,
ωI/a � I/a.

Computation shows that there is a unique (up to scalars) nonzero homogeneous
map I/a⊗R I/a −→ ωR/J of lowest degree, and this is a perfect pairing. But they

notice that there can be no perfect pairing I/a⊗R I/a −→ I2/aI because the target
is annihilated by (x, y, z)2, while I/a is not. This implies that ωR/J �= I2/aI and
J is not geometric.

However, the multiplication with value in the symmetric square I/a⊗R I/a −→
Sym2

R(I/a) is a perfect pairing.

Next, we will show that the perfect pairing in Theorem 6.2, and also in Corol-
lary 6.3, could be chosen by multiplication. First, we need the following lemmas.

Licensed to University de Barcelona. Prepared on Fri Jul  5 10:08:19 EDT 2019 for download from IP 161.116.100.134.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Lemma 6.5. Let (R,m, k) be a local Noetherian ring, and let S be a Noetherian
standard graded R-algebra. For any s ≥ t, we consider

ψ : St −→ HomR(Ss−t, Ss),

the natural map given by the algebra structure of S. If H0
S+

(S⊗Rk)t = 0, then ψ⊗k
is into.

Proof. Let L ∈ St be such that 0 �= L ∈ St ⊗R k = (S ⊗R k)t. The element L is
sent to the class of the homomorphism ×L. We have to prove that this class is not
zero. As

mHomR(Ss−t, Ss) ⊆ HomR(Ss−t,mSs),

it suffices to show that the image of ×L is not contained in mSs. The assertion is
obvious if s = t. If s > t, as L /∈ H0

S+
(S ⊗R k)t and Ss−t = (S+)

s−t, there exist

u ∈ Ss−t such that L.u �= 0. Hence, the image of ×L contains L.u �∈ mSs. �

Lemma 6.6. Let (R,m, k) be a local Noetherian ring, and let M be a finitely
generated R-module. For any s ≥ t, if there exists a R-module isomorphism

ϕ : HomR(Sym
s−t
R (M), Syms

R(M)) −→ Symt
R(M),

then the natural map given by the algebra structure of SymR(M),

ψ : Symt
R(M) −→ HomR(Sym

s−t
R (M), Syms

R(M)),

is an isomorphism.

Proof. The assertion of the lemma is equivalent to showing that ϕ◦ψ is onto, which
in turn is equivalent to ψ ⊗R k being into (or equivalently onto).

Choose τ1 : Rn −→ M onto with n minimal (equivalently such that Rn ⊗R k �
M⊗Rk via τ1). Then τ := SymR(τ1) : SymR(R

n) −→ SymR(M) is onto and τ⊗Rk
is an isomorphism identifying SymR(M)⊗Rk with a polynomial ring in n variables.
It follows that S = SymR(M) satisfies the condition of Lemma 6.5; hence, ψ⊗ k is
into. �

Note that Sym0
R/J(I/a) = R/J and Symk

R/J (I/a) = Symk
R(I/a) for k > 0. We

have the following results.

Theorem 6.7. Let (R,m) be a Gorenstein local ring, and let a ⊂ I be two ideals
of R with ht(I) = g. Suppose that J = (a : RI) is an s-residual intersection of I. If

I is strongly Cohen–Macaulay, then ωR/J � Syms−g+1
R/J (I/a) and, for all 0 ≤ k ≤

s− g + 1, the following hold:

(i) The R/J-module Symk
R/J(I/a) is faithful and Cohen–Macaulay.

(ii) The multiplication

Symk
R/J (I/a)⊗R/J Syms−g+1−k

R/J (I/a) −→ Syms−g+1
R/J (I/a)

is a perfect pairing.
(iii) Setting A := SymR/J (I/a), the graded R/J-algebra

A := A/A>s−g+1 =

s−g+1⊕
i=0

Symi
R/J(I/a)

is Gorenstein.
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Proof. The first item is Corollary 4.6(ii). The second and last items directly follow
from Lemma 6.6 together with Theorem 6.2(ii) and (i), respectively. �

Corollary 6.8. Let (R,m) be a positively graded Cohen–Macaulay ∗local algebra of
dimension d over an Artinian local ring R0 with canonical module ω. Suppose that
a ⊂ I are two homogeneous ideals of R with ht(I) = g, and that J = (a : RI) is an
s-residual intersection of I. Write

HSymk
R(I/a)(t) =

Pk(t)

(1− ta)d−s
, HSymk

R(I/a)⊗Rω(t) =
Qk(t)

(1− ta)d−s
,

with a the least common multiple of the degrees of the generators of the algebra R
over R0 and Pk(t), Qk(t) ∈ Z[t, t−1], with Pk(1), Qk(1) > 0, for each 1 ≤ k ≤ s− g.

If I is strongly Cohen–Macaulay and TorR1 (R/I, ω) = 0, then

Pk(t) = tσ(a)+a(d−s)Qs−g+1−k(t
−1).

In particular, if R is generated over R0 by elements of degree 1, that is, R = R0[R1],
then

e(Symk
R(I/a)) = e(Syms−g+1−k

R (I/a)⊗R ω).

Proof. The proof is analogous to that of Corollary 5.5. It follows from the fact that

HSymk
R(I/a)⊗Rω(t) = (−1)d−stσ(a)HSyms−g+1−k

R (I/a)(t
−1). �

The next corollary enables us to calculate the type of some symmetric powers
of I/a. This is comparable with the results of Hassanzadeh and the second author
in [11, Theorem 2.12].

Corollary 6.9. Let (R,m) be a Cohen–Macaulay local ring of dimension d with
canonical module ω, and let a ⊂ I be two ideals of R with ht(I) = g. Suppose that
J = (a : RI) is an s-residual intersection of I. If I is strongly Cohen–Macaulay and

TorR1 (R/I, ω) = 0, then, for each 1 ≤ k ≤ s− g,

r(Symk
R(I/a)) =

(
μ(I/a) + s− g − k

μ(I/a)− 1

)
r(R).

Proof. The proof is totally similar to that of Corollary 4.11. For all 1 ≤ k ≤ s− g,

r(Symk
R(I/a)) = μ(Syms−g+1−k

R (I/a)⊗R ω)

by Theorem 6.2(i) and [2, Proposition 3.3.11]. �

Let R be a Noetherian ring, let M be a finitely generated R-module, and let
p ∈ Spec(R). The finite number

μi(p,M) = dimk(p)(Ext
i
Rp

(k(p),Mp)) = dimk(p)(Ext
i
R(R/p,M)p)

is called the ith Bass number of M with respect to p, where k(p) = Rp/pRp. If
R is local, then r(M) = μdepth(M)(m,M). These numbers have an interpretation
in terms of the minimal injective resolution of M (see [2, Proposition 3.2.9]). The
next corollary enables us to calculate the Bass numbers of some symmetric powers
of I/a.

Corollary 6.10. Let (R,m) be a Cohen–Macaulay local ring of dimension d with
canonical module ω, and let a ⊂ I be two ideals of R with ht(I) = g. Suppose that
J = (a : RI) is an s-residual intersection of I. Let p be a prime ideal containing J
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of R with ht(p) = i. If I is strongly Cohen–Macaulay and TorR1 (R/I, ω) = 0, then,
for every 1 ≤ k ≤ s− g + 1,

μi−s(p, Sym
k
R(I/a)⊗R ω) =

(
μ((I/a)p) + s− g − k

μ((I/a)p)− 1

)
.

Proof. By Theorem 4.5, R/J is Cohen–Macaulay of dimension d−s, and by Corol-

lary 4.6(ii), Symk
R(I/a) is a maximal Cohen–Macaulay faithful R/J-module for all

1 ≤ k ≤ s−g+1. Furthermore, by Theorem 6.2(i) and Theorem 4.8, Symk
R(I/a)⊗Rω

is a maximal Cohen–Macaulay faithful R/J-module for all 1 ≤ k ≤ s− g + 1.

First, Syms−g+1
R (I/a)⊗R ω � ωR/J by Theorem 4.8, ht(p) = i − s in R/J , and

μi−s(p, ωR/J ) = 1 by [2, Theorem 3.3.10]. This proves the case k = s− g + 1.
Suppose that J ⊂ ps � ps+1 � · · · � pi = p is a maximal chain of primes

of Spec(R/J) contained in p. Let bj ∈ pj − pj−1 for all s + 1 ≤ j ≤ i. Then

b = (bs+1, . . . , bi) is a regular sequence over R/J , and therefore also over Symk
R(I/a)

and Symk
R(I/a)⊗R ω, for all 1 ≤ k ≤ s− g + 1.

Let 1 ≤ k ≤ s−g. Then (bs+1, . . . , bi) is a regular sequence over (Symk
R(I/a)⊗R

ω)p and annihilates k(p); hence, [2, Lemma 1.2.4] gives

Exti−s
Rp

(k(p), (Symk
R(I/a)⊗R ω)p) � HomRp

(
k(p), (Symk

R(I/a)⊗R ω)p ⊗Rp
Rp/bRp

)
� HomRp

(
k(p),HomR(Sym

s−g+1−k
R (I/a), ωR/J)⊗R Rp/bRp

)
.

The last isomorphism follows from Theorems 4.8 and 6.2(ii). By [2, Proposi-
tion 3.3.3],

HomR

(
Syms−g+1−k

R (I/a), ωR/J

)
⊗R Rp/bRp

� HomRp

(
Syms−g+1−k

R (I/a)⊗R Rp/bRp, ωR/J ⊗R Rp/bRp

)
.

Thus we obtain

Exti−s
Rp

(k(p), (Symk
R(I/a)⊗R ω)p)

� HomRp

(
k(p),HomRp

(
Syms−g+1−k

R (I/a)⊗R Rp/bRp, ωR/J ⊗R Rp/bRp

))

� HomRp

(
k(p)⊗Rp Syms−g+1−k

R (I/a)⊗R Rp/bRp, ωR/J ⊗R Rp/bRp

)

� HomRp

(
k(p)⊗R Syms−g+1−k

R (I/a), ωR/J ⊗R Rp/bRp

)

� HomRp

(
Syms−g+1−k

k(p) (k(p)⊗R I/a), ωR/J ⊗R Rp/bRp

)
.

Since k(p) ⊗R I/a � k(p) ⊗Rp
(I/a)p is a k(p)-vector space of dimension μp :=

μ((I/a)p),

Symk(p)(k(p)⊗R I/a) � k(p)[Y1, . . . , Yμp
].

It follows that

Exti−s
Rp

(k(p), (Symk
R(I/a)⊗R ω)p) � HomRp

(
k(p)(

μp+s−g−k

μp−1 ), ωR/J ⊗R Rp/bRp

)
� HomRp

(
k(p), ωR/J ⊗R Rp/bRp

)(μp+s−g−k

μp−1 )

� Exti−s
Rp

(
k(p), (ωR/J)p

)(μp+s−g−k

μp−1 )
.
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The last isomorphism follows from the fact that bRp is regular over (ωR/J)p and
annihilates k(p). Therefore,

μi−s(p, Sym
k
R(I/a)⊗R ω) =

(
μp + s− g − k

μp − 1

)
μi−s(p, ωR/J)

=

(
μp + s− g − k

μp − 1

)
. �
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