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We study the weak Lefschetz property of a class of graded Artinian Gorenstein 
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a numerical semigroup generated by four natural numbers. We show that these 
algebras have the weak Lefschetz property whenever the initial degree of their 
defining ideal is small.
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1. Introduction

The weak Lefschetz property (WLP for short) for an Artinian graded algebra A over a field K simply says 
that there exists a linear form L that induces, for each i, a multiplication map ×L : [A]i −→ [A]i+1 that has 
maximal rank, i.e. that is either injective or surjective. At first glance this might seem to be a simple problem 
of linear algebra. However, determining which graded Artinian K-algebras have the WLP is notoriously 
difficult. Many authors have studied the problem from many different points of view, applying tools from 
representation theory, topology, vector bundle theory, plane partitions, splines, differential geometry, among 
others (see for instance [3,11,13,17,20,21]). The role of the characteristic of K in this problem has also been 
an important, and only superficially understood, aspect of these studies.
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One of the most interesting open problems in this field is whether all codimension 3 graded Artinian 
Gorenstein algebras have the WLP in characteristic zero. In the special case of codimension 3 complete 
intersections, a positive answer was obtained in characteristic zero in [14] using the Grauert-Mülich theorem. 
For positive characteristic, on the other hand, only the case of monomial complete intersections has been 
studied (see [4,6,7]), applying many different approaches from combinatorics.

For the case of codimension 3 Gorenstein algebras that are not necessarily complete intersections, it is 
known that for each possible Hilbert function an example exists having the WLP [12]. Some partial results 
are given in [19] to show that for certain Hilbert functions, all such Gorenstion algebras have the WLP. It 
was shown in [2] that all codimension 3 Artinian Gorenstein algebras of socle degree at most 6 have the 
WLP in characteristic zero. But the general case remains completely open.

In this work, we consider a class of graded Artinian Gorenstein algebras of codimension 3 built up 
starting from the Apéry set of a numerical semigroup generated by 4 natural numbers. Our goal is to study 
whether these algebras have the WLP. More precisely, we consider a numerical semigroup P generated 
by {a1, a2, a3, a4} ⊂ N4 such that gcd(a1, a2, a3, a4) = 1. The Apéry set Ap(P ) of P with respect to the 
minimal generator of the semigroup is defined as follows

Ap(P ) := {a ∈ P | a− a1 /∈ P} = {0 = ω1 < ω2 < · · · < ωa1}.

Notice that Ap(P ) is a finite set and #Ap(P ) = a1. Recall that a numerical semigroup P is said to be 
M -pure symmetric if for each i = 1, . . . , a1, ωi + ωa1−i+1 = ωa1 and ord(ωi) + ord(ωa1−i+1) = ord(ωa1), 
where

ord(a) := max{
4∑

i=1
λi | a =

4∑
i=1

λiai}

is the order of a ∈ P . Therefore the Apéry set of a M -pure symmetric semigroup has the structure of a 
symmetric lattice.

Let K be a field of characteristic zero and consider the homomorphism

Φ : S := K[x1, . . . , x4] −→ K[P ] := K[ta1 , . . . , ta4 ],

which sends xi �−→ tai . Then K[P ] ∼= S/Ker(Φ) is a one dimensional ring associated to P . Now set 
S = S/(x1). Then there is one to one correspondence between the elements of Ap(P ) and the generators of 
S as a K-vector space. Let m be the maximal homogeneous ideal of S, define the associated graded algebra
of the Apéry set of P

A = grm(S) :=
⊕
i≥0

m
i

m
i+1 .

It follows that A is a standard graded Artinian K-algebra. In the work [5], Bryant proved that A is Gorenstein 
if and only if P is M -pure symmetric. In [10], Guerrieri showed that if A is an Artinian Gorenstein algebra 
that is not a complete intersection, then A is of form A = R/I with R = K[x, y, z] and

I = (xa, yb − xαzγ , zc, xa−αyb−β , yb−βzc−γ) ⊂ R, (1.1)

where 1 ≤ α ≤ a − 1, 1 ≤ β ≤ b − 1, 1 ≤ γ ≤ c − 1 and α + γ = b. The integers a, b, c, α, β and γ are 
determined by the structure of Ap(P ), see [10, Section 5].

Our goal is to study the WLP for A. Our main result is the following (see Theorems 3.7 and 3.15).
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Theorem. Consider the ideal I as in (1.1). If one of the integers a, b and c is less than or equal to three, 
then R/I has the WLP.

2. Artinian Gorenstein algebras

In this section, we will recall some standard notations and known facts that will be needed later in 
this work. We fix K a field of characteristic zero and R = K[x1, . . . , xn] a standard graded homogeneous 
polynomial ring in n variables over K. Let

A = R/I =
D⊕
i=0

[A]i

be a graded Artinian algebra. Note that A is finite dimensional over K.

Definition 2.1. For any graded Artinian algebra A = R/I =
⊕D

i=0[A]i, the Hilbert function of A is the 
function

hA : N −→ N

defined by hA(t) = dimK [A]t. As A is Artinian, its Hilbert function is equal to its h-vector that one can 
express as a sequence

hA = (1 = h0, h1, h2, h3, . . . , hD),

with hi = hA(i) > 0 and D is the last index with this property. The integer D is called the socle degree of 
A. The h-vector hA is said to be symmetric if hD−i = hi for every i = 0, 1, . . . , �D

2 	.

Definition 2.2. [16, Proposition 2.1] A standard graded Artinian algebra A as above is Gorenstein if and 
only if hD = 1 and the multiplication map

[A]i × [A]D−i −→ [A]D ∼= K

is a perfect pairing for all i = 0, 1, . . . , �D
2 	.

It follows that the h-vector of a graded Artinian Gorenstein is symmetric.

Definition 2.3. A graded Artinian K-algebra A is said to have the weak Lefschetz property, briefly WLP, if 
there exists an element L ∈ [A]1 such that the multiplication map ×L : [A]i −→ [A]i+1 has maximal rank 
for each i. We also say that a homogeneous ideal I has the WLP if R/I has the WLP.

From now on, we only consider a standard graded Artinian Gorenstein K-algebra. For these algebras, 
the WLP is determined by considering only the multiplication map in one degree.

Proposition 2.4. [18, Proposition 2.1] Let A be a standard graded Artinian Gorenstein K-algebra with the 
socle degree D and k := �D

2 	. Then we have:

(i) If D is odd, A has the WLP if and only if there is an element L ∈ [A]1 such that the multiplication 
map ×L : [A]k −→ [A]k+1 is an isomorphism.



4 R.M. Miró-Roig, Q.H. Tran / Journal of Pure and Applied Algebra 224 (2020) 106305
(ii) If D is even, A has the WLP if and only if there is an element L ∈ [A]1 such that the multiplication 
map ×L : [A]k −→ [A]k+1 is surjective or equivalently the multiplication map ×L : [A]k−1 −→ [A]k is 
injective.

Proposition 2.5. [10, Theorem 2.1] Assume that G =
⊕D

i=0[G]i is a standard graded Artinian Gorenstein 
K-algebra with the socle degree D that has the WLP. If � ∈ [G]1 is a linear element, then the quotient ring

A = G

(0 : G�)

is also a standard graded Artinian Gorenstein K-algebra. Assume that G and A have the same codimension 
and set k := �D

2 	. Then

(i) If D is odd, then A has the WLP.
(ii) If D is even and dimK [G]k−1 = dimK [G]k, then A has the WLP.

An important tool needed to study whether a Gorenstein algebra has the WLP is the Macaulay inverse 
system, and especially the higher Hessians. We give now some definitions and results taken from a paper 
by Maeno and Watanabe [16] and from a recent paper by Gondim and Zappalá [9]. The general facts on 
the Macaulay’s inverse system can be seen in [8].

Now we regard R as an R-module via the operation “◦” defined by

R×R −→ R

(xα, xβ) �−→ xα ◦ xβ =
{
xβ−α if βi ≥ αi, ∀i = 1, . . . , n
0 otherwise

with xα = xα1
1 · · ·xαn

n and xβ = xβ1
1 · · ·xβn

n . For a polynomial F ∈ R, AnnR(F ) denotes

AnnR(F ) := {f ∈ R | f ◦ F = 0}

which is an ideal of R. It is called the annihilator of F . It is known that R/AnnR(F ) is an Artinian 
Gorenstein algebra. Furthermore, every Artinian Gorenstein algebra can be written in this form. More 
precisely, we have the following.

Proposition 2.6. [16, Theorem 2.1] Let I be an ideal of R and A = R/I the quotient algebra. Denote by m
the homogeneous maximal ideal of R. Then 

√
I = m and the K-algebra A is Gorenstein if and only if there 

exists a polynomial F ∈ R such that I = AnnR(F ).

The polynomial F in the above proposition is called the Macaulay dual generator of A = R/AnnR(F ). 
Furthermore, if F is a homogeneous polynomial of degree D, then R/AnnR(F ) is a graded Artinian Goren-
stein algebra of socle degree D.

Definition 2.7. Let F be a polynomial in R and d, k ≥ 1 be two integers. Assume that Bd = {αi}si=1 and 
Bk = {βj}t=1 form respectively the K-linear basis of [A]d and [A]k. We define the mixed Hessian of F as an 
(s × t)-matrix

Hessd,kBd,Bk
(F ) := ((αi · βj) ◦ F ) .

In particular, if d = k, then we define the d-th Hessian of F as a square matrix
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HessdBd
(F ) := ((αi · αj) ◦ F ) .

Notice that the singularity of these matrices is independent of the chosen basis and hence we can write 
simply Hessd(F ) and Hessd,k(F ). Based on the singularity of (mixed) Hessians of F , we can determine the 
WLP of A = R/AnnR(F ).

Proposition 2.8. [9] Assume that A = R/AnnR(F ) with F ∈ [R]D and k := �D
2 	. Then we have:

(i) If D is odd, then A has the WLP if and only if the Hessian Hessk(F ) has maximal rank, i.e., it has 
nonzero determinant.

(ii) If D is even, then A has the WLP if and only if the mixed Hessian Hessk−1,k(F ) has maximal rank.

We close this section by recalling a result on the WLP of codimension 3 Artinian Gorenstein algebras.

Proposition 2.9. [2, Corollary 3.12] In characteristic zero, all codimension 3 Artinian Gorenstein algebras 
of socle degree at most 6 have the WLP.

3. The WLP for class of Artinian Gorenstein algebras of codimension 3

From now on, let R = K[x, y, z] be the standard graded polynomial ring over a field K of characteristic 
zero and consider the ideal

I = (xa, yb − xαzγ , zc, xa−αyb−β , yb−βzc−γ) ⊂ R, (3.1)

where 1 ≤ α ≤ a − 1, 1 ≤ β ≤ b − 1 and 1 ≤ γ ≤ c − 1 such that α+ γ = b. It is clear that b ≤ a + c − 2 and 
by symmetry of x and z, without loss of generality, we assume that a ≥ c. First, we have the following.

Proposition 3.1. Fix a, b, c, α, β, γ as above. Set a = (xa, yb − xαzγ , zc). Then one has:

(i) I = a : Ry
β. Therefore, R/I is an Artinian Gorenstein of codimension 3 and the socle degree of R/I

is D = a + b + c − β − 3.
(ii) The Macaulay dual generator of R/I is

F =
m∑
i=0

xa−1−iαy(i+1)b−1−βzc−1−iγ ,

where m := max{j | a − 1 − jα ≥ 0 and c − 1 − jγ ≥ 0}.
(iii) The free resolution of R/I is

0 −→ R(−a − b − c + β)

R(−a − b + β)
⊕

R(−a − c + β)
⊕

R(−b − c + β)
⊕

R(−a − γ)
⊕

R(−c − α)

M

R(−a)
⊕

R(−b)
⊕

R(−c)
⊕

R(−a − γ + β)
⊕

R(−c − α + β)

R R/I −→ 0,

where M is a skew-symmetric matrix
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M =

⎡
⎢⎢⎢⎣

0 yb−β 0 −xα 0
−yb−β 0 zγ 0 0

0 −zγ 0 yβ −xa−α

xα 0 −yβ 0 zc−γ

0 0 xa−α −zc−γ 0

⎤
⎥⎥⎥⎦ .

Proof. Firstly, since a is a complete intersection, I = a : yβ is Gorenstein. This proves (i). It is known that 
R/AnnR(F ) is an Artinian Gorenstein algebra of socle degree a + b + c − β − 3. Since I ⊂ AnnR(F ) and 
R/I is an Artinian Gorenstein algebra, by [15, Lemma 1.1], I = AnnR(F ). The item (ii) is proved. Finally, 
(iii) is implied from the structure theorem of Gorenstein ideals of codimension 3 and also from a standard 
mapping cone computation. �

One of the interesting open problems is whether all codimension 3 graded Artinian Gorenstein algebras 
have the WLP in characteristic zero. Now let I be an ideal as in (3.1). By the above proposition, R/I is a 
graded Artinian Gorenstein algebra of codimension 3, hence we are interested in studying the WLP for R/I. 
In the next subsections, we will prove that R/I has the WLP whenever the initial degree of I is at most 
three. In the paper, we denote by Id the identity matrix and by M t the transpose matrix of a matrix M .

3.1. The ideal I contains a quadric

In this subsection, we consider the simplest case where the ideal I contains a quadric.
The first case is b = 2, hence α = β = γ = 1. We obtain the following result.

Proposition 3.2. Let I be the ideal

I = (xa, y2 − xz, zc, xa−1y, yzc−1) ⊂ R

with a ≥ c ≥ 2. Then R/I has the WLP.

Proof. The socle degree of R/I is D = a + c − 2. Set k := �D2 	 = �a+c−2
2 	. Set L = x − y + z. By 

Proposition 2.4, it is enough to show that

×L : [R/I]k −→ [R/I]k+1

is surjective, or equivalently [R/(I, L)]k+1 = 0. We have that

R/(I, L) ∼= K[x, z]/J,

where J = (xa, x2 + xz + z2, zc, xa−1z, xzc−1). We will prove that [K[x, z]/J ]k+1 = 0, or equivalently 
xizk+1−i ∈ J for all 0 ≤ i ≤ k + 1. We do it by induction on i. As a ≥ c, hence c ≤ k + 1. It follows that 
zk+1 and xzk belong to J . For any i ≥ 2, one has

xizk+1−i = x2xi−2zk+1−i = −(z2 + xz)xi−2zk+1−i = −xi−2zk+3−i − xi−1zk+2−i ∈ J,

by the induction hypothesis. �
We now study the case a = 2 or c = 2. By symmetry of x and z, WLOG, we can assume a ≥ c = 2. 

Therefore γ = 1 and a ≥ α + 1 = b. More precisely, we consider the ideal

Iβ = (xa, yb − xb−1z, z2, xa−b+1yb−β , yb−βz) ⊂ R,
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with 1 ≤ β ≤ b − 1 and a ≥ b. Set Aβ = R/Iβ . By Proposition 3.1, the free resolution of Aβ is

0 R(−a − b − 2 + β)

R(−a − 2 + β)
⊕

R(−b − 2 + β)
⊕

R(−a − b + β)
⊕

R(−a − 1)
⊕

R(−b − 1)

R(−2)
⊕

R(−a)
⊕

R(−b)
⊕

R(−a − 1 + β)
⊕

R(−b − 1 + β)

R Aβ 0 . (3.2)

Since we have the free resolution (3.2) of Aβ , for any integer j ≥ 2, we get

HAβ
(j) =2j + 1 −

(
j − a + 1

1

)
−
(
j − b + 1

1

)
−
(
j − a + β

1

)
−

(
j − b + β

1

)
(3.3)

+
(
j − a− b + β + 1

1

)
+
(
j − a− b + β

1

)
,

with convention 
(
n
m

)
= 0 if n < m. By Proposition 3.1, the socle degree of Aβ is D = a + b − β − 1. Set 

k := �D
2 	. Then k − a < 0 and k − a − b + β < 0, it follows from (3.3) that

HAβ
(k) = 2k + 1 −

(
k − b + 1

1

)
−

(
k − a + β

1

)
−

(
k − b + β

1

)
. (3.4)

The Hilbert function of Aβ in degree k is determined as follows.

Lemma 3.3. For every 1 ≤ β ≤ b − 1, one has

HAβ
(k) =

{
2b− β if β ≤ a− b

a + b− 2β + 1 if β ≥ a− b + 1.

Furthermore, if 1 ≤ β ≤ a − b − 1, then

HAβ
(k) = HAβ

(k − 1).

Proof. Firstly, we consider the case where a + b −β is even. Hence k = a+b−β
2 − 1. It follows from (3.4) that

HAβ
(k) = a + b− β − 1 −

(a−b−β
2
1

)
−

(a−b+β
2 − 1

1

)
−

( b−a+β
2 − 1

1

)
.

Since a ≥ b ≥ β + 1 ≥ 2. We consider the following cases.
Case 1: a = b. In this case, β has to be even and it is easy to show that

HAβ
(k) = a + b− 2β + 1.

Case 2: a = b + 1. In this case, β must be odd. Therefore

HAβ
(k) = a + b− β − 1 −

(β+1
2 − 1

1

)
−

(β−1
2 − 1

1

)

=
{

2b− β if β = 1
a + b− 2β + 1 if β ≥ 3.
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Case 3: a = b + 2. In this case, β must be even, hence β ≥ 2. It follows that

HAβ
(k) = a + b− β − 1 −

(β+2
2 − 1

1

)
−

(β−2
2 − 1

1

)

=
{

2b− β if β = 2
a + b− 2β + 1 if β ≥ 4.

Case 4: a ≥ b + 3. Then a − b + β ≥ 4. Therefore, if β ≥ a − b + 4, then

HAβ
(k) = a + b− β − 1 − a− b + β

2 + 1 − b− a + β

2 + 1

= a + b− 2β + 1.

If β ≤ a − b − 2, then

HAβ
(k) = a + b− β − 1 − a− b− β

2 − a− b + β

2 + 1

= 2b− β.

Thus we only consider the case β = a − b + i, −1 ≤ i ≤ 3. But a + b − β is even, therefore both β and a − b

are either even or odd. It follows that we only consider the two cases where β = a − b + 2 or β = a − b. If 
β = a − b + 2, then a straightforward computation shows that

HAβ
(k) = a + b− 2β + 1.

Similarly, if β = a − b then

HAβ
(k) = 3b− a = 2b− β.

Thus we conclude that

HAβ
(k) =

{
2b− β if β ≤ a− b

a + b− 2β + 1 if β ≥ a− b + 2

as desired.
Secondly, we consider the case where a + b − β is odd. Hence k = a+b−β−1

2 . It follows from (3.4) that

HAβ
(k) = a + b− β −

(a−b−β+1
2
1

)
−

(a−b+β−1
2
1

)
−

( b−a+β−1
2
1

)
.

Since a ≥ b ≥ β + 1 ≥ 2. We consider the following cases where a = b, a = b + 1 or a ≥ b + 2. The proof is 
similar as above (even more simple).

Finally, if 1 ≤ β ≤ a − b − 1, then

HAβ
(k) = 2b− β.

Notice that k − a + β < 0 since a − b ≥ β + 1. It follows from (3.3) that

HAβ
(k − 1) = 2k − 1 −

(
k − b

1

)
−

(
k − b + β − 1

1

)
.
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If a + b + β is odd, then

HAβ
(k − 1) = a + b− β − 2 −

(a−b−β−1
2
1

)
−

(a−b+β−1
2 − 1

1

)

=

⎧⎪⎪⎨
⎪⎪⎩

2b− β if a− b = β + 1
2b− β if a− b = β + 3
2b− β if a− b ≥ β + 5

= 2b− β.

If a + b + β is even, then

HAβ
(k − 1) = a + b− β − 3 −

(a−b−β
2 − 1

1

)
−
(a−b+β

2 − 2
1

)

=
{

2b− β if a− b = β + 2
2b− β if a− b ≥ β + 4

= 2b− β.

Thus the lemma is completely proved. �
Lemma 3.4. Set G = R/(xa, yb − xb−1z, z2) and k = �a+b−1

2 	. If a ≥ b, then

HG(k) =
{

2b if a ≥ b + 1
2b− 1 if a = b.

Furthermore, if a ≥ b + 3, then

HG(k) = HG(k − 1).

Proof. Since G is resolved by the Koszul complex and k − a < 0, we have

HG(k) =
(
k + 2

2

)
−

(
k

2

)
−

(
k − b + 2

2

)
−

(
k − b

2

)

= 2k + 1 −
(
k − b + 1

1

)
−

(
k − b

1

)
.

If a + b is odd, then k = a+b−1
2 . A simple computation shows that

HG(k) =
{
a + b− a−b−1

2 − 1 − a−b−1
2 if a− b ≥ 3

a + b− 1 if a− b = 1

= 2b.

If a + b is even, then k = a+b
2 − 1. It follows that

HG(k) =

⎧⎪⎪⎨
⎪⎪⎩
a + b− 1 − a−b

2 − a−b
2 + 1 if a− b ≥ 4

a + b− 1 − 1 if a− b = 2
a + b− 1 if a = b
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=
{

2b if a− b ≥ 2
2b− 1 if a = b.

Analogously we can check that

HG(k − 1) = 2k − 1 −
(
k − b

1

)
−
(
k − b− 1

1

)

=

⎧⎪⎪⎨
⎪⎪⎩

2b if a− b ≥ 3
2b− 1 if 1 ≤ a− b ≤ 2
2b− 3 if a = b.

Thus, if a − b ≥ 3, then HG(k) = HG(k − 1). �
Proposition 3.5. Assume b ≤ a ≤ 2b − 3. Then the ideal

Iβ = (xa, yb − xb−1z, z2, xa−b+1yb−β , yb−βz) ⊂ R

has the WLP, whenever a − b + 2 ≤ β ≤ b − 1.

Proof. Set Aβ = R/Iβ . By Proposition 3.1, one has

Aβ = Aβ−1

(0 : Aβ−1y)
,

for all 2 ≤ β ≤ b − 1. Notice that the socle degree of Aβ is D = a + b − β − 1. Hence if β = a − b + 2, then 
D = 2b − 3 is odd. To prove that Aβ has the WLP for every a − b + 2 ≤ β ≤ b − 1, by Proposition 2.5(i), it 
is enough to prove that Aβ has the WLP whenever D is odd.

Now let β be an integer such that a − b + 2 ≤ β ≤ b − 1 and a + b − β is even. In this case, one has 
k = a+b−β

2 − 1. It follows from Lemma 3.3 that

HAβ
(k) = a + b− 2β + 1.

Clearly, since β ≥ a − b + 2, k < b ≤ a. Therefore, we can take a K-linear basis B = B1 � B2 � B3 of [Aβ ]k
with

B1 = {ui = xk+1−iyi−1 | i = 1, 2, . . . , b− β}

B2 = {vi = xi−1yk+1−i | i = 1, 2, . . . , a− b + 1}

B3 = {wi = xk−iyi−1z | i = 1, 2, . . . , b− β}.

On the other hand, the Macaulay dual generator of Aβ is

F = xa−1yb−β−1z + xa−by2b−β−1.

To prove the proposition, by Proposition 2.8, it is enough to show that HesskB(F ) has nonzero determinant. 
Write
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HesskB(F ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A
... B

... C
· · · · · · · · · · · · · · ·
Bt

... U
... V

· · · · · · · · · · · · · · ·
Ct

... V t
... W

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where A = ((ui · uj) ◦ F ) , B = ((ui · vj) ◦ F ) , C = ((ui · wj) ◦ F ) , U = ((vi · vj) ◦ F ), V = ((vi · wj) ◦ F )
and W = ((wi · wj) ◦ F ).

Notice that A, C, U and W are the square matrices. It follows that the diagonal of HesskB(F ) from the 
top right to the bottom left corner is equal to the diagonals of C, U and Ct. We will show that the entries 
on this diagonal are nonzero and the entries under this line are zero.

Indeed, a straightforward computation shows that the matrix U = (ui,j) is a square matrix of size a −b +1
with

ui,j = (vi · vj) ◦ F = (xi+j−2y2k+2−i−j) ◦ F

=
{
y if i + j = a− b + 2
0 if i + j ≥ a− b + 3

since i + j − 2 ≤ 2a − 2b ≤ 2a − (a + 3) = a − 3. Similarly, the matrix C = (ci,j) is a square matrix of size 
b − β with

ci,j = (ui · wj) ◦ F =
{

(x2k−b+βyb−β−1z) ◦ F if i + j = b− β + 1
(x2k+1−i−jyi+j−2z) ◦ F if i + j ≥ b− β + 2

=
{
x if i + j = b− β + 1
0 if i + j ≥ b− β + 2.

It is easy to see that W = ((wi · wj) ◦ F ) = 0 because wi ·wj contains z2. Finally, V = (vi,j) is a matrix 
of size (a − b + 1) × (b − β) with

vi,j = (vi · wj) ◦ F = (xi−1yk+1−i · xk−jyj−1z) ◦ F

= (xk+i−j−1yk−i+jz) ◦ F.

Notice that k > b −β− 1. Hence if i ≤ j, then k− i + j > b −β− 1. Thus (vi ·wj) ◦F = 0. If i > j, then put 
� := i − j, hence 1 ≤ � ≤ a − b ≤ β − 2. In this case, we will see that k − i + j > b − β − 1. Indeed, one has

k − i + j > b− β − 1 ⇔ 2k − 2� > 2b− 2β − 2,

where the last inequality follows from the fact that

2k − 2� ≥ a + b− β − 2 − (a− b) − (β − 2) ≥ 2b− 2β.

Thus, we see that V = 0.
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We thus conclude that the Hessian of F is

HesskB(F ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ · · · ∗ ∗ · · · ∗ ∗ · · · x
... · · ·

...
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗ x · · · 0
∗ · · · ∗ ∗ · · · y 0 · · · 0
... · · ·

...
... · · ·

...
... · · ·

...
∗ · · · ∗ y · · · 0 0 · · · 0
∗ · · · x 0 · · · 0 0 · · · 0
... · · ·

...
... · · ·

...
... · · ·

...
x · · · 0 0 · · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which has nonzero determinant. �
Proposition 3.6. Assume a ≥ b ≥ 2. Then the ideal

Iβ = (xa, yb − xb−1z, z2, xa−b+1yb−β , yb−βz) ⊂ R

has the WLP, whenever 1 ≤ β ≤ min{a − b + 1, b − 1}.

Proof. Set Aβ = R/Iβ and G = R/(xa, yb − xb−1z, z2). By Proposition 3.1, one has

A1 = G

(0 : Gy)
and Aβ = Aβ−1

(0 : Aβ−1y)
,

for all 2 ≤ β ≤ b −1. Notice that if β = a − b ≤ b −1, then the socle degree of Aβ is odd. By Proposition 2.5
and Lemma 3.3, it is enough to show that A1 has the WLP. We consider the following cases:
Case 1: a + b is even. Then the socle degree of G is a + b − 1 which is odd. Since G is an Artinian complete 
intersection algebra of codimension 3, by [14, Corollary 2.4], G has the WLP. It follows that A1 has the 
WLP by Proposition 2.5(i).
Case 2: a + b is odd. If a ≥ b + 3, then A1 has the WLP by Proposition 2.5(ii) and Lemma 3.4. It follows 
that the remain case is where a = b + 1. More precisely, we have to show that the ideal

I = (xa, ya−1 − xa−2z, z2, x2ya−2, ya−2z)

has the WLP. The socle degree of R/I is 2a − 3, hence k = a − 2. By Lemma 3.3, one has

HR/I(a− 2) = 2a− 3.

Therefore, we can see that a K-linear basis of [R/I]a−2 is B = B1 � B2, where

B1 = {ui = xa−1−iyi−1 | i = 1, 2, . . . , a− 1}
B2 = {ua+i = xa−3−iyiz | i = 0, 1, . . . , a− 3}.

On the other hand, the Macaulay dual generator of R/I is

F = xa−1ya−3z + xy2a−4.

To prove that R/I has the WLP, by Proposition 2.8, it is enough to show that Hessa−2
B (F ) has nonzero 

determinant. Write
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Hessa−2
B (F ) = [Mi,j ] ,

where Mi,j = ((ui · uj) ◦ F ) for all 1 ≤ i, j ≤ 2a − 3.
Notice that M is a square matrix of size 2a − 3. First, we have

ai,2a−2−i = (ui · u2a−2−i) ◦ F

=

⎧⎪⎪⎨
⎪⎪⎩

(xa−2ya−3z) ◦ F if 1 ≤ i ≤ a− 2
(y2a−4) ◦ F if i = a− 1
(xa−2ya−3z) ◦ F if a ≤ i ≤ 2a− 3

= x.

Now we assume that i + j ≥ 2a − 1. If 1 ≤ i ≤ a − 1 then j ≥ a, hence

ai,j = (ui · uj) ◦ F
= (x3a−i−j−4yi+j−a−1z) ◦ F
= 0

since i + j − a − 1 ≥ a − 2. By the symmetry of Mi,j , we only consider the case where i, j ≥ a. In this case, 
we have ai,j = 0 because ui · uj contains z2.

In summary, the Hessian of F is

HesskB(F ) =

⎡
⎢⎢⎢⎢⎣
∗ ∗ · · · ∗ x
∗ ∗ · · · x 0
...

... · · ·
...

...
∗ x · · · 0 0
x 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

which has nonzero determinant. �
We now state our first main result.

Theorem 3.7. Consider the ideal I as in (3.1). If one of the integers a, b and c is equal to 2, then R/I has 
the WLP.

Proof. The theorem was proved for the case b = 2 in Proposition 3.2. By the symmetry of x and z, we can 
always assume that a ≥ c. Now if c = 2, then it follows from Propositions 3.5 and 3.6 that R/I has the 
WLP. �
3.2. The ideal I contains a cubic

In this subsection, we consider the case where the ideal I contains a cubic.
The first case we consider is b = 3. Denote

Iβ = (xa, y3 − xαz3−α, zc, xa−αy3−β , y3−βzc+α−3) ⊂ R,

with a ≥ c and 1 ≤ α, β ≤ 2 such that c + α ≥ 4. The socle degree of R/Iβ is D = a + c − β and the free 
resolution of R/Iβ is
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0 R(−a − c − 3 + β)

R(−a − c + β)
⊕

R(−a − 3 + β)
⊕

R(−c − 3 + β)
⊕

R(−a − 3 + α)
⊕

R(−c − α)

R(−3)
⊕

R(−a)
⊕

R(−c)
⊕

R(−a − 3 + α + β)
⊕

R(−c − α + β)

R R/Iβ −→ 0 . (3.5)

Lemma 3.8. Set G = R/(xa, y3 − xαz3−α, zc) and k = �a+c
2 	. If a ≥ c ≥ 2, then

HG(k) =

⎧⎪⎪⎨
⎪⎪⎩

3c− 2 if a = c

3c− 1 if a = c + 1
3c if a ≥ c + 2.

Furthermore, if a ≥ c + 4, then

HG(k) = HG(k − 1).

Proof. Since G is resolved by the Koszul complex and k − a ≤ 0, we get

HG(k) =
(
k + 2

2

)
−

(
k − 1

2

)
−

(
k − a + 2

2

)
−
(
k − c + 2

2

)
+

(
k − c− 1

2

)

= 3k −
(
k − a + 2

2

)
−

(
k − c + 2

2

)
+

(
k − c− 1

2

)
.

If a + c is odd, then k = a+c−1
2 . It follows that

HG(k) =
{

3c− 1 if a = c + 1
3c if a ≥ c + 3.

If a + c is even, then k = a+c
2 . Therefore

HG(k) =
{

3c− 2 if a = c

3c if a ≥ c + 2.

Analogously we can check that

HG(k − 1) = 3(k − 1) −
(
k − c + 1

2

)
+

(
k − c− 2

2

)

=

⎧⎪⎪⎨
⎪⎪⎩

3c− 3 if a = c or a = c + 1
3c− 1 if a = c + 2 or a = c + 3
3c if a ≥ c + 4.

Thus, if a ≥ c + 4, then HG(k) = HG(k − 1). �
Lemma 3.9. Assume β = 1 and k = �a+c−1

2 	. If a ≥ c, then

HR/I1(k) =
{

3c− 3 if a = c

3c− 3 + α if a ≥ c + 1.
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Furthermore, if a ≥ c + 3, then

HR/I1(k) = HR/I1(k − 1).

Proof. As k − a < 0 and c ≥ γ + 1 ≥ 2, it follows from (3.5) with β = 1 that

HR/I1(k) = 3k −
(
k − c + 1

1

)
−

(
k − c

1

)
−

(
k − c− α + 2

1

)
.

By considering the cases where a = c + j for each j ∈ {0, 1, . . . , 4} or a ≥ c + 5, it is easy to see that

HR/I1(k) =
{

3c− 3 if a = c

3c− 3 + α if a ≥ c + 1.

A straightforward computations also shows that

HR/I1(k − 1) =

⎧⎪⎪⎨
⎪⎪⎩

3c− 6 if a = c

3c− 3 if a = c + 1 or a = c + 2
3c− 3 + α if a ≥ c + 3.

Thus if a ≥ c + 3 then HR/I1(k) = HR/I1(k − 1). �
The following is useful to prove the next results. Recall that the determinant of block matrices can be 

computed as follows: suppose A, B, C and D are matrices of size n ×n, n ×m, m ×n, and m ×m, respectively. 
Then

det

⎡
⎢⎢⎣ A

... B
· · · · · · · · ·
C

... D

⎤
⎥⎥⎦ =

{
det(A) det(D − CA−1B) if A is invertible
det(D) det(A−BD−1C) if D is invertible.

(3.6)

Proposition 3.10. Consider the ideal

Iβ = (xa, y3 − xαz3−α, zc, xa−αy3−β , y3−βzc+α−3),

with a ≥ c and 1 ≤ α, β ≤ 2 such that c + α ≥ 4. Then R/Iβ has the WLP.

Proof. Recall that G = R/(xa, y3 − xαz3−α, zc) is a complete intersection of codimension 3, hence it has 
the WLP. We consider the following two cases:
Case 1: a + c is odd. In this case, the socle degree of G is odd. Hence, R/I1 has the WLP by Proposi-
tions 2.5(i) and 3.1. Now if a ≥ c + 3, then R/I2 also has the WLP by Lemma 3.9 and Proposition 2.5(ii). 
Thus, we only need to prove that

I2 = (xa, y3 − xαz3−α, za−1, xa−αy, yza+α−4)

has the WLP. In this case, one has D = 2a − 3 and k = a − 2.
Subcase 1: α = 1. Set L = x − y + z. By Proposition 2.4, it suffices to show that

×L : [R/I2]a−2 −→ [R/I2]a−1
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is an isomorphism, or equivalently [R/(I2, L)]a−1 = 0. We have

R/(I2, L) ∼= K[x, z]/J,

where J = (xa, x3 + 3x2z + 2xz2 + z3, za−1, xa−1z, xza−3 + za−2). We will prove that [K[x, z]/J ]a−1 = 0, 
or equivalent xiza−1−i ∈ J for all 0 ≤ i ≤ a − 1. We do it by induction on i. We first see that xza−2 and 
x2za−3 ∈ J since za−1, xza−3 + za−2 ∈ J . For any i ≥ 3, one has

xiza−1−i = x3xi−3za−1−i = −(z3 + 2xz2 + 3x2z)xi−3za−1−i

= −xi−3za+2−i − 3xi−2za+1−i − 3xi−1za−i ∈ J,

by the induction hypothesis.
Subcase 2: α = 2. In this case,

I2 = (xa, y3 − x2z, za−1, xa−2y, yza−2).

It follows from (3.5) that

HR/I2(a− 2) = HR/I2(a− 1) =
(
a

2

)
−
(
a− 3

2

)
= 3a− 6.

A K-linear basis of [R/I2]a−2 is B = B1 � B2 � B3, where

B1 = {ui = xa−1−izi−1 | i = 1, 2, . . . , a− 1}

B2 = {vi = xa−2−iyzi−1 | i = 1, 2, . . . , a− 2}

B3 = {wi = xa−3−iy2zi−1 | i = 1, 2, . . . , a− 3}

and a K-linear basis of [R/I2]a−1 is B′ = B′
1 � B′

2 � B′
3, where

B′
1 = {u′

i = xa−izi−1 | i = 1, 2, . . . , a− 1}

B′
2 = {v′i = xa−2−iy2zi−1 | i = 1, 2, . . . , a− 2}

B′
3 = {w′

i = xa−2−iyzi | i = 1, 2, . . . , a− 3}.

Set L = x + y + z. By Proposition 2.4, it is enough to show that

×L : [R/I2]a−2 −→ [R/I2]a−1

is an isomorphism, or equivalently the matrix representation M of ×L with respect to these bases has 
nonzero determinant. It is easy to see that

×L(ui) = xa−izi−1 + xa−1−izi + xa−1−iyzi−1

×L(vi) = xa−1−iyzi−1 + xa−2−iyzi + xa−2−iy2zi−1

×L(wi) = xa−1−izi + xa−2−iy2zi−1 + xa−3−iy2zi

since y3 = x2z in R/I2. It follows that
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M =

⎡
⎢⎢⎢⎢⎢⎢⎣

A
... 0

... Bt

· · · · · · · · · · · · · · ·
0

... Id
... Ct

· · · · · · · · · · · · · · ·
B

... C
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where A, B and C are matrices of size (a − 1) × (a − 1), (a − 3) × (a − 1) and (a − 3) × (a − 2), respectively

A =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 1 0
0 0 · · · 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Set N =

⎡
⎢⎢⎣

A
... 0

· · · · · · · · ·
0

... Id

⎤
⎥⎥⎦. Then det(N) = 1 and a computation shows that

P =
[
B

... C

]⎡⎢⎢⎣
A−1 ... 0
· · · · · · · · ·
0

... Id

⎤
⎥⎥⎦
[
Bt

· · ·
Ct

]
= BA−1Bt + CCt

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 · · · 0 0 0
0 3 1 · · · 0 0 0
1 0 3 · · · 0 0 0
...

...
...

. . .
...

...
...

(−1)a−6 (−1)a−7 (−1)a−8 · · · 3 1 0
(−1)a−5 (−1)a−6 (−1)a−7 · · · 0 3 1
(−1)a−4 (−1)a−5 (−1)a−6 · · · 1 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

has nonzero determinant. Thus, by (3.6), det(M) = det(N) det(−P ) �= 0.
Case 2: a + c is even. In this case, the socle degree of G is even. By Propositions 2.5(i) and 3.1, it is enough 
to show that R/I1 has the WLP. If a ≥ c +4, then R/I1 has the WLP by Proposition 2.5(ii) and Lemma 3.8. 
It remains to consider the cases where a = c or a = c + 2.
Subcase 1: a = c + 2. In this case, k = a − 2. Set L = x − y + z. By Proposition 2.4, it suffices to show that

×L : [R/I1]a−2 −→ [R/I1]a−1

is an isomorphism, or equivalently [R/(I1, L)]a−1 = 0. We have

R/(I1, L) ∼= K[x, z]/J,

where

J = (xa, x3 + 3x2z + 3xz2 + z3 − xαz3−α, za−2, xa−αz2 + 2xa+1−αz, x2za+α−5 + 2xza+α−4).
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We will prove that [K[x, z]/J ]a−1 = 0, or equivalently xiza−1−i ∈ J for all 0 ≤ i ≤ a − 1. We do it 
by induction on i. It is easy to see that za−1 and xza−2 ∈ J since za−2 ∈ J and x2za−3 ∈ J since 
x2za+α−5 + 2xza+α−4 ∈ J . For any i ≥ 3, one has

xiza−1−i = x3xi−3za−1−i = −(z3 + 3xz2 + 3x2z − xαz3−α)xi−3za−1−i

= −xi−3za+2−i − 3xi−2za+1−i − 3xi−1za−i + xi+α−3za+2−α−i ∈ J,

by the induction hypothesis.
Subcase 2: a = c. By symmetry of x and z, we can assume α = 1. More precisely, consider the ideal

I1 = (xa, y3 − xz2, za, xa−1y2, y2za−2).

It follows that k = a − 1 and

HR/I1(a) = HR/I1(a− 1) = 3a− 3

by Lemma 3.9. It is easy to see that [R/I1]a−1 has a basis B = B1 � B2 � B3, where

B1 = {ui = xa−izi−1 | i = 1, 2, . . . , a}
B2 = {vi = xa−1−iyzi−1 | i = 1, 2, . . . , a− 1}
B3 = {wi = xa−2−iy2zi−1 | i = 1, 2, . . . , a− 2}

and [R/I1]a has a basis B′ = B′
1 � B′

2 � B′
3, where

B′
1 = {u′

i = xa−iyzi−1 | i = 1, 2, . . . , a}
B′

2 = {v′i = xa−izi | i = 1, 2, . . . , a− 1}
B′

3 = {w′
i = xa−1−iy2zi−1 | i = 1, 2, . . . , a− 2}.

Set L = x + y + z. By Proposition 2.4, it is enough to show that

×L : [R/I1]a−1 −→ [R/I1]a

is an isomorphism, or equivalently the matrix representation M of ×L with respect to these bases has 
nonzero determinant. It is easy to see that

×L(ui) = xa+1−izi−1 + xa−izi + xa−iyzi−1

×L(vi) = xa−iyzi−1 + xa−1−iyzi + xa−1−iy2zi−1

×L(wi) = xa−1−iy2zi−1 + xa−2−iy2zi + xa−1−izi+1,

as y3 = xz2 in R/I1. It follows that

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

Id
... At

... 0
· · · · · · · · · · · · · · ·
A

... 0
... C

· · · · · · · · · · · · · · ·
0

... B
... D

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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where A, B, C and D are the matrices of size (a −1) ×a, (a −2) ×(a −1), (a −1) ×(a −2) and (a −2) ×(a −2)
respectively, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 1 0
0 0 · · · 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎦ .

It follows from (3.6) that

det(M) = det

⎡
⎢⎢⎣
−AAt

... C
· · · · · · · · ·
B

... D

⎤
⎥⎥⎦

= det
(
−AAt − CD−1B

)
.

A computation as in the proof of the above subcase 2 in Case 1 shows that the matrix P = AAt +CD−1B

has nonzero determinant, hence det(M) �= 0. �
Now we consider the case where c = 3. More precisely, consider

Iβ = (xa, yb − xαzγ , z3, xa−αyb−β , yb−βz3−γ) ⊂ R,

where 1 ≤ α ≤ a − 1, 1 ≤ β ≤ b − 1 and 1 ≤ γ ≤ 2 such that α+ γ = b. It is clear that a ≥ b − 1 and a ≥ 3.
First, we have the following.

Lemma 3.11. Set G = R/(xa, yb − xαzb−α, z3) and k = �a+b
2 	. If a ≥ b − 1, then

HG(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3b− 4 if a = b− 1
3b− 2 if a = b

3b− 1 if a = b + 1
3b if a ≥ b + 2.

Furthermore, if a ≥ b + 4, then

HG(k) = HG(k − 1).

Proof. The proof proceeds along the same lines as in Lemma 3.8. �
Recall that the socle degree of R/Iβ is D = a + b − β and k = �a+b−β

2 	. Since the free resolution of R/Iβ
is
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0 R(−a − b − 3 + β)

R(−a − b + β)
⊕

R(−a − 3 + β)
⊕

R(−b − 3 + β)
⊕

R(−a − γ)
⊕

R(−3 − α)

R(−a)
⊕

R(−b)
⊕

R(−3)
⊕

R(−a − γ + β)
⊕

R(−3 − α + β)

R R/Iβ 0, (3.7)

we can determine the Hilbert function of R/Iβ in degree k as follows.

Lemma 3.12. For every 1 ≤ β ≤ b − 1. Set k = �a+b−β
2 	.

(1) If γ = 1, then a ≥ b and

HR/Iβ (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3b− 3 if a = b and β = 1
3b− β if β ≤ a− b

3b− β − 1 if β = a− b + 1 ≥ 2
2a + b− 3β + 2 if β ≥ a− b + 2.

(2) If γ = 2, then

HR/Iβ (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3b− 4 if a = b− 1 and β = 1
3b− 3 if a = b and β = 1
3b− 2β if β ≤ a− b + 1 and a �= b

a + 2b− 3β + 2 if β ≥ a− b + 2 ≥ 2.

(3) Furthermore, if 1 ≤ β ≤ a − b − 2, then

HR/Iβ (k) = HR/Iβ (k − 1).

Proof. Notice that k < a + b − β and k < a + γ. It follows from (3.7) that

HR/Iβ (k) =
(
k + 2

2

)
−

(
k − 1

2

)
−
(
k − a + 2

2

)
−
(
k − b + 2

2

)
−
(
k − a− γ + β + 2

2

)

−
(
k − α + β − 1

2

)
+

(
k − a + β − 1

2

)
+
(
k − b + β − 1

2

)
+

(
k − α− 1

2

)
.

If γ = 1 then a ≥ b and

HR/Iβ
(k) = 3k −

(k − b + 1
1

)
−

(k − b

1

)
−

(k − b + β − 1
1

)
−

(k − a + β

1

)
−

(k − a + β − 1
1

)
.

If γ = 2, then

HR/Iβ (k) =
{

3b− 4 if a = b− 1 and β = 1
3k −

(
k−b+1

1
)
−

(
k−b+β

1
)
−

(
k−b+β−1

1
)
−
(
k−a+β−1

1
)

otherwise.

Firstly, if a + b − β is even, then k = a+b−β .
2
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Case 1: β ≥ a− b + 2. If β ≥ a − b + 6, then k − a + β ≥ 3, k − b + β ≥ 2 and k − b + 3 ≤ 0, hence

HR/Iβ (k) =
{

2a + b− 3β + 2 if γ = 1
a + 2b− 3β + 2 if γ = 2.

A direct computation for the cases where β = a − b + 2 or β = a − b + 4 also shows that

HR/Iβ (k) =
{

2a + b− 3β + 2 if γ = 1
a + 2b− 3β + 2 if γ = 2.

Case 2: β ≤ a− b. If β ≤ a −b −2, then k−a +β+1 ≤ 0 and k−b ≥ 1, hence a straightforward computation 
shows that

HR/Iβ (k) =
{

3b− β if γ = 1
3b− 2β if γ = 2.

If β = a − b, then a simple computation shows that

HR/Iβ (k) =
{

3b− β if γ = 1
3b− 2β if γ = 2.

Secondly, if a + b − β is odd, then k = a+b−β−1
2 . The proof is similar to the case a + b − β even.

Finally, a similar computation also shows that if 1 ≤ β ≤ a − b − 2, then

HR/Iβ (k) = HR/Iβ (k − 1). �
Proposition 3.13. Assume that a ≥ b + 1, 1 ≤ α ≤ a − 1 and 1 ≤ γ ≤ 2 such that α + γ = b. If 
1 ≤ β ≤ min{a − b, b − 1}, then the ideal

Iβ = (xa, yb − xαzγ , z3, xa−αyb−β , yb−βz3−γ) ⊂ R

has the WLP.

Proof. Set G = R/(xa, yb − xαzγ , z3) and Aβ = R/Iβ . By Proposition 3.1, one has

A1 = G

(0 : Gy)
and Aβ = Aβ−1

(0 : Aβ−1y)
,

for all 2 ≤ β ≤ b − 1. Notice that if a ≥ b + 2 and β = a − b − 1 ≤ b − 1, then the socle degree of Aβ is odd. 
By Proposition 2.5 and Lemma 3.12, it is enough to show that A1 has the WLP. We consider the following 
cases:
Case 1: a + b is odd. Then the socle degree of G is odd. Since G is an Artinian complete intersection al-
gebra of codimension 3, G has the WLP [14, Corollary 2.4]. Thus it follows that A1 has the WLP by 
Proposition 2.5(i).
Case 2: a + b is even. If a − b ≥ 4, then A1 has the WLP by Proposition 2.5(ii) and Lemma 3.11. As a + b

is even, hence we only consider the case where a = b + 2. Firstly, we will prove that A1 has the WLP for 
γ = 1. More precisely, consider the ideal

I = (xb+2, yb − xb−1z, z3, x3yb−1, yb−1z2) ⊂ R.
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In this case, we have k = b and HR/I(b) = 3b −1 by Lemma 3.12. A K-linear basis of [R/I]b is B = B1�B2�B3, 
where

B1 = {ui = xb+1−iyi−1 | i = 1, 2, . . . , b + 1}

B2 = {ub+1+i = xb−1−iyiz | i = 1, 2, . . . , b− 1}

B3 = {u2b+i = xb−1−iyi−1z2 | i = 1, 2, . . . , b− 1}.

On the other hand, the Macaulay dual generator of R/I is

F = xb+1yb−2z2 + x2y2b−2z + x3−by3b−2,

where the last monomial does not appear in F if b > 3. To prove the proposition, by Proposition 2.8, it is 
enough to show that HessbB(F ) = [Mi,j ] has nonzero determinant. A straightforward computation shows 
that

Mi,j = (ui · uj) ◦ F =
{
x if i + j = 3b
0 if i + j ≥ 3b + 1.

It follows that HessbB(F ) has nonzero determinant.
It remains to show that R/I has the WLP for the case γ = 2. In this case, we have

I = (xb+2, yb − xb−2z2, z3, x4yb−1, yb−1z).

It follows that k = b and

HR/I(b) = HR/I(b + 1) = 3b− 2

by Lemma 3.12. Set L = x + y + z. By Proposition 2.4, it is enough to show that

×L : [R/I]b −→ [R/I]b+1

is an isomorphism. To do it, let B and B′ be the K-linear bases of [R/I]b and [R/I]b+1, respectively and let 
M be the matrix representation of ×L with respect to these bases. Write B = B1 � B2 � B3, where

B1 = {ui = xb+1−iyi−1 | i = 1, 2, . . . , b}

B2 = {vi = xb−iyi−1z | i = 1, 2, . . . , b− 1}

B3 = {wi = xb−1−iyi−1z2 | i = 1, 2, . . . , b− 1}

and B′ = B′
1 � B′

2 � B′
3, where

B′
1 = {u′

i = xb+2−iyi−1 | i = 1, 2, . . . , b}

B′
2 = {v′i = xb+1−iyi−1z | i = 1, 2, . . . , b− 1}

B′
3 = {w′

i = xb−iyi−1z2 | i = 1, 2, . . . , b− 1}.

It is easy to see that
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×L(ui) = xb+2−iyi−1 + xb+1−iyi + xb+1−iyi−1z

×L(vi) = xb+1−iyi−1z + xb−iyiz + xb−iyi−1z2

×L(wi) = xb−iyi−1z2 + xb−1−iyiz2

and thus M is a lower trianguler matrix and all the entries on the main diagonal are one. It follows that 
det(M) = 1. �
Proposition 3.14. Assume that 1 ≤ α ≤ a −1, 1 ≤ β ≤ b −1 and 1 ≤ γ ≤ 2 such that α+γ = b. If a ≤ 2b −2, 
then the ideal

Iβ = (xa, yb − xαzγ , z3, xa−αyb−β , yb−βz3−γ) ⊂ R

has the WLP, whenever a − b + 1 ≤ β ≤ b − 1.

Proof. Notice that the socle degree of R/Iβ is D = a +b −β. Therefore, if β = a −b +1 ≥ 1, then D = 2b −1
is odd. To prove that R/I has the WLP for all a − b + 1 ≤ β ≤ b − 1, by Propositions 2.5(i) and 3.1, it is 
enough to prove that R/I has the WLP whenever a + b − β is odd.

Now let β ≥ 1 be an integer such that a − b + 1 ≤ β ≤ b − 1 and a + b − β is odd. In this case, one has 
k = a+b−β−1

2 . We will prove that R/I has the WLP by considering the following cases:
Case 1: β = a− b + 1. There are the following two subcases.
Subcase 1: β = 1. More precisely, we consider the ideal

I =
{

(xa, ya − xa−1z, z3, xya−1, ya−1z2) if γ = 1
(xa, ya − xa−2z2, z3, x2ya−1, ya−1z) if γ = 2.

Hence k = a − 1 and by Lemma 3.12, one has

HR/I(a− 1) = HR/I(a) = 3a− 3.

Set L = x + y + z. By Proposition 2.4, it is enough to show that

×L : [R/I]a−1 −→ [R/I]a

is an isomorphism. To do it, let B and B′ be the K-linear bases of [R/I]a−1 and [R/I]a, respectively and 
we will prove that the matrix representation M of ×L with respect to these bases has nonzero determinant. 
We do it for the case γ = 1. The case γ = 2 is similarly proved. In this case, we write B = B1 � B2 � B3, 
where

B1 = {ui = xa−iyi−1 | i = 1, 2, . . . , a}
B2 = {vi = xa−1−iyi−1z | i = 1, 2, . . . , a− 1}
B3 = {wi = xa−2−iyi−1z2 | i = 1, 2, . . . , a− 2},

and B′ = B′
1 � B′

2 � B′
3, where

B′
1 = {u′

i = xa−iyi−1z | i = 1, 2, . . . , a}
B′

2 = {v′i = xa−1−iyi−1z2 | i = 1, 2, . . . , a− 1}
B′

3 = {w′
i = xa−iyi | i = 1, 2, . . . , a− 2}.
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It is easy to see that

×L(ui) = xa+1−iyi−1 + xa−iyi + xa−iyi−1z

×L(vi) = xa−iyi−1z + xa−1−iyiz + xa−1−iyi−1z2

×L(wi) = xa−1−iyi−1z2 + xa−2−iyiz2.

It follows that

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

Id
... A12

... 0
· · · · · · · · · · · · · · ·
0

... Id
... A23

· · · · · · · · · · · · · · ·
A31

... 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where

A12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 1 1
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A23 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 1 1
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A31 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 0 0 0 0
0 1 · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · 1 1 0 0
0 0 · · · 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

By using (3.6), one has

det(M) = det(A31A12A23) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 · · · 0 0 0
3 3 1 · · · 0 0 0
1 3 3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 3 1 0
0 0 0 · · · 3 3 1
0 0 0 · · · 1 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�= 0,

since the last matrix is a Toeplitz matrix which is invertible by [1, Lemma 3.4].
Subcase 2: β = a− b + 1 ≥ 2. More precisely, we consider the ideal

I =
{

(xa, yb − xb−1z, z3, xβyb−β , yb−βz2) if γ = 1
(xa, yb − xb−2z2, z3, xβ+1yb−β , yb−βz) if γ = 2.

In this case, one has k = b − 1 and

HR/I(b) = HR/I(b− 1) =
{

3b− β − 1 if γ = 1
3b− 2β if γ = 2

by Lemma 3.12. Let B and B′ be a K-linear basis of [R/I]b−1 and [R/I]b, respectively. Set L = x + y + z. 
By Proposition 2.4, it is enough to show that

×L : [R/I]b−1 −→ [R/I]b
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is an isomorphism, or equivalently the matrix representation M of ×L with respect to these bases has nonzero 
determinant. To do it, we first consider the case where γ = 1. In this case, we write B = B1 �B2 �B3, where

B1 = {ui = xb−iyi−1 | i = 1, 2, . . . , b}

B2 = {vi = xb−1−iyi−1z | i = 1, 2, . . . , b− 1}

B3 = {wi = xb−2−iyi−1z2 | i = 1, 2, . . . , b− β}

and B′ = B′
1 � B′

2 � B′
3, where

B′
1 = {u′

i | 1 ≤ i ≤ b} where u′
i =

{
xb+1−iyi−1 if i = 1, 2, . . . , b− β

xb−iyi if i = b− β + 1, . . . , b

B′
2 = {v′i = xb−1−iyiz | i = 1, 2, . . . , b− 1}

B′
3 = {w′

i = xb−1−iyi−1z2 | i = 1, 2, . . . , b− β}.

Since z3 = 0 in R/I, it is easy to see that

×L(ui) = xb+1−iyi−1 + xb−iyi + xb−iyi−1z

×L(vi) = xb−iyi−1z + xb−1−iyiz + xb−1−iyi−1z2

×L(wi) = xb−1−iyi−1z2 + xb−2−iyiz2.

It follows that

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11
... 0

... 0
· · · · · · · · · · · · · · ·
A21

... A22
... 0

· · · · · · · · · · · · · · ·
0

... A32
... A33

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where

A22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and A33 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

By (3.6), we get

det(M) = det(A33) det(A22) det(A11) = det(A11) = 1

since
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A11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0 0 · · · 0 0
1 1 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 1 1 0 0 · · · 0 0
0 0 · · · 0 0 1 1 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 1 1
0 0 · · · 0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To complete this subcase, we consider the case where γ = 2. In this case, we write B = B1 �B2 �B3, where

B1 = {ui = xb−iyi−1 | 1 ≤ i ≤ b}
B2 = {vi = xb−1−iyi−1z | 1 ≤ i ≤ b− β}
B3 = {wi = xb−2−iyi−1z2 | 1 ≤ i ≤ b− β}

and B′ = B′
1 � B′

2 � B′
3, where

B′
1 = {u′

i | 1 ≤ i ≤ b} where u′
i =

{
xb+1−iyi−1 if i = 1, 2, . . . , b− β

xb−iyi if i = b− β + 1, . . . , b

B′
2 = {v′i = xb−iyi−1z | i = 1, 2, . . . , b− β}

B′
3 = {w′

i = xb−1−iyi−1z2 | i = 1, 2, . . . , b− β}.

Since z3 = 0 in R/I, it is easy to see that

×L(ui) = xb+1−iyi−1 + xb−iyi + xb−iyi−1z

×L(vi) = xb−iyi−1z + xb−1−iyiz + xb−1−iyi−1z2

×L(wi) = xb−1−iyi−1z2 + xb−2−iyiz2.

Therefore

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11
... 0

... 0
· · · · · · · · · · · · · · ·
A21

... A22
... 0

· · · · · · · · · · · · · · ·
0

... A32
... A33

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where A11, A22 and A33 are the same forms as in the case γ = 1. By (3.6), one has

det(M) = det(A33) det(A22) det(A11) = 1.

Case 2: β ≥ a− b + 3. In this case, one has k = a+b−β−1
2 and

HR/I(k + 1) = HR/I(k) =
{

2a + b− 3β + 2 if γ = 1
a + 2b− 3β + 2 if γ = 2
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by Lemma 3.12. Let B and B′ be a K-linear basis of [R/I]k and [R/I]k+1, respectively. Set L = x + y + z. 
By Proposition 2.4, it is enough to show that

×L : [R/I]k −→ [R/I]k+1

is an isomorphism, or equivalently the matrix representation M of ×L with respect to these bases has 
nonzero determinant. To do it, we consider the case where γ = 1. The case γ = 2 is similarly proved, even 
more simple. In the case, the ideal

I = (xa, yb − xb−1z, z3, xa−b+1yb−β , yb−βz2).

Clearly, since β ≥ a − b + 3, a + 1 − β ≤ k ≤ b − 2 ≤ a − 2. Therefore, it is easy to show that a K-linear 
basis of [R/I]k is B = B1 � B2 � B3, where

B1 = {ui | 1 ≤ i ≤ a− β + 1}
B2 = {vi | 1 ≤ i ≤ a− β + 1}
B3 = {wi = xk−1−iyi−1z2 | i = 1, 2, . . . , b− β},

where

ui =
{
xk+1−iyi−1 if 1 ≤ i ≤ b− β

xa−β+1−iyk−a+β+i−1 if b− β + 1 ≤ i ≤ a− β + 1

vi =
{
xk−iyi−1z if 1 ≤ i ≤ b− β

xa−β+1−iyk−a+β+i−2z if b− β + 1 ≤ i ≤ a− β + 1

and a K-linear basis of [R/I]k+1 is B′ = B′
1 � B′

2 � B′
3, where

B′
1 = {u′

i | 1 ≤ i ≤ a− β + 1}
B′

2 = {v′i | 1 ≤ i ≤ a− β + 1}
B′

3 = {w′
i = xk−iyi−1z2 | i = 1, 2, . . . , b− β},

where

u′
i =

{
xk+2−iyi−1 if 1 ≤ i ≤ b− β

xa−β+1−iyk−a+β+i if b− β + 1 ≤ i ≤ a− β + 1

v′i =
{
xk+1−iyi−1z if 1 ≤ i ≤ b− β

xa−β+1−iyk−a+β+i−1z if b− β + 1 ≤ i ≤ a− β + 1.

It follows that

×L(ui) =

⎧⎪⎪⎨
⎪⎪⎩
xk+2−iyi−1 + xk+1−iyi + xk+1−iyi−1z if 1 ≤ i ≤ b− β

xa−β+2−iyk−a+β+i−1 + xa−β+1−iyk−a+β+i

+xa−β+1−iyk−a+β+i−1z if b− β + 1 ≤ i ≤ a− β + 1

×L(vi) =

⎧⎪⎪⎨
⎪⎪⎩
xk+1−iyi−1z + xk−iyiz + xk−iyi−1z2 if 1 ≤ i ≤ b− β

xa−β+2−iyk−a+β+i−1z + xa−β+1−iyk−a+β+iz

+xa−β+1−iyk−a+β+i−1z2 if b− β + 1 ≤ i ≤ a− β + 1
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×L(wi) = xk−iyi−1z2 + xk−1−iyiz2

and hence

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11
... 0

... 0
· · · · · · · · · · · · · · ·
A21

... A22
... 0

· · · · · · · · · · · · · · ·
0

... A32
... A33

⎤
⎥⎥⎥⎥⎥⎥⎦
.

A simple computation shows that A11, A22 and A33 are the invertible matrices. It follows from (3.6) that

det(M) = det(A33) det(A22) det(A11) �= 0. �
Our second main result is the following.

Theorem 3.15. Consider the ideal I as in (3.1). If one of the a, b and c is equal to 3, then R/I has the WLP.

Proof. If b = 3, then R/I has the WLP by Proposition 3.10. By symmetry of x and z, we can always 
assume that a ≥ c. Therefore, it suffices to prove that R/I has the WLP whenever c = 3. It follows from 
Propositions 3.13 and 3.14 that R/I has the WLP in this case. �
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