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Abstract1

In this paper, we study rings with the property that every cyclic module is almost-2

injective (CAI). It is shown that R is an Artinian serial ring with J (R)2 = 0 if and3

only if R is a right CAI-ring with the finitely generated right socle (or I-finite) if and 14

only if every semisimple right R-module is almost injective, RR is almost injective5

and has finitely generated right socle. Especially, R is a two-sisded CAI-ring if and6

only if every (right and left) R-module is almost injective. From this, we have the7

decomposition of a CAI-ring via an SV-ring for which Loewy (R)≤ 2 and an Artinian8

serial ringwhose squared Jacobson radical vanishes.We also characterize aNoetherian9

right almost V-ring via the ring for which every semisimple right R-module is almost10

injective.11
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1 Introduction14

Throughout this paper, all rings R are associative with unit and all modules are right15

unital. Let M and N be right R-modules. The module M is said to be almost N -16

injective (or almost injective respect to N ) if, for every submodule N1 of N and for17

every homomorphism f : N1 → M, either there is a homomorphism g : N → M18

such that f = g ◦ ι, i.e., the diagram (1) commutes, or there is a nonzero idempotent19

π ∈ End(N ) and a homomorphism h : M → π(N ) such that h ◦ f = π ◦ ι, i.e.,20

the diagram (2) commutes, where ι : N1 → N is the embedding of N1 into N . The21

module M is said to be almost injective if it is almost injective with respect to every22

right R-module.23

(1)

0 N1 N

M

✲ ✲
ι

❄

f

♣

♣

♣

♣

♣

♣

♣

✠

g

0 N1 N

M π(N )

✲ ✲
ι

❄

f

❄

π

✲
h

(2)24

This concept was defined by Baba inmany years ago, however, many related results25

were obtainned in recent years, for examples, see [1–8], ... Of course, injective⇒26

almost injective, but the converse isn’t true, in general. It is proved that a ring R is27

semisimple if and only if every right (left) R-module is injective and then a well-28

known result of Osofsky said that it is equivalent to every cyclic right (left) R-module29

is injective. In [4], the authors consider the structure of a ring R over which every30

module is almost injective. It is natural to ask how is the structure of a ring R for which31

every cyclicmodule is almost injective.We continueprove that the class of ringswhose32

all cyclic right R-modules are almost injective contains the class of Artinian serian33

rings with squared Jacobson radical vanishes. So Theorem 1 and it’s Corollaries from34

[4] are followed from our result, i.e., in cases of if Soc (RR) is finitely generated35

(or R is semiperfect, or RR is extending, or R is of finite reduced rank), then two36

above classes and the class of the rings whose all right R-modules are almost injective37

coincide. Especially, a ring R is two-sided CAI if and only if every (right and left) R-38

module is almost injective. From this result, we have the decomposition of a CAI-ring39

via an SV-ring for which Loewy (R) ≤ 2 and an Artinian serial ring whose squared40

Jacobson radical vanishes.41

Recall that R is a right V-ring if every simple right R-module is injective. In [3],42

the authors consider a generalization of a V-ring, that is almost V-ring, i.e., if every43

simple right R-module is almost injective. A module M is called simple-extending44

(semisimple-extending, resp.) if the complement of any simple (semisimple, resp.)45

submodule of M is a direct summand of M . Now we write the class 1 stands for46

all rings R for which every simple module is almost injective, i.e., R is an almost47

V-ring, the class 2 stands for all rings R for which every semisimple module is almost48

injective, the class 3 stands for all rings R for which every module is simple-extending.49

In [3], the authors proved that the class 1 and class 3 coincides (see [3], Theorem50

2.9). It is also proved that the intersection of the class 1 and the class of all right51

Noetherian rings is equal to the class 2 (see [5], Theorem 2.4). Our aim is to consider52
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the weaker conditions of Noetherian, that are having finite Goldie dimesion or finitely53

generated right socle together the class 1 will be replaced by class 2 and we also54

obtain a characterization of a right Noetherian right almost V-ring. From this, we give55

back some characterizations of an Artinian serial ring with squared Jacobson radical56

vanishes via class 2.57

For a submodule N of M , we use N ≤ M (N < M) to mean that N is a submodule58

of M (respectively, proper submodule), and we write N ≤e M to indicate that N is an59

essential submodule of M . A module is called a CS-module, or extending, provided60

every complement submodule is a direct summand. A module is called uniform if the61

intersection of any two nonzero submodules is nonzero. A ring R is called I-finite if it62

contains no infinite orthogonal family of idempotents. Let M be an arbitrary module.63

Recall that Z(M) = {m ∈ M|mI = 0 for some I ≤e RR} is called the singular64

submodule of M , and if Z(M) = M (Z(M) = 0, resp.), then M is called singular65

(nonsingular. resp.) (see [9]). The Goldie torsion (or second singular) submodule of66

M denoted by Z2(M) satisfies Z(M/Z(M)) = Z2(M)/Z(M). The (Goldie) reduced67

rank of M is the uniform dimension of M/Z2(M). Every module of finite uniform68

dimension is of finite reduced rank. Let M, N be arbitrary modules. M is called69

essentially N -injective if for every embedding ι : A→ N and every homomorphism70

f : A → M such that Ker f ≤e A, there exists a homomorphism g : N → M such71

that ι ◦ g = f . The module M is said to be essentially injective if it is essentially72

N -injective with each N ∈ Mod-R. Moreover, R is a right SC-ring if every singular73

R-module is continuous. M is called a uniserial module, if the set of submodules of74

M is linear ordered. A ring R is called semiperfect in case R/J (R) is semisimple75

and idempotents lift modulo J (R). It is equivalent to every its finitely generated right76

(left) R-module has a projective cover. A ring R is called a right perfect ring in case77

R/J (R) is semisimple and J (R) is right T-nilpotent. It is equivalent to every its right78

R-module has a projective cover.79

By the Loewy series of a module MR we mean the ascending chain80

0 ≤ Soc1(M) = Soc(M) ≤ · · · ≤ Socα(M) ≤ Socα+1(M) ≤ . . . ,81

where82

Socα(M)/Socα−1(M) = Soc(M/Socα−1(M))83

for every nonlimit ordinal α and84

Socα(M) =
�
β<α

Socβ(M)85

for every limit ordinal α. Denote by L(M) the submodule of the form Socξ (M),86

where ξ stands for the least ordinal for which Socξ (M) = Socξ+1(M). A module M87

is semiartinian if and only if M = L(M). In this case, ξ is called the Loewy length of88

themodule M and is denoted byLoewy (M). A ring R is said to be right semiartinian if89
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the module RR is semiartinian. In this case, every nonzero (principal) right R-module90

has a nonzero socle and a ring R is right perfect if and only if it is left semiartinian and91

I-finite. The class of right semiartinian right V-rings, which we call right SV-rings.92

A ring R is called right nonsingular if Z(RR) = 0, right serial if RR is a direct93

sum of uniserial modules. In this paper, we denote by Rad(M), Soc(M), E(M), and94

length(M) the Jacobson radical, the socle, the injective hull and the composition length95

of M , respectively. The full subcategory of Mod-R whose objects are all R-modules96

subgenerated by M is denoted by σ [M].97

Left-sided for these above notations are defined similarly. All terms such as98

“artinian”, “serial”, ... when applied to a ring will apply all both sided. For any terms99

not defined here the reader is referred to [9–13].100

2 On Rings with Cyclic Almost-Injective Modules101

Firstly, we include the following known result related to finite decomposition of102

almost-injective modules for the sake of completeness.103

Lemma 2.1 [8, Lemma 1.14] Let N , V1, V2, . . . ,Vn be a family of modules over a104

ring R. Then M =
�n
i=1 Vi is almost N-injective if and only if every Vi is almost105

N-injective.106

The second author gave the following problem in [1]: describe the rings over which107

every cyclic right R-module is almost-injective. In this section, we will study on108

this problem and give some characterizations of rings for which every cyclic right109

R-module is almost-injective.110

Definition 2.2 A ring R is called right CAI, if every cyclic right R-module is almost-111

injective. If R is a right and left CAI-ring, then R is called a CAI-ring.112

Example 2.3 (1) Every semisimple ring is CAI.113

(2) Let F be a field. Then, the ring R =

�
F F

0 F

�
is a right CAI-ring.114

Firstly, we give the following key lemma:115

Lemma 2.4 Let R be a right CAI-ring. If M is a right R-module, then M/A is a116

semisimple module for every essential submodule A of M.117

Proof Let A be an essential submodule of M . We show that M/A is a semisimple118

module. By [11, Corollary 7.14], it is necessary to prove that every cyclic right R-119

module in the category σ [M/A] is M/A-injective. In fact, let N be a cyclic right120

R-module (in the category σ [M/A]) and f : A�/A→ N be a homomorphism from121

an arbitrary submodule A�/A of M/A to N . We show that f is extended to M/A.122

Call π1 : A
� → A�/A, π2 : M → M/A the natural projections and ι1 : A

� → M ,123

ι2 : A
�/A→ M/A the inclusions. We consider the homomorphism f ◦π1 : A

� → N .124

We show that f ◦ π1 is extended to M . Otherwise, since N is almost-injective, there125
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exist an idempotent π of End(M) and a homomorphism h : N → π(M) such that126

π ◦ ι1 = h ◦ ( f ◦ π1).127

A� M

N π(M)

✲
ι1

❄

f ◦π1

❄

π

✲
h

128

Then, we have129

π(A) = (π ◦ ι1)(A) = (h ◦ f )(π1(A)) = 0.130

It means that A ≤ Ker(π) = (1 − π)(M), and so (1 − π)(M) is essential in M .131

This gives a contradiction. Thus, there is a homomorphism g : M → N such that132

g ◦ ι1 = f ◦ π1.133

0 A� M

N

✲ ✲
ι1

❄

f ◦π1

♣

♣

♣

♣

♣

♣

♣

✠

g
134

We have135

g(A) = (g ◦ ι1)(A) = ( f ◦ π1)(A) = 0136

It shows that there is a homomorphism g� : M/A→ N such that g = g� ◦ π2. From137

this gives138

f ◦ π1 = g ◦ ι1 = (g
� ◦ π2) ◦ ι1 = g

� ◦ (π2 ◦ ι1) = g
� ◦ (ι2 ◦ π1)139

It follows that f = g� ◦ ι2. Thus, N is M/A-injective. ��140

Corollary 2.5 Every right CAI-ring is a right SC-ring.141

From Lemma 2.4 and [14], we have the following fact:142

Fact 2.6 If R is a right CAI-ring, then143

1. J(R) ≤ Soc(RR).144

2. J(R)2 = 0.145

3. R/Soc(RR) is a right Noetherian ring.146

Theorem 2.7 The following statements are equivalent for a ring R:147

1. R is an Artinian serial ring with J (R)2 = 0.148

2. R is a right CAI-ring and R/J (R) is I-finite.149

3. R is a I-finite right CAI-ring.150

4. R is a right CAI-ring with the finitely generated right socle.151
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Proof (1)⇒ (2)⇒ (3) are obvious.152

(3) ⇒ (4) Suppose that R is a I-finite right CAI-ring. Then there exist primitive153

idempotents e1, e2 . . . , en such that 1 = e1 + e2 + · · · + en . Note that all ei R are154

indecomposable modules. Since R is a right CAI-ring, by [7, Lemma 3.1, Theorem155

3.5], then ei R is uniform and End(ei R) is local for all i ∈ {1, 2, . . . ,n}. It follows156

that R is a semiperfect ring. We deduce, from Fact 2.6, that R is a semiprimary ring157

with J (R)2 = 0. Moreover, inasmuch as ei R is uniform which implies that Soc(ei R)158

is simple for all i ∈ {1, 2, . . . , n}. Thus, Soc(RR) is finitely generated.159

(4)⇒ (1)Assume that R is a right CAI-ring with the finitely generated right socle.160

Then, R is a rightNoetherian ringbyFact 2.6.Wecanwrite R = e1R⊕e2R⊕· · ·⊕en R,161

where e1, e2 . . . , en are primitive idempotents such that 1 = e1 + e2 + · · · + en and162

all right ideals ei R are uniform. By the proof of (3) ⇒ (4), R is a semiprimary ring163

with J (R)2 = 0. We deduce that R is a right Artinian ring. Note that (R ⊕ R)R is an164

extending right R-module by [7, Remark 3.2]. It follows that E(RR) is a projective165

right R-module by [15, Theorem 3.3].166

Next, we show that ei R is either simple or injective with the length of two. In167

fact, for any nonzero submodule U of ei R, then ei R/U is a semisimple module by168

Lemma 2.4. Moreover, ei R/U is an indecomposable module. We deduce that ei R is169

either simple or length of two. On the other hand, we have that E(ei R) is a uniform170

projective module and obtain that E(ei R) ∼= e j R for some j ∈ {1, 2, . . . , n}. Now,171

we assume that ek R is the module with length of two with k ∈ {1, 2, . . . , n}. Then172

E(ek R) is indecomposable and projective. Therefore length (E(ek R)) ≤ 2, and so173

E(ek R) = ek R, i.e., ek R is injective. Thus, R is anArtinian serial ringwith J (R)
2 = 0174

by [11, 13.5]. ��175

Corollary 2.8 The following statements are equivalent for a ring R.176

1. R is an Artinian serial ring with J (R)2 = 0.177

2. R is a right CAI-ring with Soc(RR)/J (R) is finitely generated.178

Example 2.9 Consider the ring R consisting of all eventually constant sequences of179

elements from F2. Clearly, R is a CAI-ring and Soc(R) is not finitely generated.180

Lemma 2.10 If R is a right CAI-ring, then181

1. R/Soc(RR) is semisimple.182

2. R is a right semi-Artinian ring.183

Proof (1) Assume that R is a right CAI-ring. One can check that R/Soc(RR) is also184

a right CAI-ring. From Fact 2.6 and Theorem 2.7 gives that R/Soc(RR) is a right185

Artinian ring. Note that R/Soc(RR) is a right V-ring by [3, Proposition 2.3]. We186

deduce that R/Soc(RR) is semisimple.187

(2) is followed from (1). ��188

Proposition 2.11 Let R be a right CAI-ring. Then the followings hold:189

1. Every direct sum of uniform right R-modules is extending.190

2. Every uniform right R-module has length at most 2.191

3. RR = (⊕i∈I Li )⊕ N, where Li is a local injective module of length two for every192

i ∈ I , J(N ) = 0 and End(N ) is a right SV -ring.193
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Proof (1) From Lemma 2.10, R is a right semiartinian ring. By [11, 13.1], we need194

to prove that H1 ⊕ H2 is an extending module for any uniform modules H1 and195

H2. In fact, let H1 and H2 are uniform right R-module. Since H1 and H2 are196

uniform with essential socles, Soc(H1⊕ H2) is finitely generated and essential in197

H1⊕H2. Inasmuch as R is a right CAI-ring, we have every simple right R-module198

is almost-injective, and so H1 ⊕ H2 is extending by [3, Theorem 2.9, Corollary199

2.13.].200

(2) is followed by (1) and [11, 13.1].201

(3) By Zorn’s Lemma, there is a maximal independent set of submodules {Li }i∈I of202

RR such that Li is a local injective module of length two for every i ∈ I . Since by203

Fact 2.6(3), R/Soc(RR) is a right Noetherian ring, then I is a finite set. Then, we204

have a decomposition RR = (⊕i∈I Li )⊕ N for some right ideal N of R. Suppose205

that J (N ) �= 0. From Lemma 2.10(2) gives J (N ) containing a simple submodule206

S. Let N0 be a complement of the submodule S in the module N . It follows that207

N/N0 is a uniform nonsimple module whose socle is isomorphic to the module S.208

Thus, it follows from (1) and [3, Theorem 3.1] that N/N0 is a projective module209

and length of N/N0 is equal to two. Hence N = N0 ⊕ L, where L is a local210

injective module of length two, which contradicts the choice of the set {Li }i∈I .211

We deduce that J (N ) = 0.One can check that the module N can be considered as212

a projective R/J (R)-module. By [3, Proposition 2.3] and Lemma 2.10, we have213

R/J (R) is a right SV -ring. It follows from [16, Theorem 2.9] that End(N ) is a214

right SV -ring.215

��216

For two-sided CAI-rings, we have:217

Theorem 2.12 The following statements are equivalent for a ring R:218

1. Every R-module is almost injective.219

2. Every finitely generated R-module is almost injective.220

3. R is a C AI -ring.221

4. R is a direct product of an SV -ring for which Loewy (R) ≤ 2 and an Artinian222

serial ring whose squared Jacobson radical vanishes.223

Proof (1)⇒ (2)⇒ (3) are obvious.224

(3)⇒ (4) By Proposition 2.11, there exists an idempotent e ∈ R such that RR =225

eR ⊕ (1 − e)R, where eR = ⊕i∈I Li , Li is a local injective module of length two226

for every i ∈ I , J ((1 − e)R) = 0 and (1 − e)R(1 − e) is a right SV -ring. One can227

check that Hom(eR, (1 − e)R) = 0 and J (R) = J (⊕i∈I Li ). Then eR(1 − e) is a228

submodule of R R and eR(1 − e) ≤ J (R). It follows, from the left-sided analogue229

of Proposition 2.11(3), that there exists a set of orthogonal idempotents { f1, . . . , fn}230

such that eR(1 − e) = J (R f1 ⊕ · · · ⊕ R fn) and R fi is a local injective module of231

length two for every 1 ≤ i ≤ n. Consider the two-sided Peirce decomposition of the232

ring R corresponding to the decomposition 1 = e + (1− e)233

R =

�
eRe eR(1− e)

0 (1− e)R(1− e)

�
.234
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Then for every 1 ≤ i ≤ n the following equalities hold235

fi =

�
eri e emi (1− e)

0 (1− e)si (1− e)

�
,236

(eri e)
2 = eri e, ((1− e)si (1− e))

2 = (1− e)si (1− e)237

and238

emi (1− e) = eri emi (1− e)+ emi (1− e)si (1− e).239

Let S := (1 − e)R(1 − e) and gi := (1 − e)si (1 − e) for every 1 ≤ i ≤ n. Fix an240

arbitrary index 1 ≤ i ≤ n.We have that241

J (R) fi =

�
eJ (R)e eR(1− e)

0 0

��
eri e emi (1− e)

0 gi

�
≤

�
0 eR(1− e)

0 0

�
242

and obtain eJ (R)eri e = 0.On the other hand, for every j ∈ J (R) andm ∈ eR(1− e)243

we have244

�
eje em(1− e)

0 0

��
eri e emi (1− e)

0 gi

�

=

�
0 ejemi (1− e)+ emgi
0 0

�

=

�
0 eje(eri emi (1− e)+ emi gi )+ emgi
0 0

�

=

�
0 e( j emi + m)gi
0 0

�
.

245

We deduce that J (R) fi ≤

�
0 eRgi
0 0

�
. Since J (R) fi �= 0, then gi �= 0. Inasmuch246

as the idempotent fi + J (R) ∈ R/J (R) is primitive and J (R)
2 = 0 we have eri e = 0247

and eJ (R)eR(1− e) = 0. Consequently,248

�
0 eR(1− e)

0 0

�
=

n�
i=1

J (R) fi =

n�
i=1

�
0 eR(1− e)gi
0 0

�
.249

It means that eR(1 − e) = ⊕ni=1eR(1 − e)gi and eR(1 − e)(1 −
�n
i=1 gi ) = 0. If,250

for some primitive idempotent g0 of the ring S, the condition g0S ∼= gi S holds, where251

1 ≤ i ≤ n, then it can readily be seen that Mg0 �= 0. Thus the right ideals252

n
⊕
i=1
gi S and

�
(1− e)−

n�
i=1

gi

�
S253
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of S do not contain isomorphic to simple S-submodules. Since S is a semiartinian254

regular ring, theng =
�n
i=1 gi is a central idempotent of S and the ring R is isomorphic255

to the direct product of the regular ring (1− e − g)S and the ring256

R� =

�
eRe eR(1− e)

0 gR

�
.257

Inasmuch as eR = eRe + eR(1 − e) is a module of finite length and for every258

1 ≤ i ≤ n, the idempotent gi ∈ (1− e)R(1− e) is primitive, we obtain that the ring259

R� is Artinian. Thus the ring R� is Artinian serial and J (R�)2 = 0 by Theorem 2.7.260

From Proposition 2.11, we have (1 − e − g)S is an SV -ring. Thus, the ring R is a261

direct product of an SV -ring for which Loewy (R) ≤ 2 and an Artinian serial ring262

whose squared Jacobson radical vanishes.263

(4)⇒ (1) is followed by Theorem 2.7 and [4, Proposition 2.6].264

��265

Theorem 2.13 The following statements are equivalent for a ring R:266

1. R is a right hereditary CAI-ring.267

2. R is a right nonsingular C AI -ring.268

3. R is a direct product of an SV -ring for which Loewy (R) ≤ 2 and a finite direct269

product of rings of the following form:270

�
Mn1(T ) Mn1×n2(T )
0 Mn2(T )

�
,271

where T is a skew-field.272

Proof (1)⇒ (2) is obvious.273

(2)⇒ (3) is followed by Theorem 2.12 and [17, Theorem 8.11].274

(3)⇒ (1) is followed by [18, Proposition 9.6].275

��276

Corollary 2.14 Any I-finite right nonsingular right CAI-ring R is isomorphic to a finite277

direct product of rings of the following form:278

�
Mn1(T ) Mn1×n2(T )
0 Mn2(T )

�
,279

where T is a skew-field.280

For two-sided CAI-rings, we obtain the important result, that is, they are also the281

rings for which every (right and left) R-module is almost injective. So, it is natural to282

ask the following question:283

Question. Does the class of rings whose all right R-modules are almost-injective and284

class of all right CAI-rings coincide?285

It is well-known that if M a non-singular indecomposable almost-injective right286

R-module, then End(M) is an integral domain and every nonzero endomorphism of287
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M is a monomorphism. Moreover, if M is a cyclic module over a right Artinian ring,288

then End(M) is a skew-field. The following result is obvious.289

Lemma 2.15 Let R be a right Artinian ring and e be a primitive idempotent of R. If290

eR is a non-singular almost-injective right R-module, then eRe is a skew-field.291

Lemma 2.16 Let R be a I-finite right nonsingular right CAI-ring and e, e� be any two292

primitive idempotents in R with D = eRe and D� = e�Re�.293

1. Then eRe� is a left vector space over D with the dimension less than or equal to 1.294

2. If z is a non-zero element of eRe�, there exists embedding σ : D� → D satisfying295

the property ze�be� = σ(e�be�)z for all e�be� ∈ D�.296

3. If dimD(eRe
�) = 1, then σ is an isomorphism.297

Proof (1) First we assume that eRe� is non-zero with D = eRe and D� = e�Re�. Take298

any non-zero element ere� in eRe�. We show that D(ere�) = D(eRe�). In fact, let ese�299

be an arbitrary nonzero element of eRe�. Consider the mapping φ : e�R → ere�R300

defined by φ(x) = er x for all x ∈ e�R. One can check that φ is a well-defined301

epimorphism. Since e�R is an indecomposable almost-injective right R-module, e�R302

is uniform. Assume that Ker(φ) is nonzero. Then e�R/Ker(φ) is a singular module.303

But, Im(φ) is nonsingular by the nonsingularity of R, which gives a contradiction. It304

implies Ker(φ) = 0. It means that ere�R ∼= e�R. Similarly, ese�R ∼= e�R. We deduce305

that there exists an R-isomorphism σ : ere�R → ese�R satisfying σ (ere�) = ese�.306

Call the homomorphism γ : ere�R→ eR such that γ (x) = σ (x) for all x ∈ ere�R.307

Since R is a right CAI-ring, eR is almost eR-injective. Then, we have the following308

two cases for the homomorphism γ .309

Case 1. σ is extended to an endmorphism of eR:310

Take α : eR → eR an endomorphism of eR which is an extension of σ . Then311

ese� = σ(ere�) = α(ere�) = eα(e)e(ere�) ∈ D(ere�)312

Case 2. σ is not extended to an endmorphism of eR:313

There is a homomorphism β : eR→ eR such that β ◦ γ = ι with ι : ere�R → eR314

the inclusion. Then, we have ere� = (β ◦ γ )(ere�) = β(ese�) = eβ(e)e(ese�). Since315

D is a skew-field, ese� = [eβ(e)e]−1ere� ∈ D(ere�).316

We deduce that D(ere�) = D(eRe�). Thus, eRe� is a one-dimensional left vector317

space over D if eRe� �= 0.318

(2) Let z be a non-zero element of eRe�. Then, eRe� = Dz by (1). It means that319

for any e�be� ∈ e�Re�, we have ze�be� = uz for some u ∈ D. This defines a ring320

monomorphism σ : D� → D such that σ(e�be�) = u. Thus, σ (e�be�)z = uz = ze�be�321

for all e�be� ∈ D�.322

(3) Assume that R is a right serial ring and dimD(eRe
�) = 1. Take any two non-323

zero elements ere� and ese� in eRe�. By assumption, eR is uniserial, we may suppose324

ese�R ≤ ere�R. There is e�ue� in e�Re� such that ese� = ere�ue�. We have that e�Re�325

is a skew-field and obtain ese�Re� = ere�Re�. It means that eRe� is a one-dimensional326

right vector space over D�. Then eRe� = Dz = zD �, and so σ is an isomorphism.327

��328
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Corollary 2.17 Any I-finite right nonsingular right CAI-ring R is isomorphic to329




Mn1(e1Re1) Mn1×n2(e1Re2) . . . Mn1×nk (e1Rek)
0 Mn2(e2Re2) . . . Mn2×nk (e2Rek)
0 0 Mn3(e3Re3) . . Mn3×nk (e3Rek)
. . . . . .

. . . . . .

0 0 . . . Mnk (ek Rek)



,330

where ei Rei is a division ring, ei Rei ∼= e j Re j for each 1 ≤ i, j ≤ k and n1, . . . ,nk331

are any positive integers. Furthermore, if ei Re j �= 0, then332

dim(ei Rei (ei Re j )) = 1 = dim((ei Re j )e j Re j ).333

3 On Right Noetherian Right Almost V -rings334

Firstly, we list some known results related to almost V-ring for the sake of complete-335

ness.336

Theorem 3.1 [3, Theorem 3.1] The following statements are equivalent for a ring R.337

1. R is a right almost V -ring.338

2. For every simple R-module S, either S is injective or E(S) is projective of length339

2.340

Theorem 3.2 [3, Theorem 2.9] A ring R is a right almost V -ring if and only if every341

right R-module is simple-extending.342

Theorem 3.3 [5, Theorem 2.4] The following statements are equivalent for a ring R.343

1. R is a right Noetherian right almost V -ring.344

2. Every right R-module is semisimple-extending.345

3. R = ⊕nj=1 I j , where I j is either a Noetherian V -module with zero socle, or a346

simple module, or an injective module of length 2.347

4. R = I ⊕ J , where I and J are right ideals, I is Noetherian, every semisimple348

module in σ [I ] is I -injective, and every module in σ [J ] is extending.349

The following result provides a characterization of right Noetherian right almost 2350

V -rings via almost injective semisimple modules.351

Theorem 3.4 The following statements are equivalent for a ring R.352

1. R is a right Noetherian right almost V -ring.353

2. Every semisimple right R-module is almost injective and R has finite right Goldie354

dimension.355

3. Every semisimple right R-module is almost injective and Soc(RR) is finitely gen-356

erated.357
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Proof (1)⇒ (2) By hypothesis, R has finite right Goldie dimension. Now we show358

that every semisimple right R-module S is almost injective. Let N be any module,359

0→ A→ N be any monomorphism for a submodule A of N and let f : A→ S be360

any non-zero homomorphism. Assume U = E( f (A)) and E(S) = U ⊕ V . Since R361

is a right Noetherian ring,362

U = ⊕
i∈I
E(Si ).363

By Theorem 3.1, either E(Si ) is simple or E(Si ) is projective of length 2. Since U is364

injective, there exists a homomorphism g : N → U such that f = g ◦ ι.365

Case 1: g(N ) ≤ ⊕i∈I Si . Let ω : ⊕i∈I Si → S be the natural embedding and366

g1 = ω ◦ g. In this case the following diagram commutes367

0 A

f

ι
N

g1

S

368

Case 2: g(N ) � ⊕i∈I Si . Let πi : U → E(Si ) be the canonical projection. Then369

there exists an index j ∈ I such that π j (g(N )) � Soc(E(Sj )). So that π j (g(N )) =370

E(S j ), since length(E(Si ) ≤ 2, for any i ∈ I . Hence π j (g(N )) is both injective and371

projective. It follows that there exists a decomposition N = N1 ⊕ Ker(π j ◦ g), and372

ϕ = (π j ◦ g)|N1 is an isomorphism from N1 to E j . Set w1 = ϕ
−1 and w2 = w1π j ,373

h1 = w2|S . Then h1 is a homomorphism from U ⊕ V to N1. Let h = h1|S and374

π : N → N1 be the canonical projection. Let a ∈ A, then a = a1 + a2 with a1 ∈ N1375

and a2 ∈ Ker(π j ◦ g). Therefore376

π j g(a) = π j g(a1)+ π j g(a2) = π j g(a1) = π j f (a1) ∈ S j .377

Since ϕ is isomorphic, it follows that a1 ∈ Soc(N1). Define a homomorphism ϕ :378

Soc(N1) → S j with θ(x) = π j f (x). Last, we put β = π j |S and h = θ
−1β . Then379

h is a homomorphism from S to N1. Let a = x + y ∈ A, where x ∈ Soc(N1) and380

y ∈ Ker(π j g). Then π(a) = x . Hence θ(x) = (π j f )(x), so that381

x = θ−1(θ(x)) = θ−1(π j f (x)) = θ
−1(β)( f (x)) = (θ−1β)( f (x)) = h f (a).382

Therefore π ◦ ι = f ◦ h. In this case the following diagram commutes383

0 A
i

f

N = N1 ⊕ N2

π

S
h

N1

384

Thus, S is an almost injective module.385
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(2)⇒ (3) is clear.386

(3)⇒ (1) Assume (3). Then R is an almost right V -ring. Let S be a semisimple right387

R-module. By [4, Proposition 2.1], S is essentially injective. Then, every semisimple388

right R-module is essentially injective. It follows that R/Soc(RR) is right Noetherian,389

by [4, Lemma 2.2]. Hence R is a right Noetherian ring since Soc(RR) is finitely390

generated. ��391

Theorem 3.5 The following statements are equivalent for a ring R.392

1. R is an Artinian serial ring with J (R)2 = 0.393

2. Every semisimple right R-module is almost injective, RR is almost injective and394

R is a direct sum of indecomposable right ideals.395

3. Every semisimple right R-module is almost injective, RR is almost injective and396

Soc(RR) is finitely generated.397

Proof First we note that if RR is an almost injective module with finite Goldie dimen-398

sion then R is a direct sum of uniform right ideals. Hence, it suffices to show that (3)399

⇒ (1). Assume (3). By Theorem 3.4, R is a right Noetherian right almost V -ring, and400

RR has a decomposition RR = e1R ⊕ e2R ⊕ · · · ⊕ en R, where each ei R is uniform,401

since RR is almost injective. Let e = ei , for 1 ≤ i ≤ n. We shall prove that eR is402

a uniserial module. Let U , V be submodules of eR. Then U and V contain maximal403

submodulesU1 and V1, respectively, since R is right Noetherian. Then eR/(U1⊕ V1)404

has two distinct minimal submodules (U + V )/(U1 + V ) and (U + V )/(U + V1).405

This is impossible, since eR/(U1 ⊕ V1) is an indecomposable module over a right406

almost V -ring. Therefore eR is uniserial. Assume that eR is not simple, and U is a407

non-zero proper summodule of eR. Then there exists a maximal submodule U1 ofU .408

Since eR/U1 is uniform, its socle is U/U1. So length(eR/U1) = 2, since R is a right409

almost V -ring. Hence U is simple and length(eR) = 2, and so eR is injective. Last,410

we get RR = e1R ⊕ e2R ⊕ · · · ⊕ en R, where each ei R is either a simple module or411

an injective module of length 2. By [11, 13.5, (e)⇒ (g)], R is an Artinian serial ring412

with J (R)2 = 0.413

��414

We obtain the following result in [4, Theorem 3.1]. 3415

Corollary 3.6 The following statements are equivalent for a ring R.416

1. R is an Artinian serial ring with J (R)2 = 0.417

2. Every right R-module is almost injective and R is a direct sum of indecomposable418

right ideals.419

3. Every right R-module is almost injective and Soc(RR) is finitely generated.420
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