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On the set of divisors with zero geometric defect
By Dinh Tuan Huynh at Bonn and Duc-Viet Vu at Cologne

Abstract. Let f W C ! X be a transcendental holomorphic curve into a complex pro-
jective manifold X . Let L be a very ample line bundle on X: Let s be a very generic holomor-
phic section of L and D the zero divisor given by s: We prove that the geometric defect of D
(defect of truncation 1) with respect to f is zero. We also prove that f almost misses general
enough analytic subsets on X of codimension 2.

1. Introduction

Let X be a compact Kähler manifold and D an effective divisor in X: Let f W C ! X

be a holomorphic curve such that f .C/ 6� SuppD. In Nevanlinna’s theory, we are interested in
understanding how often f .C/ intersects D.

Denote byL the line bundle generated byD. Let Dr be the disk of radius r centered at the
origin in C. Based on the exhaustion C D

S
r>0Dr , we will count the number of intersection

points between f .Dr/ and D, which is finite. Precisely, taking the k-truncated degrees of the
divisor f �D on disks by

n
Œk�

f
.t;D/ WD

X
z2Dt

min ¹k; ordzf �Dº .t > 0/;

the truncated counting function of f at level k with respect to D is then defined by taking the
logarithmic average

N
Œk�

f
.r;D/ WD

Z r

1

n
Œk�

f
.t;D/

t
d t .r > 1/:

When k D1, we write nf .r;D/, Nf .r;D/ instead of nŒ1�
f

.r;D/, N Œ1�

f
.r;D/. These func-

tions count the number of points in f .Dr/ \D, taking into account the multiplicity. On the
other hand, when k D 1, the function nŒ1�

f
.r;D/ gives us the number of points in f .Dr/ \D

as a set. We then call N Œ1�

f
.r;D/ the geometric counting function of f with respect to D.
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For every smooth .1; 1/-form � on X; we put

Tf .r; �/ WD

Z r

1

d t
t

Z
Dt

f �� .r > 1/:

Observe that if �; �0 are two smooth closed .1; 1/-forms in the same cohomology class, then
Tf .r; �/ D Tf .r; �

0/CO.1/ as r !1 by the Lelong–Jensen formula. It follows that given
a smooth Chern form !L of L, the characteristic function of f with respect to L given by

Tf .r; L/ WD Tf .r; !L/

is well-defined up to a bounded term as r !1.
By the First Main Theorem [14, Theorem 2.3.31], there holds

N
Œ1�

f
.r;D/ � Nf .r;D/ � Tf .r; L/CO.1/:

On the other side, in the Second Main Theorem, one tries to establish a lower bound
for counting functions. Many such type of estimates are based on the work of Cartan [4]. Let
X D Pn and let f W C ! Pn be an entire holomorphic curve whose image is not contained in
any hyperplane. Denote by Tf .r/ the characteristic function of f with respect to the hyperplane
bundle of Pn. Let ¹Hj º1�i�q be a family of q � nC 2 hyperplanes in Pn in general position,
i.e., any collection of nC 1 members in this family has empty intersection. Then the classical
Cartan’s Second Main Theorem states that

.q � n � 1/Tf .r/ �

qX
jD1

N
Œn�

f
.r;Hj /CO.logTf .r/C log r/(1.1)

for r outside a set of finite Lebesgue measure on R.
An important problem in Nevanlinna’s theory is to decrease the truncation level in (1.1) as

low as possible. When n D 2, the truncation level 2 is optimal as showed by an example in [10].
However, it was conjectured that (1.1) still holds for N Œ1�

f
.r;Hj / in place of N Œn�

f
.r;Hj /, pro-

vided that f is algebraically non-degenerate, i.e., f .C/ is not contained in any proper algebraic
subset of X . This conjecture is widely open. Note that in the context of abelian or semi-abelian
varieties, such a Second Main Theorem-type estimate with the optimal truncation level 1 has
been established in [15, 16, 19]. The reader is referred to [10, 13, 14, 17] and references therein
for more information.

Recall that the defect of D with respect to f is defined as

ıf .D/ WD lim inf
r!1

�
1 �

Nf .r;D/

Tf .r; L/

�
:

For k 2 N�, the defect of truncation k of D, which is denoted by ıŒk�
f
.D/, is then defined in

a similar way with N Œk�

f
.r;D/ in place of Nf .r;D/. We call ıŒ1�

f
.D/ the geometric defect of

D. It is trivial that
0 � ıf .D/ � ı

Œk�

f
.D/ � ı

Œ1�

f
.D/ � 1

for k � 1. A divisor with zero geometric defect roughly signifies that the logarithmic average
growth of the cardinality of the set f .Dr/ \D is the same as that of the area of f .Dr/ as
r !1: In the other extreme case where ıf .D/ D 1, the logarithmic average of the cardinality
of the set f .Dr/ \D counted with multiplicity is negligible with respect to the area of f .Dr/.
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Observe that a direct consequence of (1.1) is that forX D Pn and for very generic hyper-
plane D in Pn, we have ıŒn�

f
.D/ D 0, see Lemma 4.7 below. The goal of this paper is to prove

the following stronger statement which serves as an evidence supporting the above conjecture.

Theorem 1.1. Let X be a complex projective manifold and L a very ample line bundle
on X . Let E be the space of holomorphic sections of L. Let f W C ! X be a transcendental
holomorphic curve. Then for every effective divisorD ofL outside a countable union of proper
algebraic subsets of P .E/, we have ıŒ1�

f
.D/ D 0.

We underline that the feature of Theorem 1.1 is the truncation 1 of the defect. By a recent
result in [3], for every integer d greater than an explicit number depending on n and for
a generic divisor D of Ld , we have ıŒ1�

f
.D/ � 1 � 1

d
; see also [12] for a weaker estimate.

We also notice that Theorem 1.1 is sharp in the case where n D 1 by a result of Drasin [9].
Recall that every effective divisor D of L is the zero divisor of a holomorphic section

of L which is naturally identified with a complex line passing through the origin of E: Hence,
we can view D as a point in P .E/. Note that we do not require that f is algebraically non-
degenerate and Theorem 1.1 is clear if f is a non-constant rational curve because the image of
f is an algebraic curve in X: By using a basis of E; we can embed X into a projective space
and the problem can be reduced to the case where X D Pn and L is the hyperplane bundle.
But this reduction does not make the problem easier.

Consider now an analytic subset V of X: By using local basis of the sheaf of ideals of
holomorphic functions defining V , we can also define the counting function Nf .r; V / even if
codimV � 2, see [14, Section 2.4.1] for details. Here is our second main result.

Theorem 1.2. Let Z be a complex manifold. Let X be a compact Kähler manifold and
! a Kähler form on X . Let f W C ! X be a transcendental holomorphic curve. Let V be
a complex smooth submanifold of X �Z of codimension s � 2. Denote by p1; p2 the natural
projections from X �Z to X , Z, respectively. Assume that the restriction p1;V of p1 to V

is a submersion and the restriction p2;V of p2 to V is a surjection. Then for any a outside
a countable union of proper analytic subsets of Z, we have

lim inf
r!1

Nf .r;Va/

Tf .r; !/
D 0;(1.2)

where Va WD p1.V \ .X � ¹aº//.

Observe that the fiber of p2;V at a point a 2 Z is Va. Since p2 is surjective and proper,
the set of critical values of p2 is a proper analytic subset of Z and for every a outside this set,
we see that Va is of codimension s inX and V is transverse toX � ¹aº: Hence V is essentially
a family of analytic subsets of codimension s � 2 in X . The above result roughly says that for
an analytic subset V of codimension 2 general enough, then

lim inf
r!1

Nf .r; V /

Tf .r; !/
D 0;

i.e., f almost misses such V .
A simple example to which we can apply Theorem 1.2 is whenX D Pn,Z is the space of

projective subspaces of codimension s � 2 of X and V is the family of subspaces of codimen-
sion s of Pn which is viewed as a submanifold of Pn �Z. Even in this situation, it seems that
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the conclusion of the above theorem is still new. Note that whenX is an abelian or semi-abelian
variety, by the results of Noguchi-Winkelmann-Yamanoi [15, 16, 19], one has

lim inf
r!1

Nf .r; V /

Tf .r; !/
D 0

for every analytic set V of codimension � 2 in X .
We would like to make some comments about our strategy to prove main results. The

proof of Theorem 1.2 consists of two main steps. In the first step, we look at a Nevanlinna’s
d -closed current S of bidimension .1; 1/ associated to f and study the intersection of S
with Va. Since S is of bi-dimension .1; 1/ and Va is of codimension at least 2 in X , one is
tempted to expect that the formal intersection “S ^ Va” should be zero. Here, the crucial point
is that one needs to interpret this intersection in a proper sense. In our proof, this will be done
by using the theory of density currents coined recently by Dinh and Sibony in [8]. Roughly
speaking, we will prove that for very generic a 2 Z (i.e., for a outside a countable union of
proper analytic subsets of Z), modulo natural identifications, one has

“S ^ ŒVa�” D “p�1S ^ ŒV � ^ ŒX � ¹aº�” D “.p�1S ^ ŒV �/ ^ ŒX � ¹aº�” D 0;(1.3)

where for an analytic set V , we denote by ŒV � the current of integration along V . Here the
intersection of currents in the last equalities will be understood in the sense of density currents.

The first equality of (1.3) follows from the fact that Va is naturally identified with
V \ .X � ¹aº/. The second one comes from a general fact about the associativity of density
currents (see Theorem 2.4). Intuitively, the last equality of (1.3) is true due to the fact that
the bi-degree of the current “.p�1S ^ ŒV �/ ^ ŒX � ¹aº�” is strictly greater than the dimension
of the ambient space X �Z, thanks to the assumption that V is of codimension at least 2.
Nevertheless, to make the last argument rigorously, we need to prove a result concerning the
intersection of a current with generic fibers of a submersion which is of independent interest
(see Theorem 2.3).

In the second step, we will finish the proof by relating the current “S ^ ŒVa�” with the
right-hand side of (1.2). This will be done by considering the blowup of X along Va. Note that
in this step, we need to work with ddc-closed (not necessarily d -closed) Nevanlinna’s current
associated to the lift of f to the last blowup.

The proof of Theorem 1.1 goes first by lifting f , D to a curve �f and an analytic sub-
set �D of codimension 2 in the projectivization P .TX/ of the tangent bundle TX of X . The
intersection of �f and �D encodes the points where f is tangent to D. This is an idea inspired
by [5, 7]. The characteristic function of �f and that of f are comparable by the lemma on
logarithmic derivative or McQuillan’s tautological inequality. This fact permits us to use the
characteristic function of �f instead of that of f .

When D runs over the set P .E/ of divisors, �D forms a smooth family V of analytic
subsets of codimension 2 in P .TX/. The last family can be seen as a smooth submanifold of
codimension 2 in P .TX/ � P .E/. This allows us to use Theorem 1.2 for �f and V to obtain
“�S ^ Œ�D�” D 0 for very generic �D. This is a key in our proof. This property together with some
direct computations on the blowup of P .TX/ along �D gives the desired equality.

The paper is organized as follows. In Section 2, we present preparatory results about
density currents which will be needed for our proofs of main theorems. We prove Theorems 1.2
and 1.1 in Sections 3 and 4, respectively.
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2. Density currents

In this section, we will prove several results concerning density currents which are crucial
for our proofs of main results. Firstly, we need to recall some known facts about the density
currents proved in [8], see also [18] for some simplifications.

Let Y be a compact Kähler manifold. Let V be a smooth submanifold of dimension `
of Y . Let ŒV � be the current of integration along V . Let T be a positive closed current of
bi-degree .p; p/ in Y . Assume that T has no mass on V . We denote by ¹T º and ¹V º the
cohomology class of T and ŒV �, respectively. Denote by � W E ! V the normal bundle of V
in Y and E WD P .E ˚C/ the projective compactification of E. The hypersurface at infinity
H1 WD E nE of E is naturally isomorphic to P .E/ as fiber bundles over V . We also have
a canonical projection �1 W E n V ! H1.

A smooth diffeomorphism � from an open subsetU of Y to an open neighborhood of V in
E is called admissible if � is the identity map on V \ U and the restriction of its differential d �
to EjV\U is the identity map. By [8, Lemma 4.2], there exists an admissible map � W U ! E

such that U is a tubular neighborhood of V . In general, such a � is not holomorphic.
For � 2 C�; let A� W E ! E be the multiplication by � on fibers of E. Let � be an

admissible map defining on a tubular neighborhood of V . By [8], the family of closed currents
.A�/���T has a uniformly bounded mass on compact sets of E. Any limit current of this
family in E is called a tangent current to T along V . Such a current is a positive closed current
invariant by A� and can be extended to a current in E. Tangent currents are independent of � ,
this means that ifR WD limn!1.A�n/���T is a tangent current, then for every admissible map
� 0 W U 0 ! E, we also have R D limn!1.A�n/��

0
�T on ��1.U 0 \ V /. This property allows

us crucial flexibility in choosing admissible maps when we need to estimate tangent currents in
practice. Thus if we work locally, then after trivializing E, the admissible map in the definition
of tangent currents can be chosen to be the identity.

In general, the tangent currents to T along V are not unique but their cohomology classes
in E are unique. That unique class is denote by �V .T / and called the total tangent class to T
along V . Let hE be the Chern class of the dual of the tautological line bundle of E, respec-
tively. We can write �V .T / uniquely as

�V .T / D

min¹`;k�p�1ºX
jDmax¹0;`�pº

���j ^ h
p�.`�j /

E
;

where �j is a cohomology class inH `�j;`�j .V /, which is called the j th component of �V .T /.
Let T1; : : : ; Tm be positive closed currents on Y . Let T1 ˝ � � � ˝ Tm be the tensor cur-

rent of T1; : : : ; Tm on Y m. A density current associated to T1; : : : ; Tm is a tangent current
of T1 ˝ � � � ˝ Tm along the diagonal �m WD ¹.y; : : : ; y/ W y 2 Y º of Y m. If there is a unique
density current T1 to T1; : : : ; Tm and T1 D ��mS for some positive closed current S on �m,
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where �m W E�m ! �m is the projection from the normal bundle E�m , then we say that the
Dinh–Sibony product T1 f � � � f Tm is well-defined and put T1 f � � � f Tm WD S .

Consider a particular case where T1 WD T and T2 WD ŒV �. Observing that we have natural
identifications T.Y 2/ � TY � TY between vector bundles, where TY is the tangent bundle of
Y and � � Y . Since V � Y � �, there is a canonical inclusion { from TV to .TY � ¹0º/j�
which is a subbundle of T.Y 2/j�. Further, let F be the image of {.TV / in the normal bundle
E�D T.Y 2/=T�. Put�V WD ¹.y; y/2 Y 2 W y 2 V º. LetE�;V be the restriction ofE� to�V .
Observing that F is a subbundle of E�;V of rank ` and the natural map

‰ W E�;V =F ! E D TY=TV

is an isomorphism. Let pV W E�;V ! E�;V =F be the natural projection. The following result
tells us that a density current associated to T , ŒV � corresponds naturally to a tangent current
of T along V .

Lemma 2.1 ([8, Lemma 5.4] or [18, Lemma 2.3]). If T1 is a tangent current of T
along V; then the current p�V‰

�T1 is a tangent current of T ˝ ŒV � along�. Conversely, every
tangent current of T ˝ ŒV � along � can be written as p�V‰

�T1 for some tangent current T1
of T along V .

We present below some more properties of tangent currents which will be used in the
sequel. Let � W �Y ! Y be the blowup along V of Y and �V WD ��1.V / the exceptional hyper-
surface. Recall that �V is naturally biholomorphic to P .E/.

Let �E W �E ! E be the blowup along V of E. The projection � induces naturally a vec-
tor bundle projection ��E from �E to ��1E .V /. Let �E be the projective compactification of the
vector bundle �E. The map ��E can be extended to a projection ��E W �E ! ��1E .V /. We also
denote by �E its natural extension from �E ! E. The vector bundle ��E W �E ! ��1E .V / is nat-
urally identified with the normal bundle of �V in �Y . Hence we can identify ��1E .V / with �V and
use �E as the normal bundle of �V in �Y .

Recall that since Y is Kähler, so is �Y . If codimV � 2; let �!h be a smooth Chern form
of the line bundle O.��V / whose restriction to each fiber of �V � P .E/ is strictly positive,
otherwise we simply put �!h WD 0. By rescaling the form ! if necessary, we can assume that�! WD ��! C �!h > 0.

Observe that the hypersurface at infinity �H1 of �E is biholomorphic to that of E via �E .
We use ��1 to denote the natural projection from �E n �V to �H1: Since the rank of �E over �V
is 1, we can extend��1 to a projection from �E to �H1. Thus, �V is naturally identified with �H1
which is in turn naturally identified with H1.

Let �T be the pull-back of the current T on �Y n �V by � j�Y n�V : The mass of �T is finite
by [6]. We thus can extend �T trivially through �V to a current on �Y .

For any positive current S on H1, the positive current ��1S has a finite mass on E n V .
Hence we can extend it trivially through V . Denote also by ��1S this extension. Since

�1 D ��1 ı .�E j�En�V /�1;
we can check that

��1S D .�E /� ı .��1/�S:
By the last formula, the map ��1 induces natural maps on the cohomology groups and ��1 is
continuous. For a cohomology class ˛ in X , we denote by ˛jV the restriction of ˛ to V .
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Let T1 be a tangent current to T along V . We can check directly that there exists a tan-
gent current �T1 to �T along �V satisfying

T1 D .�E /��T1:
We have the following important property.

Proposition 2.2 ([8]). The current T1 is V -conic, i.e., A�
�
T1 D T1 for every � 2 C�.

Equivalently, there exists a positive closed current S1 on H1 such that

T1 D �
�
1S1:

Moreover, we have

�V .T / D ��1¹S1º D �
�
1.¹

�T1º^ ¹�V º/;(2.1)

where recall that we identified �V with �H1 and �H1 with H1.

We are going to present the first main result of this section concerning the density currents
associated to a current and slices of a given submersion. Recall that the mass of a current S of
order 0 on a manifold M is given by

kSkM WD sup
kˆkC0�1

jhS;ˆij;

where the supremum is taken over all smooth differential forms ˆ on M. From now on, the
notations .;& are used to indicate �;� modulo a multiplicative constant, respectively.

Let W be a compact Kähler manifold and let �W W Y ! W be a holomorphic submer-
sion. Put Y� WD ��1W .�/ for every � 2 W . Let E� be the normal bundle of Y� in Y and let
�P.E� / W P .E� /! Y� be the natural projection. Let m WD dimW and ` WD dimY� , which is
independent of � .

Theorem 2.3. There exists a subset A of W which is a countable union of proper
analytic subsets of W such that for any � … A, the component �Y�j .T / of the total tangent
class to T along Y� is zero for any j > ` � p. In particular, if p > `; then the tangent current
to T along Y� is zero, or equivalently T f ŒY� � D 0.

Proof. Let ! be a Kähler form on Y . For j � max¹` � p; 0º; the current

Tj WD .�W /�.T ^ !
j /

is positive closed of bidegree .s; s/ in W , where s WD p C j � `. If j > ` � p, then s � 1.
Let Aj be the set of � 2 W such that �.Tj ; �/ > 0. Observing that Aj is a countable union of
proper analytic subsets of W by Siu’s semi-continuity theorem if j > ` � p. Set

A WD
[

j�max¹`�pC1;0º

Aj :

Let �0 62 A: Thus for any j � ` � p C 1, one has �.Tj ; �0/ D 0:
Consider a tangent current R to T along Y�0 ; i.e., R D limn!1.A�n/���T; where � is

an admissible map from a tubular neighborhood of Y�0 to E�0 . Let j0 be the maximal j such
that �Y�j .T / 6D 0. Note that by a bi-degree reason, we have j0 � max¹0; ` � pº.
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Suppose that j0 > `�p because otherwise we have nothing to prove. Recall that �
Y�0
j .T /

is a class in H `�j;`�j .Y�0/. It follows that the mass of the positive closed current

Rj0 WD R ^ �
�
P.E� /

!
j0
�0

is strictly positive, where !� is the restriction of ! to Y� . Moreover, since R is Y� -conic, so
is Rj0 : Thus, the mass of Rj0 on E� is bounded by a constant times the mass of Rj0 on every
open tubular neighborhood of Y�0 , see [8, Lemma 3.16]. Hence there exists a local chart U
on Y such that

kRj0kU > 0;(2.2)

where we identified U with a local chart of E�0 .
From now on we work locally on U and without loss of generality, we can assume that

U D U1 � U2 of Y and .x; �/ the coordinate system on U such that Y�0 \ U D ¹� D 0º.
Hence U2 is a local chart ofW centered at �0 and x is a local coordinate system on Y� . We can
identify E� with U1 �Cm and A� is given by the multiplication .x; �/ 7! .x; ��/. Denote by
A0
�

the multiplication � 7! �� in Cm, one sees that A0
�
ı �W D �W ı A�.

The natural projection �U1 W U1 � U2 ! U1 is the restriction of �P.E� / to ��1P.E� /
.U1/.

Denote by idU the identity map on U . Observe that idU is an admissible map by our identifi-
cation of E� with U1 �Cm. On U1 �Cm, we get

R D lim
n!1

.A�n/�.idU /�T D lim
n!1

.A�n/�T:(2.3)

For each j > ` � p, recall that Tj is a current on W of bi-degree .s; s/ with s � 1. We then
have

�.Tj ; �0/ & lim sup
�!1

k.A0�/�Tj kU2 D lim sup
�!1

k.A0�/�.�W /�.T ^ !
j /kU2(2.4)

D lim sup
�!1

k.�W /�
�
.A�/�T ^ �

�
U1
!
j

�0

�
kU2 :

Let !W be a Kähler form on W: Observe that

! . !�0 C !W :

It follows that for r WD dimY � .p C j0/, one has

lim sup
�!1

˝
.A�/�T ^ �

�
U1
!
j0
�0
; !r

˛
. lim sup

�!1

rX
r 0D0

k.�W /�Œ.A�/�T ^ �
�
U1
!
j0Cr

0

�0
�k

.
rX

r 0D0

�.Tj0Cr 0 ; �0/ D 0

by (2.4) and our choice of �0. This together with (2.3) and (2.2) gives a contradiction. Hence
j0 � ` � p. It follows that j0 D ` � p. We also deduce that if p > `; then the tangent current
R is zero. This finishes the proof.

The next two results concerns the associativity of density currents: given currents T;R; S
such that T fR is well-defined and .T fR/ f S is well-defined, is T fR f S well-defined
and equal to .T fR/ f S? We are not able to answer this question in general but we can show
that this is the case in some situations which are enough for our applications later.
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Theorem 2.4. Let R1; R2 be positive closed currents of bi-degree .p1; p1/, .p2; p2/,
respectively on Y such that the Dinh–Sibony product T WD R1 fR2 is well-defined. Assume
that p WD p1 C p2 > `. Then there exists a subset A ofW which is a countable union of proper
analytic subsets of W such that for any � … A, we have R1 fR2 f ŒY� � D 0.

Proof. Note that we proved in Theorem 2.3 that .R1 fR2/ f ŒY� � D T f ŒY� � D 0 for �
outside a countable union of proper analytic subsets ofZ. Our desired assertion does not follow
directly from the last property because in general we do not know whether R1 fR2 f ŒY� � is
well-defined and equal to .R1 fR2/ f ŒY� �.

Let �3 be the diagonal of Y 3 which is the set of .y; y; y/ for y 2 Y . Let E3 be the
normal bundle of �3 in Y 3. Let A�;3 be the multiplication by � along fibers of E3. Let � be
the diagonal of Y 2 and E the normal bundle of � in Y 2. Let A� be the multiplication by �
along fibers of E. Let �E be the projection from E to �.

Let Tj ;Aj be the currents and the set given in the proof of Theorem 2.3 for j � 0. Since
p > `, the set Aj is a countable union of proper analytic subsets of W . The desired assertion
is a direct consequence of the following inequality:

lim sup
�!1

k.A�;3/�.R1 ˝R2 ˝ ŒY� �k .
X
j�0

�.Tj ; �/(2.5)

for � 2 W . Indeed, if � 62 A WD
S
j�0Aj , then the right-hand side of the above inequality is

zero, which implies that the density current associated to R1; R2; Y� is zero.
Let us now prove inequality (2.5). To this end, let �0 2 W . From now on, we work locally

near Y�0 . Let U D U1 � U2 be a local chart near Y�0 with the coordinates y D .x; �/ such that
�0 D 0 and �W .x; �/ D � . We obtain induced coordinates .y; y0; y00/ on U 3 � Y 3; where
y0 D .x0; � 0/; y00 D .x00; � 00/. Put

Qy0 D . Qx0; Q� 0/ WD y0 � y; Qy00 D . Qx00; Q� 00/ WD y00 � y:

Then .y; Qy0; Qy00/ are new local coordinates on U 3 and

�3 D ¹ Qy
0
D Qy00 D 0º; � D ¹ Qy0 D 0º:

IdentifyE3 over�3\U 3 with U �C2 dimY andE with U �CdimY . The multiplicationA�;3 is
given by .y; Qy0; Qy00/ 7! .y; � Qy0; � Qy00/ andA� is given by .y; Qy0/ 7! .y; � Qy0/. Letˆ.y; Qy0; Qy00/ be
a positive test form with compact support. Let �3 be the change of coordinates from .y; y0; y00/

to .y; Qy0; Qy00/ and � the change of coordinates from .y; y0/ to .y; Qy0/. Put

Q� WD
˝
.A�;3/�.�3/�.R1 ˝R2 ˝ ŒY�0 �/; ˆ.y; Qy

0; Qy00/
˛
;

which is equal to �
��.R1 ˝R2/;

Z
¹x002Y�0º

ˆ.y; � Qy0; �.x00 � x/;���/

�
D

�
��.R1 ˝R2/;

Z
¹ Qx002C`º

ˆ.y; � Qy0; Qx00;���/

�
:

It follows that
Q� D hR�; ˆ�i;



10 Huynh and Vu, On the set of divisors with zero geometric defect

where

R� WD .A�/���.R1 ˝R2/; ˆ�.y; Qy
0; �/ WD

Z
¹ Qx002C`º

ˆ.y; Qy0; Qx00;���/:

Observe that

ˆ�.y; Qy
0; �/ .

qX
jD0

�j .x; Qy
0/ ^ !

j
W .��/

for some positive integer q, where !W is a Kähler form on W and �j are positive test forms
with compact supports. Put R�;j WD .�W /�.�E /�.R� ^�j .x; Qy0//. This implies that

Q� . hR�; �j .x; Qy0/ ^ !
j
W .��/i D hR�;j ; !

j
W .��/iI(2.6)

recall here that we identified� with Y and the bracket is computed over U2. By the hypothesis
that

lim
�!1

R� D �
�
E .R1 fR2/ D ��ET;

we get

lim
�!1

R�;j D .�W /�.T ^ .�E /��j /:(2.7)

For any positive closed current S of bi-dimension .j; j / on U2 and every constant � > 0,
put

�.S; �0; �/ WD �
�2j
hS; 1¹j� j��º!

j
W i;

where 1B denotes the characteristic function of a set B . Since we are working on U2, we
can take !W to be the standard Kähler form on Cm. The function �.S; �0; �/ decreases to
the Lelong number �.S; �0/ as � ! 0. Let �0 be a strictly positive constant. Without loss of
generality, we can assume that U2 is contained in the unit ball in Cm. A direct computation
shows that

hR�;j ; !
j
W .��/i � c�.R�;j ; �0; cj�j

�1/ � c�.R�;j ; �0; �0/

for j�j big enough and some constant c > 0 independent of �. This combined with (2.7) and
(2.6) yields that

lim sup
�!1

Q� .
mX
jD0

lim sup
�!1

�.R�;j ; �0; �0/

�

mX
jD0

�
�
.�W /�.T ^ .�E /��j /; �0; 2�0

�
for every �0 > 0. Letting �0 ! 0 in the last inequality gives

lim sup
�!1

Q� .
X
j�0

�.Tj ; �0/:

So (2.5) follows. This finishes the proof.

Lemma 2.5. Let Y be a compact Kähler manifold and T a positive closed current
on Y . Let V1; V2 be two smooth complex submanifolds of Y . Assume that V1 is transverse to
V2. If T f ŒV1� f ŒV2� D 0, then T f ŒV1 \ V2� D 0.
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Proof. Let�3 D ¹.x; x; x/ W x 2 Y º be the diagonal of Y 3. LetE3 be the normal bundle
of �3 in Y 3. We work locally. Let x D .x1; x2; x0/ be a local coordinate system on a local
chart U D U1 � U2 � U 0 of Y such that Vj \ U D ¹xj D 0º for j D 1; 2. We obtain induced
coordinates .x; y; z/ on U 3 � Y 3; where y D .y1; y2; y0/, z D .z1; z2; z0/.

Let j̀ D dimVj for j D 1; 2 and k WD dimY . Put

Qx D . Qx1; Qx2; Qx
0/ WD x � z; Qy D . Qy1; Qy2; Qy

0/ WD y � z:

Observe that . Qx; Qy; z/ are new local coordinates on U 3 and �3 is given by the equations
Qx D Qy D 0. Identify E3 over �3 \ U 3 with U �C2k . Let � be the identity map from U 3

to U �C2k . The fiberwise multiplication A� by � on the normal bundle of �3 in Y 3 is given
by . Qx; Qy; z/ 7! .� Qx; � Qy; z/. On the other hand, the normal bundle of V1 \ V2 in Y can be iden-
tified with U 0 �C`1C`2�k and the fiberwise multiplication QA� by � on the normal bundle of
V1 \ V2 in Y is given by .x1; x2; x0/ 7! .�x1; �x2; x

0/.
Let ˆ. Qx; Qy; z/ be a smooth form with compact support on U �C2k . We have˝
.A�/���.ŒV1�˝ ŒV2�˝ T /;ˆ

˛
D
˝
ŒV1�˝ ŒV2�˝ T;ˆ

�
� Qx; � Qy; z

�˛
D

�
T .z/;

Z
.x2;x0/2V1

Z
.y1;y0/2V2

ˆ.��z1; � Qx2; � Qx
0; � Qy1;��z2; � Qy

0; z/

�
D

�
T .z/;

Z
Qx2; Qx0; Qy1; Qy0

ˆ.��z1; Qx2; Qx
0; Qy1;��z2; Qy

0; z/

�
D

�
T .z/;

Z
Qx2; Qx0; Qy1; Qy0

ˆ.��z1; Qx2; Qx
0; Qy1;��z2; Qy

0; 0; 0; z0/

�
CO.j�j�1/;

where O.j�j�1/ is a current of mass . j�j�1 as �!1 because . QA�/�T is of uniformly
bounded mass on compact subsets of U 0 �C`1C`2�k .

Letting �!1 in the last equality, we get a density current associated to ŒV1�; ŒV2�; T in
the left-hand side and a tangent current to T along V1 \ V2 in the right-hand side. The desired
assertion thus follows.

In the above proof, we actually proved that there is a natural one-to-one correspondence
between the set of tangent currents to T along V1 \ V2 and the set of density currents associated
to T; ŒV1�; ŒV2�. But the conclusion of Lemma 2.5 is enough for our purpose later.

3. Proof of Theorem 1.2

For every submanifold Z of a manifold Y with smooth boundary, denote by ŒZ� the
current of integration along Z. Let �r be the Haar measure on the boundary àDr of Dr . Direct
computations show that

(3.1) ddc
Z r

1

d t
t
ŒDt � D �r � �1I

recall dc WD i
2�
.Nà � à/ and d dc D i

2�
àNà.

Let X;Z;V ; p1;V ; !; f be as in the statement of Theorem 1.2. Put

Sr WD c
�1
r

Z r

1

d t
t
f�ŒDt �;
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where cr WD Tf .r; !/: We have the following equality:

Nf .r;D/

Tf .r; !/
D 1C h'D; ddcSri;

where ŒD� WD ddc'D C !, which is known as the First Main Theorem in Nevanlinna’s theory.
Using (3.1), we get

ddcSr D c�1r f��r � c
�1
r f��1;

which implies that
kddcSrk . c�1r :

It follows that every limit current of the family .Sr/r2RC as r !1 is ddc-closed. It is a well-
known fact that at least such a limit current is d -closed. Let .rk/k2N be a sequence of pos-
itive real numbers converging to 1 such that Srk converges to a positive closed current S
as k !1.

Since p1;V is a submersion, the pull-back p�
1;V
S is a well-defined current on V . Here is

an interpretation of the last current in terms of density currents.

Lemma 3.1. The Dinh–Sibony product .p�1S/ f ŒV � of p�1S and ŒV � is well-defined and
equal to p�

1;V
S .

Proof. We need only work locally near V . LetU DU1�U2�U3 be a local chart ofX�Z
and let .x1; x2; x3/ be its coordinate system such that V D ¹x3 D 0º, p1.x1; x2; x3/ D x1 and
p1;V .x1; x2/ D x1. Identify the normal bundle of V over U with U1 � U2 �Cs . We have
A�.x1; x2; x3/ D .x1; x2; �x3/. Let ˆ be a test function with compact support in U . Observe
that ˝

.A�/�.p
�
1S/;ˆ

˛
D

�
S.x1/;

Z
x2;x3

ˆ.x1; x2; �x3/

�
D

�
S.x1/;

Z
x2;x3

ˆ.x1; x2; �x3/

�
;

which is equal to �
S.x1/;

Z
x2;x3

ˆ.x1; x2; x3/

�
D h��p�1;VS;ˆi;

where � is the natural projection from the normal bundle of V to V . This finishes the proof.

Let Xa WD X � ¹aº for a 2 Z.

Proposition 3.2. There exists a countable union A of proper analytic subsets ofZ such
that for a 2 Z nA, we have that Va is smooth and

S f ŒVa� D 0:

Proof. Put V 0a WD V \Xa and recall that Va D p1.V
0
a/. Then, it follows from Theo-

rem 2.4 and Lemma 3.1 that for a outside a countable union A of proper analytic sets of Z
the Dinh–Sibony product .p�1S/ f ŒV � f ŒXa� is zero because the bi-degree of .p�1S/ f ŒV � is
dimX � 1C s > dimX D dimXa. Using the comment right after Theorem 1.2, by enlarg-
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ing A if necessary, one can assume that V is transverse to Xa for a 62 A. This together with
Lemma 2.5 yields

.p�1S/ f ŒV 0a� D p
�
1S f ŒV \Xa� D 0

for such a. Combining this and the fact that density currents associated to S; ŒVa� are naturally
identified with those associated to p�1S and ŒV 0a�, we obtain

S f ŒVa� D 0

for a 62 A. This finishes the proof.

From now on, fix an a 2 Z nA. For simplicity, we write V for Va. Let � W QX ! X be
the blowup of X along V . Denote by QV the exceptional hypersurface of V . Let Qf be the lift of
f to QX ; we then have � ı Qf D f .

Lemma 3.3. There exists a Kähler form Q! on QX such that

T Qf .r; Q!/ � Tf .r; !/CO.1/:

Proof. See [11, Observation 2.5.1] for a proof.

Let QSr be the pull-back of Sr by �. Let QS be the strict transform of S by �. We have

QSr D c
�1
r

Z r

1

d t
t
Qf�ŒDt �:

Using this and Lemma 3.3 yields that any limit current QS 0 of the sequence . QSrk / is a ddc-closed
positive current on QX: This combined with the fact that QSrk ! QS outside QV gives

QS 0 D QS C QS 00;

where QS 00 is a ddc-closed positive current of bi-dimension .1; 1/ supported on QV : Hence, by
a support theorem of Bassanelli [1], QS 00 is a ddc-closed current on QV .

Note that since X is Kähler, so is QX . By the ddc-Lemma, for every closed smooth
.n � 1; n � 1/-form � on QV , where n WD dimX , the quantity h QS 00; �i depends only on the
cohomology class of � . This combined with Serre’s duality shows that the cohomology class
¹ QS 00º of QS 00 in H 1;1. QV / is well-defined.

Let � be a closed form in the cohomology class of Œ QV �. Recall that QV is naturally iso-
morphic to the fiber bundle P .F /; where F is the normal bundle of V in X . Denote by
�P.F / W P .F /! V the natural projection. The restriction of the cohomology class of Œ QV � to
QV is the opposite of the Chern class !OP.F /.1/ of the line bundle OP.F /.1/ which is the dual

of the tautological line bundle of P .F /.

Lemma 3.4. We have
lim
k!1

h QSrk ; �i D 0:

We emphasize that the above lemma is not a direct consequence of the (semi-)continuity
of total tangent classes given in [8, Theorem 4.11] because QSr is not closed.
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Proof. By the First Main Theorem, we have

N Qf .r;
QV /

Tf .r; !/
� h QSr ; �i C

O.1/

Tf .r; !/
;(3.2)

which yields

lim inf
k!1

h QSrk ; �i � 0:(3.3)

By Proposition 3.2 and (2.1), we obtain that ¹ QSº^ � D 0. To simplify the notation, we assume
limk!1 QSrk D QS

0. Thus,

lim
k!1

h QSrk ; �i D h
QS; �i C h QS 00; �i(3.4)

D h QS 00; �i

D

Z
QV

¹ QS 00º ^ .¹ QV ºj QV /

D �

Z
QV

¹ QS 00º ^ !OP.F /.1/:

On the other hand, since

S C �� QS
00
D �� QS C �� QS

00
D lim
k!1

�� QSrk D lim
k!1

Srk D S;

we get �� QS 00 D 0. Since QS 00 is supported on QV � P .F /, we obtain

.�P.F //� QS
00
D 0:(3.5)

By Leray’s decomposition (see [2]), we can write

¹ QS 00º D ��P.F /�0 C �
�
P.F /�1 ^ !OP.F /.1/;

where �j is a cohomology class of bidimension .j; j / on V for j D 0; 1. By (3.5), we obtain

�1 D .�P.F //�¹ QS
00
º D ¹.�P.F //� QS

00
º D 0:

This implies that ¹ QS 00º D ��P.F /�0: It follows particularly that �0 � 0. Combining this with
(3.4) gives

lim
k!1

h QSrk ; �i D �

Z
P.F /

��P.F /�0 ^ !OP.F /.1/ D ��0 � 0:

This together with (3.3) implies the desired equality.

Recall n D dimX . Write

Qf �Œ QV � D
X
z

�
z; Qf ; QV

ız;

where ız is the Dirac mass at z. Recall that V is smooth. We define �z;f;V as follows. Put
�z;f;V WD 0 if z 62 f �1.V /. Consider now z 2 f �1.V /. Let U be a local chart around f .z/
on X and x D .x1; : : : ; xn/ a coordinate system on U such that V D ¹xj D 0 W 1 � j � sº.
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Write f D .f1; : : : ; fn/ in these local coordinates. Let �z;f;V be the smallest number among
the multiplicities of z in the zero divisors of fj for 1 � j � s on f �1.U /. This definition is
independent of the choice of local coordinates. Recall that Nf .r; V / is the counting function
of f with respect to the divisor

P
z �z;f;V ız on C.

Lemma 3.5. We have

(3.6) �z;f;V D �z; Qf ; QV

and
N Qf .r;

QV / D Nf .r; V /:

Proof. The second desired equality is a direct consequence of the first one. We prove
now the first one. Observe that f �1.V / D Qf �1. QV / because � ı Qf D f and ��1.V / D QV .
Hence it is enough to prove (3.6) for z 2 f �1.V /. Consider z0 2 f �1.V /.

Let .U; x/ be a local chart around f .z0/ such that V D ¹xj D 0 W 1 � j � sº. Write
f D .f1; : : : ; fn/ as above. Denote by �z;fj the multiplicity of z in the zero divisor of fj
on f �1.U / for 1 � j � s. We have

�z0;f;V D min
1�j�s

¹�z0;fj º:

Let us now recall how to construct the blowup QX along V on U . Let QU WD ��1.U /. Let
w WD Œw1; : : : ; ws� 2 P s�1. The set QU is the submanifold of U � P s�1 given by the equations

xjw` D x`wj

for 1 � j; ` � s. Observe that Qf .z/ D
�
f .z/; Œf1.z/; : : : ; fs.z/�

�
2 U � P s�1 for z such that

f .z/ 2 U .
The set QU can be covered by s standard local charts which we will describe as follows.

Let QUj be the subset of QU consisting of .x; Œw�/ with wj D 1 and jw`j � c for 1 � ` 6D j � s,
where c is a constant big enough. For c big enough, the local charts QUj cover QU . Since the
role of QUj is the same, we now consider only QUs . The natural induced coordinates on QUs are
.x; w1; : : : ; ws�1/ and Qf D .f; f1

fs
; : : : ; fs�1

fs
/ on Qf �1. QUs/. Hence, we haveˇ̌̌̌
fj

fs

ˇ̌̌̌
� c

on Qf �1. QUs/ for 1 � j � s � 1. The hypersurface QV is given by xs D 0 on QUs . We deduce that
if Qf .z0/ 2 QUs; then we must have

�z0;f;V D �z0;fs D �z0; Qf ; QV
:

This finishes the proof.

End of proof of Theorem 1.2. Let a 2 Z nA as above. By Lemmas 3.4, 3.5 and (3.2),
we get

0 � lim inf
r!1

Nf .r;Va/

Tf .r; !/
� lim inf

k!1

Nf .rk;Va/

Tf .rk; !/
D lim inf

k!1

N Qf .rk;
QVa/

Tf .rk; !/
D 0:

This finishes the proof.
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4. Proof of Theorem 1.1

LetX;L; f;E be as in the statement of Theorem 1.1. By using a basis ofE; we obtain an
embedding from X to a complex projective space. So from now on, we can assume X D Pn

and L is the hyperplane line bundle of X . This reduction is not essential but it simplifies some
computations.

Consider first the case where n � 2: Let TX be the tangent bundle ofX . Let �X WD P .TX/
be the projectivization of TX and � W �X ! X the natural projection. Let �f be the lift of f to �X
defined by �f .z/ WD .f .z/; Œf 0.z/�/; where f 0 is the derivative of f and z 2 C. Hence �f is
an entire curve in �X . We also have �Sr ;�cr for �f as Sr ; cr for f .

Let O �X .1/ be the dual of the tautological line bundle of �X . Let �! be a Kähler form on�X such that �! D ! C c!O �X .1/, where c is a strictly positive constant and !O �X .1/ is a smooth
Chern form of O �X .1/ whose restriction to each fiber of � is strictly positive. Recall the follow-
ing equality.

Lemma 4.1. We have

T �f .r;�!/ D Tf .r; !/C o.Tf .r; !//(4.1)

as r !1 outside a set of finite Lebesgue measure of R:

Proof. The desired assertion is equivalent to the equality

T �f .r;O �X .1// D o.Tf .r; !//:
This is the tautological inequality of McQuillan [13] which is in fact a consequence of the
lemma on logarithmic derivative. For the readers’ convenience, we briefly recall how to prove it.

Let .�j / be a partition of unity of X subordinated to a finite covering .Uj / of X , where
Uj are local charts on X . Trivialize �X � Uj � Pn�1 on Uj : Let xj D .xj1; : : : ; xjn/ be the
coordinates on Uj . Write f .z/ D .fj1; : : : ; fjn/ accordingly for z 2 f �1.Uj /: Put

hj .xj ; v/ WD �j .xj /

nX
lD1

jvl j
2;

where Œv� 2 Pn�1. Thus h WD
P
j hj is a Hermitian metric on O �X .1/. This combined with the

Lelong–Jensen formula gives

T �f .r;OP.TX .1// D

Z
àDr

log
X
j

�j .f /

nX
`D1

jf 0j`j
2 d�r CO.1/:

Standard estimates in proofs of the lemma on logarithmic derivatives (see [14, Lemma 4.7.1])
show that the last integral is o.Tf .r; !// as r !1 outside a set of finite Lebesgue measure.
This finishes the proof.

We fix a sequence r WD .rk/ 2 RC converging to1 such that �Srk converges to a closed
positive current �S as k !1 and (4.1) holds for r D rk . For a D .a0; : : : ; an/ 2 CnC1 n ¹0º,
put �a.x/ WD

Pn
jD0 ajxj , where x D Œx0 W : : : W xn� 2 X D Pn. Identify P .E/ with Pn via

a$ �a: Denote by Da the hyperplane generated by �a. Let �j W �X � P .E/ be the natural
projections to its components for j D 1; 2.
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Let �Da be the set of .x; Œv�/ 2 �X for x 2 Da and v 2 TxX n ¹0º tangent to Da. Let U
be a local chart of X over which L is trivial. We identify �j with functions on U and d�j with
1-forms on U (hence a function on TU ). Put

H1 WD
®
.x; Œv�; Œa�/ 2 �X � Pn W �a.x/ D 0

¯
and

H2;U WD
®
.x; Œv�; Œa�/ 2 .�X jU / � Pn W hd �a.x/; vi D 0

¯
:

Let U 0 be another local chart similar to U . Trivialize L on U 0. Let � 0a be the trivializa-
tion of �a on U 0. We have � 0a D g�a for some nowhere vanishing holomorphic function g
on U \ U 0 which is independent of a. Thus d � 0a D d.g�a/ D dg�a C g d �a: We deduce
that H1 \H2;U D H1 \H2;U 0 on ��11

�
T.U \ U 0/

�
. Gluing H1 \H2;U together, we obtain

a well-defined analytic subset V of �X � P .E/.
Let pj;V be the restriction of pj to V for j D 1; 2. We have:

Lemma 4.2. The set V is a smooth submanifold of codimension 2 of X � P .E/, the
map p1;V is a submersion and the fiber of p2;V at a 2 P .E/ is �Da.

Proof. The fact that the fiber of p2;V at a 2 P .E/ is �Da is clear from the construction.
It is sufficient to check the remaining desired assertions for x D Œx0 W : : : W xn� in a local chart
of X D Pn. Hence, consider the local chart U WD ¹x 2 Pn W x0 D 1º. We see that

V D

´
a0 C

nX
jD1

ajxj D 0;

nX
jD1

aj vj D 0

µ
:

For x; Œv� fixed, these two defining equations of V give two hyperplanes in P .E/ which are
transverse to each other because n � 2. So V is smooth. Let Wj0 be the local chart of P .E/
containing Œa� with aj0 D 1. Consider first the case where j0 6D 0. Observing that V is the set
of .x; Œv�; Œa�/ such that xj0 D �a0 �

P
j 6Dj0

ajxj and vj0 D �
P
j 6Dj0

aj vj : So the map p1;V
can be identified with the map�
a0; : : : ; aj0�1; aj0C1; : : : ; an; Œv1; : : : ; vj0�1; vj0C1; : : : ; vn�; x1; : : : ; xj0�1; xj0C1; : : : ; xn

�
7!

�
x1; : : : ; xj0�1;�a0 �

X
j 6Dj0

ajxj ; xj0C1; : : : ; xn

�
;

which is of maximal rank. The case where j0 D 1 is treated similarly by observing that we
have .a1; : : : ; an/ 6D 0 if .x; Œv�; Œa�/ 2 V and a0 D 1. This finishes the proof.

Lemma 4.2 combined with Proposition 3.2 applied to �X in place of X and Z WD P .E/
gives the following:

Corollary 4.3. There exists a countable union A of proper analytic subsets of P .E/
such that for a 2 P .E/ nA, we have that�S f Œ�Da� D 0:

From now on fix a 2 P .E/ nA and write D; �D for Da; �Da to simplify the notation. Let
� W QX ! �X be the blowup of �X along �D. Let QD be the exceptional divisor of that blowup.
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Lift �f to a curve Qf in QX . Let Q! be a Kähler form on QX such that

T Qf .r; Q!/ � T �f .r;�!/CO.1/;
see Lemma 3.3. Let QSr be the pull-back of �Sr by �. Let QS be the strict transform of �S by �. Let
� be a closed form in the cohomology class of QD. By Lemma 3.4 applied to �S; �D, we get

(4.2) lim
k!1

h QSrk ; �i D 0:

Lemma 4.4. We have

h' QD; ddc QSri D h'D; ddcSri C c�1r O.1/

as r !1:

Proof. Since ' QD is a potential of QD; we get

j' QD. Qx/ � log dist. Qx; QD/j . 1:

Thus
lim
k!1

hlog dist. Qx; QD/; ddc QSrk i D 0:

Using the fact that .� ı �/. QD/ D D gives

jlog dist. Qx; QD/ � log dist.� ı �. Qx/;D/j . 1:

We also have .� ı �/� QSr D Sr because Qf is a lift of f to QX . Recall that the mass of ddc QSr
is O.1/c�1r as r !1. It follows that

hlog dist. Qx; QD/; ddc QSrk i D hlog dist.x;D/; .� ı �/�ddc QSrk i CO.1/c
�1
r ;

which is equal to hlog dist.x;D/; ddcSrk i CO.1/c
�1
r as r !1. The proof is finished.

Write
f �ŒD� D

X
z

�z;f;Dız; Qf �Œ QD� D
X
z

�
z; Qf ; QD

ız :

For z 2 C, let �
z; �f ;�D be the multiplicity of z with respect to �f , �D as in the setting of

Lemma 3.5. Applying (3.6) to �f ; �D; QD; we obtain �
z; �f ;�D D �z; Qf ; QD .

In a local coordinates .U; x/ of X; write

f .z/ D .f1.z/; : : : ; fn.z//:

Let f 0j be the derivative of fj for 1 � j � n. For z0 2 C; let �z0;f 0 be the smallest non-
negative integer such that .z � z0/�kf 0j .z/ for 1 � j � n are holomorphic functions which
are not simultaneously zero at z0: This definition is independent of the choice of local charts.
Thus the current Rf WD

P
z02C �z0;f 0ız0 is well-defined. Observe that the support of f�Rf

consists of at most a countable number of points.

Lemma 4.5. For z 2 Suppf �D, we have

(4.3) �z;f;D � 1 D �z; �f ;�D C �z;f 0 D �z; Qf ; QD C �z;f 0 :
Consequently, for D with D \ Suppf�Rf D ¿, there holds

N Qf .r;
QD/ D N �f .r; �D/ D Nf .r;D/ �N Œ1�

f
.r;D/:
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Since Suppf�Rf is an at most countable set, the set ofD for whichD \ Suppf�Rf 6D ¿
is a countable union of hyperplanes in P .E/.

Proof. We already proved the second inequality of (4.3). It remains to prove the first
one. Consider now z0 2 Suppf �ŒD�. Thus �z0;f;D � 1.

Let .U; x/ be a local chart around f .z0/ such that x D .x1; : : : ; xn/ and D D ¹x1 D 0º.
We then obtain an induced coordinate system .x; v/ on TX jU D U �Cn and �D is given by
x1 D v1 D 0 there. Write f D .f1; : : : ; fn/ in these coordinates. Hence f �ŒD� is the divisor
generated by f1 on f �1.U /. In these coordinates, we have P .TU/ D U � Pn�1.

Put f 0 WD .f 01; : : : ; f
0
n/. We have �f D .f; Œf 0�/ 2 U � Pn�1 which is a holomorphic

curve. Without loss of generality, since .z � z0/
��z0;f 0f 0j .z/ is not zero at the same time at z0

for 1 � j � n, we can assume that .z � z0/
��z0;f 0f 0n.z/ is not zero at z D z0.

Using standard local charts on Pn�1, we can cover U � Pn�1 by a finite number of local
charts. Let �U be the local chart with vn D 1. So the coordinates on �U are .x; v1; : : : ; vn�1/
and �D is still given by x1 D v1 D 0. In these coordinates,

�f D .f; g1; : : : ; gn�1/; where gj WD
f 0j

f 0n
; 1 � j � n � 1:

Observe that the order of g1 at z0 is .�z0;f;D � 1 � �z0;f 0/ < �z0;f;D . Thus,

�
z0; �f ;�D D �z0;f;D � 1 � �z0;f 0 :

So (4.3) follows. This finishes the proof.

Proposition 4.6. For D with D \ Suppf�Rf D ¿, we have

1 �
N
Œ1�

f
.r;D/

Tf .r; !/
D h QSr ; �i C

O.1/

Tf .r; !/
.r !1/:

Proof. Starting from the First Main Theorem and using Lemma 4.1, we get

N Qf .r;
QD/

Tf .r; !/
D h QSr ; �i C h' QD; ddc QSri

D h QSr ; �i C h'D; ddcSri CO.1/ŒTf .r; !/�
�1 (use Lemma 4.4)

D h QSr ; �i C
Nf .r;D/

Tf .r; !/
� 1C

O.1/

Tf .r; !/
(use First Main Theorem)

D h QSr ; �i C
N Qf .r;

QD/CN
Œ1�

f
.r;D/

Tf .r; !/
� 1C

O.1/

Tf .r; !/
(use Lemma 4.5);

which yields the desired equality.

End of the proof of Theorem 1.1 when n � 2. Recall that we reduced the problem to the
case where X D Pn and L is the hyperplane line bundle. We also have fixed a hyperplane D
onX such that the tangent current of �S along �D is zero and SuppD \ Suppf�Rf D ¿. We had
also shown that the set of such D contains the complement of a countable union of proper
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analytic subsets of P .E/. By Proposition 4.6 and (4.2), one gets

Tf .rk; !/ �N
Œ1�

f
.rk;D/ D o.Tf .rk; !//

as k !1: Hence ıŒ1�
f
.D/ D 0. This finishes the proof.

Finally, to finish the proof of Theorem 1.1, we treat the remaining case where n D 1, i.e.,
X D P1. In this case, Theorem 1.1 is a direct consequence of the following general result.

Lemma 4.7. Let f W C ! Pn be a non-constant holomorphic curve. Then there exists
a countable union A of proper linear subspaces of the space of hyperplanes of Pn such that
for any hyperplane D 62 A, we have

ı
Œn�

f
.D/ D 0:

Proof. Without loss of generality, we can assume that f is linearly non-degenerate
because otherwise we can consider the smallest linear subspace of Pn containing f .C/. Let
.Dj /

q
jD1 be a family of hyperplanes in general position. By Cartan’s Second Main Theorem [4],

we get the following defect relation:

(4.4)
qX
j

ı
Œn�

f
.Dj / � nC 1:

For any positive number k, set Ak WD ¹D W ı
Œn�

f
.D/ � 1

k
º. It is clear that the desired equality

holds true for all D …
S1
kD1Ak . Thus the problem reduces to proving that for each integer

number k, the set Ak is contained in a countable union of proper linear subspaces of Pn.
Suppose on the contrary that this is not the case for some k. For any positive integer q,

we now construct a family of hyperplanes ¹Diº1�i�q � Ak in general position in Pn.
We first taking a divisor D0 2 Ak n ¹0º and consider the linear subspace E0 of E gener-

ated by D0. Since E0 is a proper linear subspace of Pn, it follows that Ak n E0 is nonempty.
Take D1 2 Ak n E0 and let E1 be the vector space generated by D0;D1. Again since E1 is
a linear space, Ak n E1 is not empty and we can pick in this set a hyperplane D2. Iterating this
process, we obtain at the .q C 1/st step a family ¹Diº0�i�q � Ak of q C 1 divisors in general
position in Pn. Applying (4.4) to this family gives

nC 1 �
q

k
:

Letting q !1 yields a contradiction. This finishes the proof.
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