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In [10], Conjecture 6.6, Migliore, the first author, and Nagel 
conjectured that, for all n ≥ 4, the artinian ideal I =
(Ld

0, . . . , Ld
2n+1) ⊂ R = k[x0, . . . , x2n] generated by the d-th 

powers of 2n + 2 general linear forms fails to have the weak 
Lefschetz property if and only if d > 1. This paper is entirely 
devoted to prove partially this conjecture. More precisely, we 
prove that R/I fails to have the weak Lefschetz property, 
provided 4 ≤ n ≤ 8, d ≥ 4 or d = 2r, 1 ≤ r ≤ 8, 4 ≤
n ≤ 2r(r + 2) − 1.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Ideals generated by powers of linear forms have attracted great deal of attention 
recently. For instance, their Hilbert function has been the focus of the papers [2,8,16]; 
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and the presence or failure of the weak Lefschetz property has been deeply studied in 
[8,10,12–14], among others.

Let k be a field of characteristic zero and R = k[x0, . . . , xn] be the standard graded 
polynomial ring over k in n + 1 variables. A graded artinian k-algebra A := R/I is said 
to have the weak Lefschetz property (WLP for short) if there is a linear form � ∈ [A]1
such that the multiplication

×� : [A]i −→ [A]i+1

has maximal rank for all i, i.e., ×� is either injective or surjective, for all i. On the 
contrary, we say that A fails to have the WLP if there is an integer i such that the above 
multiplication does not have maximal rank for any linear form �. There has been a long 
series of papers determining classes of algebras holding/failing the WLP but much more 
work remains to be done.

The first result in this direction is due to Stanley [15] and Watanabe [17] and it asserts 
that the WLP holds for any artinian complete intersection ideal I generated by powers 
of linear forms. In fact, they showed that there is a linear form � ∈ [A]1 such that the 
multiplication

×�s : [A]i −→ [A]i+s

has maximal rank for all i, s. When this property holds, the algebra is said to have the 
strong Lefschetz property (briefly SLP). In [14], Schenck and Seceleanu gave the nice 
result that any artinian ideal I ⊂ R = k[x, y, z] generated by powers of linear forms 
has the WLP. Moreover, when these linear forms are general, the SLP of R/I has also 
been studied, in particular, the multiplication by the square �2 of a general linear form �
induces a homomorphism of maximal rank in any graded component of R/I, see [1,11]. 
However, Migliore, the first author, and Nagel showed by examples that in 4 variables, an 
ideal generated by the d-th powers of five general linear forms fails to have the WLP for 
d = 3, . . . , 12 [10]. Therefore, it is natural to ask when the WLP holds for artinian ideals 
I ⊂ k[x0, . . . , xn] generated by powers of ≥ n + 2 general linear forms. In [10], Migliore, 
the first author, and Nagel studied this question where the ideal is an almost complete 
intersection and they also proposed the following conjecture in order to complete this 
investigation.

Conjecture 1.1. [10, Conjecture 6.6] Let R = k[x0, . . . , x2n] be the polynomial ring over a 
field of characteristic zero. Consider an artinian ideal I = (Ld

0, . . . , L
d
2n+1) ⊂ R generated 

by the d-th powers of general linear forms. If n ≥ 4, then the ring R/I fails to have the 
WLP if and only if d > 1. Furthermore, if n = 3, then R/I fails to have the WLP when 
d = 3.

The first author has shown that R/I fails to have the WLP when d = 2 [12] and in 
the recent paper [13], Nagel and Trok have established Conjecture 1.1 for n � 0 and 
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d � 0. The last part of the conjecture was proved by Di Gennaro, Ilardi, and Vallès 
in [3, Proposition 5.5]. Unfortunately, there was a gap in their proof. However, it was 
corrected in [4] and then in [9], the last part of Conjecture 1.1 was proved by Ilardi and 
Vallès. The goal of this note is to solve partially the conjecture. More precisely, we prove 
the following (see Corollaries 3.3–3.10, Theorem 4.1 and Remark 4.2).

Theorem. Let R = k[x0, . . . , x2n] be the polynomial ring over a field of characteristic zero 
and consider an artinian ideal I = (Ld

0, . . . , L
d
2n+1) ⊂ R generated by the d-th powers of 

general linear forms.

(1) If d = 2r, 2 ≤ r ≤ 8 and 4 ≤ n ≤ 2r(r + 2) − 1, then R/I fails to have the WLP.
(2) If 4 ≤ n ≤ 8 and d ≥ 4, then R/I fails to have the WLP.

Therefore, Theorem answers partially Conjecture 1.1 for 4 ≤ n ≤ 8, missing only the 
case d = 3, since the case d = 2 is shown by the first author [12]. Our approach is based 
on the connection between computing the dimension of R/(I, �), where � is a general 
linear form and the dimension of linear system of fat points. More precisely, we prove 
the following result (see Theorem 3.1).

Theorem. If � is a general linear form and j = � (2n2−1)(d−1)
2n−1 	, then

dimk[R/(I, �)]j = dimk L2n−1
(
j; (j + 1 − d)2n+2)

=

⎧⎪⎪⎨
⎪⎪⎩

dimk L2n−1
(
e; 02n+2) if d = (2n− 1)e + 1

dimk L2n−1
(
e + n− r + 1; (n− r)2n+2) if d = (2n− 1)e + 2r

dimk L2n−1
(
e + 2n− r + 1; (2n− r − 1)2n+2) if d = (2n− 1)e + 2r + 1

where e, r are non-negative integers such that 1 ≤ r ≤ n − 1.

2. Preparatory results

Throughout this paper R denotes a polynomial ring k[x0, . . . , xn] over a field k of 
characteristic zero, with its standard grading where deg(xi) = 1. If I ⊂ R is a homoge-
neous ideal, then the k-algebra A = ⊕j≥0[A]j is standard graded. Its Hilbert function is 
a map hA : N −→ N, hA(j) = dimk[A]j .

For any artinian ideal I ⊂ R and a general linear form � ∈ R, the exact sequence

[R/I]j−1 −→ [R/I]j −→ [R/(I, �)]j −→ 0

gives, in particular, that the multiplication by � will fail to have maximal rank exactly 
when

dimk[R/(I, �)]j �= max{dimk[R/I]j − dimk[R/I]j−1, 0}. (2.1)
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In this case, we will say that R/I fails to have the WLP in degree j − 1.
We first recall a result of Emsalem and Iarrobino giving a duality between powers of 

linear forms and ideals of fat points in Pn. We quote it in the form that we need.

Lemma 2.1. [6, Theorem I] Let p1, . . . , ps be the ideals of s distinct points in Pn that are 
dual to the linear forms �1, . . . , �s ∈ R and choose the positive integers a1, . . . , as. Then, 
for each integer j ≥ −1 + max{a1, . . . , as},

dimk

[
R/(�a1

1 , . . . , �as
s )

]
j

= dimk

[ ⋂
ai≤j

p
j+1−ai

i

]
j
.

If the points defined by the ideals pi are general points, then the dimension of the 
linear system [pb11 ∩· · ·∩pbss ]j ⊂ Rj depends only on the numbers n, j, b1, . . . , bs. In order 
to simplify notation, in this case we denote by

Ln(j; b1, . . . , bs)

the linear system [pb11 ∩· · ·∩pbss ]j ⊂ Rj . We use superscripts to indicate repeated entries. 
For example, L4(j; 24, 42) = L4(j; 2, 2, 2, 2, 4, 4). Notice that, for every linear system 
Ln(j; b1, . . . , bs), one has

dimk Ln(j; b1, . . . , bs) ≥ max
{

0,
(
n + j

n

)
−

s∑
i=1

(
n + bi − 1

n

)}
.

To study the WLP, the following is useful to compute the left-hand side of (2.1).

Lemma 2.2. [10, Proposition 3.4] Let (�a1
1 , . . . , �as

s ) be an ideal of R generated by powers 
of s general linear forms, and let � be a general linear form. Then, for each integer 
j ≥ −1 + max{a1, . . . , as},

dimk

[
R/(�a1

1 , . . . , �as
s , �)

]
j

= dimk Ln−1(j; j + 1 − a1, . . . , j + 1 − as).

Using Cremona transformations, one can relate two different linear systems. This is 
often stated only for general points.

Lemma 2.3. [5, Theorem 3] Let s > n ≥ 2 and j, b1, . . . , bs be non-negative integers, with 
b1 ≥ · · · ≥ bs. Set t = (n − 1)j − (b1 + · · · + bn+1). If bi + t ≥ 0 for all i = 1, . . . , n + 1, 
then

dimk Ln(j; b1, . . . , bs) = dimk Ln(j + t; b1 + t, . . . , bn+1 + t, bn+2, . . . , bs).

In this note, we are interested in certain almost complete intersections. Then one can 
compute the right-hand side of (2.1). For any integer m, we denote

[m]+ = max{m, 0}.
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Lemma 2.4. [10, Lemma 3.7] Let I = (La0
0 , . . . , Lan+1

n+1 ) ⊂ R be an almost complete in-
tersection generated by powers of n + 2 general linear forms. Set A = R/(La0

0 , . . . Lan
n ). 

Then, for each integer j,

dimk[R/I]j −dimk[R/I]j−1 = [hA(j)−hA(j−an+1)]+− [hA(j−1)−hA(j−an+1−1)]+.

Furthermore, if j ≤ 1
2an+1 + 1

2
∑n

i=0(ai − 1), then the formula simplifies to

dimk[R/I]j − dimk[R/I]j−1 = [hA(j) − hA(j − 1)]− [hA(j − an+1) − hA(j − an+1 − 1)].

3. Almost uniform powers of general linear forms

Throughout this section, we always denote R = k[x0, . . . , x2n] and consider an artinian 
ideal I = (Ld

0, . . . , L
d
2n+1) of R generated by the d-th powers of general linear forms and 

fix j = � (2n2−1)(d−1)
2n−1 	.

Theorem 3.1. If � is a general linear form, then

dimk[R/(I, �)]j = dimk L2n−1
(
j; (j + 1 − d)2n+2)

=

⎧⎪⎪⎨
⎪⎪⎩

dimk L2n−1
(
e; 02n+2) if d = (2n− 1)e + 1

dimk L2n−1
(
e + n− r + 1; (n− r)2n+2) if d = (2n− 1)e + 2r

dimk L2n−1
(
e + 2n− r + 1; (2n− r − 1)2n+2) if d = (2n− 1)e + 2r + 1

where e, r are non-negative integers such that 1 ≤ r ≤ n − 1 and

dimk[R/I]j − dimk[R/I]j−1 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
2n− 1 + j − kd

2n− 1

)
.

Proof. It follows from Lemma 2.2 that

D := dimk[R/(I, �)]j = dimk L2n−1
(
j; (j + 1 − d)2n+2).

Set

t = (2n− 2)j − 2n(j + 1 − d) = −2j + 2n(d− 1).

As j = � (2n2−1)(d−1)
2n−1 	, we get

j + 1 − d + t = −j + (2n− 1)(d− 1) ≥ 2(n− 1)2(d− 1)
2n− 1 ≥ 0.

Using Lemma 2.3 (n + 1) times, in each step the Cremona transformation changes the 
multiplicities of linear system L2n−1

(
j; (j + 1 − d)2n+2) by t, we obtain
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D = dimk L2n−1
(
j; (j + 1 − d)2n+2)

= dimk L2n−1
(
− j + 2n(d− 1); (j + 1 − d)2, (−j + (2n− 1)(d− 1))2n

)
= dimk L2n−1

(
− 3j + 4n(d− 1); (−j + (2n− 1)(d− 1))4,

(−3j + (4n− 1)(d− 1))2n−2)
...

= dimk L2n−1
(
− (2n + 1)j + 2n(n + 1)(d− 1); (−(2n− 1)j + (2n2 − 1)(d− 1))2n+2).

These computations are correct and has a chance of resulting in a non-empty linear 
system if

−(2n + 1)j + 2n(n + 1)(d− 1) > −(2n− 1)j + (2n2 − 1)(d− 1) ≥ 0,

which is true since j = � (2n2−1)(d−1)
2n−1 	. Thus

D = dimk L2n−1
(
2n(n + 1)(d− 1) − (2n + 1)j; ((2n2 − 1)(d− 1) − (2n− 1)j)2n+2).

(3.1)

Now we consider three cases:
Case 1: d = (2n − 1)e + 1, hence j = (2n2 − 1)e. By (3.1) and a simple computation
shows that

D = dimk L2n−1
(
e; 02n+2).

Case 2: d = (2n − 1)e + 2r, 1 ≤ r ≤ n − 1. A straightforward computation shows that

j = (2n2 − 1)e + 2nr + r − n− 1.

Therefore, by (3.1), we obtain

D = dimk L2n−1
(
e + n− r + 1; (n− r)2n+2).

Case 3: d = (2n − 1)e + 2r + 1, 1 ≤ r ≤ n − 1. It is easy to show that

j = (2n2 − 1)e + 2nr + r − 1.

By (3.1) we get that

D = dimk L2n−1
(
e + 2n− r + 1; (2n− r − 1)2n+2).

Finally, let A = R/(Ld
0, . . . , L

d
2n), hence A is a complete intersection and it has the 

SLP (see, e.g., [15] or [17]), one has
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dimk[R/I]j − dimk[R/I]j−1 = [hA(j) − hA(j − 1)] − [hA(j − d) − hA(j − d− 1)],

by Lemma 2.4 since j ≤ d
2 + (2n+1)(d−1)

2 . Resolving A over R using the Koszul resolution, 
we get for the Hilbert function of A

hA(j) =
2n+1∑
k=0

(−1)k
(

2n + 1
k

)(
2n + j − kd

2n

)
.

As j = � (2n2−1)(d−1)
2n−1 	, hence j − kd < 0 if k ≥ n + 1. It follows that

hA(j) =
n∑

k=0

(−1)k
(

2n + 1
k

)(
2n + j − kd

2n

)
.

A straightforward computation gives

dimk[R/I]j − dimk[R/I]j−1 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
2n− 1 + j − kd

2n− 1

)
. �

Proposition 3.2. Assume that d = (2n − 1)e + 2r, e and r are non-negative integers such 
that 1 ≤ r ≤ n. If n ≤ 2r(r + 2) − 1 then

dimk[R/(I, �)]j > 0,

where � is a general linear form in R.

Proof. As d = (2n − 1)e + 2r, 1 ≤ r ≤ n, by Theorem 3.1 we get that

dimk[R/(I, �)]j = dimk L2n−1
(
e + n− r + 1; (n− r)2n+2),

where e is a non-negative integer. It is enough to show that

dimk L2n−1
(
n− r + 1; (n− r)2n+2) > 0.

Lemma 2.1 shows that

dimk L2n−1
(
n− r + 1; (n− r)2n+2) = dimk

[
k[x0, . . . , x2n−1]/(�20, . . . , �22n+1)

]
n−r+1

,

where �0, . . . , �2n+1 are general linear forms in k[x0, . . . , x2n−1]. Setting

P = k[x0, . . . , x2n−1]/(�20, . . . , �22n)

then, by [12, Proposition 3.4], for every 0 ≤ t ≤ n,
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dimk[P ]t =
(

2n
t

)
−

(
2n
t− 2

)
.

It follows that

dimk L2n−1
(
n− r + 1; (n− r)2n+2) ≥ dimk[P ]n−r+1 − dimk[P ]n−r−1

=
(

2n
n− r + 1

)
− 2

(
2n

n− r − 1

)
+
(

2n
n− r − 3

)
.

We have (
2n

n− r + 1

)
− 2

(
2n

n− r − 1

)
+

(
2n

n− r − 3

)
> 0

⇔ (2n)!
(n− r + 1)!(n + r − 1)! −

(2n)!
(n− r − 1)!(n + r + 1)!

>
(2n)!

(n− r − 1)!(n + r + 1)! −
(2n)!

(n− r − 3)!(n + r + 3)!

⇔ 2r(2n + 1)
(n− r + 1)!(n + r + 1)! >

2(r + 2)(2n + 1)
(n− r − 1)!(n + r + 3)!

⇔ r

(n− r)(n− r + 1) >
r + 2

(n + r + 2)(n + r + 3)

⇔ n2 − (2r2 + 4r − 1)n− (2r2 + 4r) < 0

⇔ −1 < n < 2r(r + 2).

Thus dimk[R/(I, �)]j for any r ≤ n ≤ 2r(r + 2) − 1. �
Corollary 3.3. If 2 ≤ n ≤ 15 and d = 4, then R/I fails to have the WLP.

Proof. In this case, we have j = 3n + 1. By Proposition 3.2, for any 2 ≤ n ≤ 15,

dimk[R/(I, �)]3n+1 > 0,

where � is a general linear form in R.
On other hand, by Theorem 3.1, we have

dimk[R/I]3n+1 − dimk[R/I]3n =
n∑

k=0

(−1)k
(

2n + 2
k

)(
5n− 4k
2n− 1

)
.

Using Macaulay2 [7], we see that for any 2 ≤ n ≤ 15,

dimk[R/I]3n+1 − dimk[R/I]3n ≤ 0.

It follows that R/I fails to have the WLP since the surjectivity does not hold. �
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Remark 3.4. Set

Sn =
n∑

k=0

(−1)k
(

2n + 2
k

)(
5n− 4k
2n− 1

)
, n ≥ 2.

Examples suggest that the sequence (Sn)n≥2 of integers is strictly decreasing with S2 = 0, 
and so all these are non-positive.

Corollary 3.5. If 3 ≤ n ≤ 29 and d = 6, then R/I fails to have the WLP.

Proof. In this case, we have j = 5n + 2. Let � be a general linear form in R. By Propo-
sition 3.2 we get that

dimk[R/(I, �)]5n+2 > 0,

for any 3 ≤ n ≤ 29.
On other hand, by Theorem 3.1, we have

dimk[R/I]5n+2 − dimk[R/I]5n+1 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
7n + 1 − 6k

2n− 1

)
.

Using Macaulay2 [7], we see that for any 3 ≤ n ≤ 29,

dimk[R/I]5n+2 − dimk[R/I]5n+1 < 0,

which shows that R/I fails to have the WLP since the surjectivity does not hold. �
Corollary 3.6. If 4 ≤ n ≤ 47 and d = 8, then R/I fails to have the WLP.

Proof. Let � be a general linear form. In this case, we have j = 7n +3. By Proposition 3.2, 
for any 4 ≤ n ≤ 47,

dimk[R/(I, �)]7n+3 > 0.

On other hand, by Theorem 3.1, we have

dimk[R/I]7n+3 − dimk[R/I]7n+2 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
9n + 2 − 8k

2n− 1

)
.

Using Macaulay2 [7], we see that for any 4 ≤ n ≤ 47,

dimk[R/I]7n+3 − dimk[R/I]7n+2 < 0,

which shows that R/I fails to have the WLP since the surjectivity does not hold. �
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Corollary 3.7. If 5 ≤ n ≤ 69 and d = 10, then R/I fails to have the WLP.

Proof. Let � be a general linear form in R. In this case, one has j = 9n + 4. By Propo-
sition 3.2, for any 5 ≤ n ≤ 69,

dimk[R/(I, �)]9n+4 > 0.

On other hand, by Theorem 3.1, we have

dimk[R/I]9n+4 − dimk[R/I]9n+3 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
11n + 3 − 10k

2n− 1

)
.

Using Macaulay2 [7], we see that for any 5 ≤ n ≤ 69,

dimk[R/I]9n+4 − dimk[R/I]9n+3 < 0,

which shows that R/I fails to have the WLP since the surjectivity does not hold. �
Corollary 3.8. If 6 ≤ n ≤ 95 and d = 12, then R/I fails to have the WLP.

Proof. In this case, one has j = 11n + 5. For any 6 ≤ n ≤ 95, one has

dimk[R/(I, �)]11n+5 > 0,

by Proposition 3.2, where � is a general linear form in R.
On other hand, by Theorem 3.1, we have

dimk[R/I]11n+5 − dimk[R/I]11n+4 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
13n + 4 − 12k

2n− 1

)
.

Using Macaulay2 [7], we see that for any 6 ≤ n ≤ 95,

dimk[R/I]11n+5 − dimk[R/I]11n+4 < 0,

which shows that R/I fails to have the WLP since the surjectivity does not hold. �
Corollary 3.9. If 7 ≤ n ≤ 125 and d = 14, then R/I fails to have the WLP.

Proof. Let � be a general linear form in R. In this case, one has j = 13n + 6. Proposi-
tion 3.2 follows that

dimk[R/(I, �)]13n+6 > 0,

for any 7 ≤ n ≤ 125.
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On other hand, by Theorem 3.1, we have

dimk[R/I]13n+6 − dimk[R/I]13n+5 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
15n + 5 − 14k

2n− 1

)
.

Using Macaulay2 [7], we see that for any 7 ≤ n ≤ 125,

dimk[R/I]13n+6 − dimk[R/I]13n+5 < 0,

which shows that R/I fails to have the WLP since the surjectivity does not hold. �
Corollary 3.10. If 8 ≤ n ≤ 159 and d = 16, then R/I fails to have the WLP.

Proof. Let � be a general linear form in R. Computation shows that j = 15n + 7. 
Proposition 3.2 follows that

dimk[R/(I, �)]15n+7 > 0,

for any 8 ≤ n ≤ 159.
On other hand, by Theorem 3.1, we have

dimk[R/I]15n+7 − dimk[R/I]15n+6 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
17n + 6 − 16k

2n− 1

)
.

Using Macaulay2 [7], we see that for any 7 ≤ n ≤ 159,

dimk[R/I]15n+7 − dimk[R/I]15n+6 < 0,

which shows that R/I fails to have the WLP since the surjectivity does not hold. �
Proposition 3.11. Assume that n, d ≥ 2 and � is a general linear form in R. Then

dimk[R/(I, �)]j > 0

if one of the following conditions is satisfied

(i) 2n − 1 or 2n + 1 divides d − 1.
(ii) 2n − 1 divides d + 1.
(iii) 2n − 1 divides d + 3.
(iv) 2n − 1 divides d + 5.
(v) d ≥ 4n2 − 2n + 2.
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Proof. Set t = � 2n(n+1)(d−1)
2n+1 	. It is easy to show that j ≤ t. It follows from [13, Propo-

sition 4.1] that

dimk[R/(I, �)]t > 0

if 2n + 1 divides d − 1 or d ≥ 4n2 − 2n + 2. Hence

dimk[R/(I, �)]j > 0

if 2n + 1 divides d − 1 or d ≥ 4n2 − 2n + 2 as claimed in the item (v) and the last part 
of the item (i). Now if 2n − 1 divides d − 1, then, by Theorem 3.1,

dimk[R/(I, �)]j = dimk L2n−1
(
e; 02n+2) > 0, ∀e ≥ 1,

which complete the proof of the item (i).
If d + 1 = (2n − 1)e, e ≥ 1, then d = (2n − 1)(e − 1) + 2(n − 1). By Theorem 3.1,

dimk[R/(I, �)]j = dimk L2n−1
(
e + 1; 12n+2) > 0, ∀e ≥ 1, n ≥ 2

as claimed in the item (ii).
If d +3 = (2n −1)e, e ≥ 1, then d = (2n −1)(e −1) +2(n −2). If n ≥ 3, by Theorem 3.1,

dimk[R/(I, �)]j = dimk L2n−1
(
e + 2; 22n+2) ≥ dimk L2n−1

(
3; 22n+2).

As

dimk L2n−1
(
3; 22n+2) ≥ (

2n + 2
2n− 1

)
− (2n + 2)

(
2n

2n− 1

)

= 2n(n + 1)(2n− 5)
3 > 0.

If n = 2, then d + 3 = 3e, e ≥ 2. It follows that

dimk[R/(I, �)]j = dimk L3
(
e + 2; 26) > 0.

Thus (iii) is proved.
It remains to show (iv). Since d + 5 = (2n − 1)e with e ≥ 1 if n ≥ 4, one has

d = (2n− 1)(e− 1) + 2(n− 3).

If n ≥ 5, by Theorem 3.1,
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dimk[R/(I, �)]j = dimk L2n−1
(
e + 3; 32n+2)

≥ dimk L2n−1
(
4; 32n+2)

≥
(

2n + 3
2n− 1

)
− (2n + 2)

(
2n + 1
2n− 1

)

= n(n + 1)(2n + 1)(2n− 9)
6 > 0.

Note that e ≥
{

3 if n = 2
2 if n = 3

. Thus

dimk[R/(I, �)]j =

⎧⎪⎪⎨
⎪⎪⎩

dimk L3
(
e− 2; 06) if n = 2, e ≥ 3

dimk L5
(
e + 3; 38) if n = 3, e ≥ 2

dimk L7
(
e + 3; 310) if n = 4, e ≥ 1.

Therefore, dimk[R/(I, �)]j > 0 if n ∈ {2, 3}. If n = 4, then

dimk[R/(I, �)]j = dimk L7
(
e + 3; 310) ≥ dimk L7

(
4; 310).

Set P = k[x0, . . . , x7]/(x2
0, . . . , x

2
7). We have

dimk L7
(
4; 310) ≥ hP (4) − 2hP (2) + hP (0) = 15 > 0.

This completes the argument. �
We close this section by giving the following result. It is similar to a result of Nagel 

and Trok in [13, Proposition 6.3].

Proposition 3.12. Given integers n ≥ 2 and 0 ≤ q ≤ 2(n − 1), define a polynomial 
function Pn,q : R −→ R by

Pn,q(t) =
n∑

k=0
(−1)k

(
2n + 2

k

)(
n− 1 + � (n−1)q

2n−1 � + (q + 1)(n− k) + t[2n2 − 1 − (2n− 1)k]
2n− 1

)
.

Then one has:

(a) If for some q with 1 ≤ q ≤ 2(n −1), Pn,q(t) ≤ 0 for every t ≥ 0, then Conjecture 1.1
is true for every d ≥ 4n2 − 2n + 2 such that d − 1 − q is divisible by 2n − 1.

(b) If Pn,0(t) ≤ 0 for every t ≥ 1, then Conjecture 1.1 is true for every d such that d −1
is divisible by 2n − 1.

(c) If 
∑n

k=0(−1)k
(2n+2

k

)
[2n2 − 1 − (2n − 1)k]2n−1 < 0 for each integer n ≥ 4, then 

Conjecture 1.1 is true for every d � 0.
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Proof. Let � be a general linear form in R. It follows from Proposition 3.11 that

dimk[R/(I, �)]j > 0,

provided d ≥ 4n2 − 2n + 2 or d + i is divisible by 2n − 1 with i ∈ {−1, 1, 3, 5}. It follows 
that under these assumptions the multiplication

×� : [R/I]j−1 −→ [R/I]j

fails to have maximal rank if and only if it fails surjectivity. It is enough to show that

dimk[R/I]j − dimk[R/I]j−1 ≤ 0.

Now write d − 1 = (2n − 1)t + q with integers t and q where 0 ≤ q ≤ 2(n − 1). Then a 
straightforward computation gives

j = (2n2 − 1)t + nq +
⌊ (n− 1)q

2n− 1
⌋
.

By Theorem 3.1,

dimk[R/I]j − dimk[R/I]j−1 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
2n− 1 + j − kd

2n− 1

)

=
n∑

k=0

(−1)k
(

2n + 2
k

)(
n− 1 +

⌊ (n−1)q
2n−1

⌋
+ (q + 1)(n− k) + t[2n2 − 1 − (2n− 1)k]

2n− 1

)

= Pn,q(t).

Now, if for some integer t ≥ 0 we have Pn,q(t) ≤ 0, then

dimk[R/(I, �)]j �= max{dimk[R/I]j − dimk[R/I]j−1, 0}.

This proves assertions (a) and (b).
Note that Pn,q(t) is a polynomial in t of degree 2n − 1 and

cn :=
n∑

k=0

(−1)k
(

2n + 2
k

)
[2n2 − 1 − (2n− 1)k]2n−1

is the coefficient of t2n−1 in Pn,q(t). Since cn < 0 by assumption, it follows that Pn,q(t) <
0 for all t � 0 independent of q, and thus the claim (c) is proved. �

Based on computations, we conjecture that

cn :=
n∑

(−1)k
(

2n + 2
k

)
[2n2 − 1 − (2n− 1)k]2n−1 < 0, for any n ≥ 2.
k=0
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In facts that computations suggest that the sequence (cn)n≥2 of integers is strictly de-
creasing with c2 = −26, and so all these are negatives. Thank to Macaulay2 [7], we can 
check it cn < 0 for any 2 ≤ n ≤ 400. This conjecture implies that Conjecture 1.1 is true 
for d � 0.

4. Almost uniform powers of general linear forms in a few variables

Our main result of this section is the following.

Theorem 4.1. Let R = k[x0, . . . , x2n] and I = (Ld
0, . . . , L

d
2n+1), where L0, . . . , L2n+1 are 

general linear forms in R. If 4 ≤ n ≤ 8 and d ≥ 4, then R/I fails to have the WLP.

Proof. Let � ∈ R be a general linear form and we will show that the multiplication

×� : [R/I]j−1 −→ [R/I]j

fails to have maximal rank with j = � (2n2−1)(d−1)
2n−1 	, provided 4 ≤ n ≤ 8 and d ≥ 4. To 

do this, we will show

dimk[R/(I, �)]j �= max{dimk[R/I]j − dimk[R/I]j−1, 0}.

First, we prove the following assertion.

Claim 1. D := dimk[R/(I, �)]j > 0 for any 4 ≤ n ≤ 8 and d ≥ 4.

Indeed, Theorem 3.1 shows that

D =

⎧⎪⎪⎨
⎪⎪⎩

dimk L2n−1(e; 02n+2) if d = (2n− 1)e + 1
dimk L2n−1(e + n− r + 1; (n− r)2n+2) if d = (2n− 1)e + 2r
dimk L2n−1(e + 2n− r + 1; (2n− r − 1)2n+2) if d = (2n− 1)e + 2r + 1

where e, r are non-negative integers and 1 ≤ r ≤ n −1. Note that the dimension of linear 
systems satisfies

dimk L2n−1(i; a2n+2) ≥
(

2n− 1 + i

2n− 1

)
− (2n + 2)

(
2n− 2 + a

2n− 1

)
. (4.1)

We now consider the following cases:
Case 1: n=4. Using (4.1), computations show that these linear systems are not empty 
for every

e ≥
{

1 if d− 1 ≡ 0, 1, 2(mod7)
0 if d− 1 ≡ 3, 4, 5, 6(mod7).
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In other words, D �= 0 for any d ≥ 4.
Case 2: n=5. Using (4.1), computations show that these linear systems are not empty, 
provided

e ≥
{

1 if d− 1 ≡ 0, 1, 2, 4(mod9)
0 if d− 1 ≡ 3, 5, 6, 7, 8(mod9).

In other words, D �= 0 for all d ≥ 4 and d �= 5.
Let �0, . . . , �2n+1 be general linear forms in k[x0, . . . , x2n−1] and set

Pn,s = k[x0, . . . , x2n−1]/(�s0, . . . , �s2n−1), Qn,s = k[x0, . . . , x2n−1]/(�s0, . . . , �s2n)

and Rn,s = k[x0, . . . , x2n−1]/(�s0, . . . , �s2n+1). The exact sequence

[Qn,s]i−s

×�s2n+1
[Qn,s]i [Rn,s]i 0

deduces that

hRn,s
(i) ≥ hQn,s

(i) − hQn,s
(i− s)

= hPn,s
(i) − 2hPn,s

(i− s) + hPn,s
(i− 2s)

where the last equality deduces from the fact that Pn,s is a complete intersection and 
has the SLP (see [15] or [17]).

Now we need to show D �= 0 for d = 5. Indeed, in this case, one has

D = dimk L9(9; 712) = dimk[R5,3]9
≥ hP5,3(9) − 2hP5,3(6) + hP5,3(3)

= 8350 − 2 × 2850 + 210

= 2860

which shows D �= 0 for d = 5.
Case 3: n=6. Using (4.1), computations show that these linear systems are not empty 
for any d ≥ 6 and d �= 7, 9. We need to show D �= 0 for d = 4, 5, 7, 9. If d = 4, then 
D �= 0, by Proposition 3.2. With the notations as in the case 2, one has

D =

⎧⎪⎪⎨
⎪⎪⎩

dimk L11(11; 914) = dim[R6,3]11 if d = 5
dimk L11(10; 814) = dim[R6,3]10 if d = 7
dimk L11(9; 714) = dim[R6,3]9 if d = 9.

The h-vector of P6,3 is
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hP6,3 =(1, 12, 78, 352, 1221, 3432, 8074, 16236, 28314, 43252, 58278, 69576, 73789,

69576, 58278, 43252, 28314, 16236, 8074, 3432, 1221, 352, 78, 12, 1).

It is easy to see

dim[R6,3]i ≥ hP6,3(i) − 2hP6,3(i− 3) + hP6,3(i− 6) > 0,

for each i ∈ {9, 10, 11}.
Thus, D > 0 for every d ≥ 4.
Case 4: n=7. Using (4.1), computations show that these linear systems are not empty 
for d ≥ 4 and d �= 5, 6, 7, 9, 11, 16. We need to show D �= 0 for d = 5, 6, 7, 9, 11, 16. By 
Proposition 3.2 we get that D �= 0 for d = 6. With the notations as in the case 2, one 
has

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dimk L13(13; 1116) = dim[R7,3]13 if d = 5
dimk L13(12; 1016) = dim[R7,3]12 if d = 7
dimk L13(11; 916) = dim[R7,3]11 if d = 9
dimk L13(10; 816) = dim[R7,3]10 if d = 11
dimk L13(15; 1216) = dim[R7,4]15 if d = 16.

As h-vector of Q7,3 is

hQ7,3 = (1, 14, 105, 545, 2170, 6993, 18837, 43290, 85995, 148785, 224796, 295659,

334425, 315420, 227475, 83097)

we get D > 0 for d = 5, 7, 9, 11. Similarly, one can easy show that D > 0 for d = 16. 
Thus, D > 0 for every d ≥ 4.
Case 5: n=8. By Proposition 3.2, we have D �= 0 for d = 15e +2r, e and r are non-negative 
integers such that 2 ≤ r ≤ 8. Using (4.1), we can also show that D �= 0 for d ≥ 4 and 
d �= 5, 7, 9, 11, 13, 18, 20. We now need to prove D �= 0 for d �= 5, 7, 9, 11, 13, 18, 20. With 
the notations as in the case 2, one has

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dimk L15(15; 1318) = dim[R8,3]15 if d = 5
dimk L15(14; 1218) = dim[R8,3]14 if d = 7
dimk L15(13; 1118) = dim[R8,3]13 if d = 9
dimk L15(12; 1018) = dim[R8,3]12 if d = 11
dimk L15(11; 918) = dim[R8,3]11 if d = 13
dimk L15(17; 1418) = dim[R8,4]17 if d = 18
dimk L15(16; 1318) = dim[R8,4]16 if d = 20.
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As h-vector of Q8,3 is

hQ8,3 = (1, 16, 136, 799, 3604, 13192, 40528, 106828, 245242, 495312, 885768, 1406886,

1983696, 2469624, 2677704, 2448816, 1730787, 625992)

we get D > 0 for d = 5, 7, 9, 11, 13. Similarly, the Hilbert functions of Q8,4 up to degree 
17 are

hQ8,4(t) =(1, 16, 136, 816, 3859, 15232, 51952, 156672, 424558, 1046112, 2364768,

4937888, 9574978, 17312256, 29277264, 46411904, 69063979, 96521904)

which show D > 0 for d = 18, 20. Thus, D > 0 for every d ≥ 4.
Therefore, Claim 1 is completely proved.
Second, to prove failure of the WLP in degree j it remains to show the following 

assertion.

Claim 2. E := dimk[R/I]j − dimk[R/I]j−1 ≤ 0 for all 4 ≤ n ≤ 8 and d ≥ 4.

Theorem 3.1 gives

E := dimk[R/I]j − dimk[R/I]j−1 =
n∑

k=0

(−1)k
(

2n + 2
k

)(
2n− 1 + j − kd

2n− 1

)
.

We consider the following cases:
Case 1: n=4. We consider seven cases for d −1 = 7e +m, 0 ≤ m ≤ 6. Thank to Macaulay2
[7], we can show that E < 0 for any d ≥ 4.
Subcase 1: If d = 7e + 1, then j = 31e and hence

E =
(

31e + 7
7

)
− 10

(
24e + 6

7

)
+ 45

(
17e + 5

7

)
− 120

(
10e + 4

7

)
+ 210

(
3e + 3

7

)

= 1
7!(−1086400574e7 − 914853422e6 − 328170248e5 − 60270140e4 − 5015486e3

+ 102442e2 + 60228e + 5040) < 0 for any e ≥ 1.

Subcase 2: If d = 7e + 2, then j = 31e + 4 and we have

E =
(

31e + 11
7

)
− 10

(
24e + 9

7

)
+ 45

(
17e + 7

7

)
− 120

(
10e + 5

7

)
+ 210

(
3e + 3

7

)

= 1
7!(−1086400574e7 − 1829706844e6 − 1272885740e5 − 457929640e4

− 84318206e3 − 5316556e2 + 535080e + 75600) < 0 for any e ≥ 1.
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Subcase 3: If d = 7e + 3, then j = 31e + 8. It follows that

E =
(

31e + 15
7

)
− 10

(
24e + 12

7

)
+ 45

(
17e + 9

7

)
− 120

(
10e + 6

7

)
+ 210

(
3e + 3

7

)

= 1
7!(−1086400574e7 − 2744560266e6 − 2847411560e5 − 1530367860e4

− 431507006e3 − 50737554e2 + 1747620e + 680400) < 0 for any e ≥ 1.

Subcase 4: If d = 7e + 4, then j = 31e + 13. One has

E =
(

31e + 20
7

)
− 10

(
24e + 16

7

)
+ 45

(
17e + 12

7

)
− 120

(
10e + 8

7

)
+ 210

(
3e + 4

7

)

= 1
7!(−1086400574e7 − 4059690376e6 − 6472447730e5 − 5696621560e4

− 2981962256e3 − 925181824e2 − 156720480e− 11088000) < 0 for any e ≥ 0.

Subcase 5: If d = 7e + 5, then j = 31e + 17 and hence

E =
(

31e + 24
7

)
− 10

(
24e + 19

7

)
+ 45

(
17e + 14

7

)
− 120

(
10e + 9

7

)
+ 210

(
3e + 4

7

)

= 1
7!(−1086400574e7 − 4974543798e6 − 9666743618e5 − 10305716610e4

− 6484301936e3 − 2393744472e2 − 475568352e− 38586240) < 0 for any e ≥ 0.

Subcase 6: If d = 7e + 6, then j = 31e + 22 and therefore

E =
(

31e + 29
7

)
− 10

(
24e + 23

7

)
+ 45

(
17e + 17

7

)
− 120

(
10e + 11

7

)
+ 210

(
3e + 5

7

)

= 1
7!(−1086400574e7 − 6289673908e6 − 15592053428e5 − 21447402760e4

− 17672567486e3 − 8719279492e2 − 2383703952e− 278359200) < 0 for any e ≥ 0.

Subcase 7: If d = 7e + 7, then j = 31e + 26. It follows that

E =
(

31e + 33
7

)
− 10

(
24e + 26

7

)
+ 45

(
17e + 19

7

)
− 120

(
10e + 12

7

)
+ 210

(
3e + 5

7

)

= 1
7!(−1086400574e7 − 7204527330e6 − 20406119384e5 − 31980364500e4

− 29926695806e3 − 16705543050e2 − 5144220396e− 673001280) < 0 for any e ≥ 0.

Thus E < 0 for any d ≥ 4. Claim 2 is proved for n = 4.
Case 2: n=5. We write d − 1 = 9e + m, 0 ≤ m ≤ 8. We will prove that E < 0 for any 
d ≥ 4. Thank to Macaulay2 [7], a straightforward computation gives
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Subcase 1: If d = 9e + 1, then j = 49e. It follows that

E =
5∑

k=0

(−1)k
(

12
k

)(
(49 − 9k)e + 9 − k

9

)

= 1
9!(−32649547827918e9 − 29495874488598e8 − 11942585863236e7

− 2793889960092e6 − 406323342558e5 − 35868202902e4 − 1535113104e3

+ 29687112e2 + 7209216e + 362880) < 0 for any e ≥ 1.

Analogously we can check the another cases.
Subcase 2: If d = 9e + 2r, 1 ≤ r ≤ 4, then j = 49e + 11r − 6 and

E =
5∑

k=0

(−1)k
(

12
k

)(
(49 − 9k)e + (11 − 2k)r + 3

9

)
.

We compute with Macaulay2 to show that if r = 1, then E < 0 for any e ≥ 1 and if 
r ∈ {2, 3, 4} then E < 0 for any e ≥ 0.
Subcase 3: If d = 9e + 2r + 1, 1 ≤ r ≤ 4, then j = 49e + 11r − 1 and

E =
5∑

k=0

(−1)k
(

12
k

)(
(49 − 9k)e + (11 − 2k)r − k + 8

9

)
.

Similarly, we can show that if r = 1, then E < 0 for any e ≥ 1 and if r ∈ {2, 3, 4} then 
E < 0 for any e ≥ 0.

It follows that E < 0 for any d ≥ 4. Claim 2 is proved for n = 5.
Case 3: n=6. Write d − 1 = 11e +m, 0 ≤ m ≤ 10. Thank to Macaulay2 [7], we will show 
that E < 0 for any d ≥ 2.
Subcase 1: If d = 11e + 1, then j = 71e and

E =
6∑

k=0

(−1)k
(

14
k

)(
(71 − 11k)e + 11 − k

11

)
= 1

11!(−2310696921327619572e11

− 2159206229822458212e10 − 925836626096405100e9 − 238845827273630940e8

− 40895244843536556e7 − 4822097086873836e6 − 390251062386900e5

− 20387890763460e4 − 526999267872e3 + 8455070448e2

+ 1189900800e + 39916800) < 0 for any e ≥ 1.

Analogously we can check the another cases.
Subcase 2: If d = 11e + 2r, 1 ≤ r ≤ 5, then j = 71e + 13r − 7. For each 1 ≤ r ≤ 5, 
computations with Macaulay2 show that
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E =
6∑

k=0

(−1)k
(

14
k

)(
(71 − 11k)e + (13 − 2k)r + 4

11

)
< 0 for any e ≥ 0.

Subcase 3: If d = 11e + 2r + 1, 1 ≤ r ≤ 5, then j = 71e + 13r − 1. For each 1 ≤ r ≤ 5, 
computations with Macaulay2 show that

E =
6∑

k=0

(−1)k
(

14
k

)(
(71 − 11k)e + (13 − 2k)r − k + 10

11

)
< 0 for any e ≥ 0.

It follows that E < 0 for any d ≥ 2. Claim 2 is proved for n = 6.
Case 4: n=7. We write d − 1 = 13e + m, 0 ≤ m ≤ 12. Thank to Macaulay2 [7], we will 
show that E < 0 for any d ≥ 2.
Subcase 1: If d = 13e + 1, then j = 97e and hence

E =
7∑

k=0

(−1)k
(

16
k

)(
(97 − 13k)e + 13 − k

13

)

= 1
13!(−334688414610649890510291e13 − 318779633066827110608001e12

− 141329943714960759520905e11 − 38495945182007845679433e10

− 7165747937184385180203e9 − 958746457198704734703e8

− 94270438988259145755e7 − 6819523889292264579e6

− 354359614333473606e5 − 12260161531299396e4 − 210757791455640e3

+ 2848164688512e2 + 260089315200e + 6227020800) < 0 for any e ≥ 1.

Analogously we can check the another cases.
Subcase 2: If d = 13e + 2r, 1 ≤ r ≤ 6, then j = 97e + 15r − 8. For each 1 ≤ r ≤ 6, 
computations with Macaulay2 show that

E =
7∑

k=0

(−1)k
(

16
k

)(
(97 − 13k)e + (15 − 2k)r + 5

13

)
< 0 for any e ≥ 0.

Subcase 3: If d = 13e + 2r + 1, 1 ≤ r ≤ 6, then j = 97e + 15r − 1. For each 1 ≤ r ≤ 6, 
computations with Macaulay2 show that

E =
7∑

k=0

(−1)k
(

16
k

)(
(97 − 13k)e + (15 − 2k)r − k + 12

13

)
< 0 for any e ≥ 0.

It follows that E < 0 for all d ≥ 2 as desired.
Case 5: n=8. Write d − 1 = 15e +m, 0 ≤ m ≤ 14. Thank to Macaulay2 [7], we will show 
that E < 0 for any d ≥ 2.
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Subcase 1: If d = 15e + 1, then j = 127e and hence

E =
8∑

k=0

(−1)k
(

18
k

)(
(127 − 15k)e + 15 − k

15

)

= 1
15! (−89416180762084130597433031670e15 − 86189264600012090365415830692e14

− 39053028448507299529147674830e13 − 11015489694695869227569915190e12

− 2159771261721698841245859830e11 − 311249224672723122942089934e10

− 33979437594069966555524110e9 − 2851416027092144483798970e8

− 184330466550469812352780e7 − 9076381685750429456406e6

− 329488524726287066140e5 − 8109990225233736840e4 − 98835121150056720e3

+ 1138217439820032e2 + 71328551374080e + 1307674368000) < 0 for any e ≥ 1.

Analogously we can check the another cases.
Subcase 2: If d = 15e + 2r, 1 ≤ r ≤ 7, then j = 127e + 17r − 9. For each 1 ≤ r ≤ 7, 
computations with Macaulay2 show that

E =
8∑

k=0

(−1)k
(

18
k

)(
(127 − 15k)e + (17 − 2k)r + 6

15

)
< 0 for any e ≥ 0.

Subcase 3: If d = 15e + 2r + 1, 1 ≤ r ≤ 7, then j = 127e + 17r − 1. For each 1 ≤ r ≤ 7, 
computations with Macaulay2 show that

E =
8∑

k=0

(−1)k
(

18
k

)(
(127 − 15k)e + (17 − 2k)r − k + 14

15

)
< 0 for any e ≥ 0.

It follows that E < 0 for all d ≥ 2 and n = 8.
Thus Claim 2 is completely proved.
Finally, Theorem 4.1 follows from the above two claims. �

Remark 4.2.

(1) The first author has shown that an artinian ideal I = (L2
0, . . . , L

2
2n+1) ⊂ R generated 

by the quadratic powers of general linear forms fails to have the WLP [12]. Therefore, 
Theorem 4.1 answers partially Conjecture 1.1 for 4 ≤ n ≤ 8, missing only the case 
d = 3.

(2) Theorem 4.1 together with Corollaries 3.3–3.10 says that R/I fails to have the WLP 
for all d = 2r, 2 ≤ r ≤ 8 and 4 ≤ n ≤ 2r(r + 2) − 1.
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