
PHYSICAL REVIEW C 101, 034601 (2020)
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By focusing on the asymmetric shape of cross section, we analyze pairing effect on the partial wave
components of cross section for neutron elastic scattering off stable and unstable nuclei within the Hartree-
Fock-Bogoliubov framework. Explicit expressions for Fano parameters ql j and εl j have been derived and pairing
effects have been analyzed in terms of these parameters, and the Fano effect was found on the neutron elastic
scattering off the stable nucleus in terms of the pairing correlation. The Fano effect appeared as the asymmetric
line shape of the cross section caused by small absolute value of ql j due to small pairing effect on the deep-lying
hole state of stable nucleus. In the case of unstable nuclei, the large ql j value is expected because of small
absolute value of Fermi energy. The quasiparticle resonance with large ql j forms Breit-Wigner-type shape in
elastic-scattering cross section.
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I. INTRODUCTION

The Fano effect [1] has been known as a universal quantum
phenomenon in which the transition probability becomes a
characteristic asymmetric shape caused by the interference
effect due to the correlation between discrete states (or res-
onance) and continuum. Many examples of Fano effect can
be found in physics even though the mechanism is quite
different for each example. Raman scattering [2,3], photoelec-
tric emission [4], photoionization [5], photoabsorption [6],
and neutron scattering [7] are examples which have been
known in spectroscopy. Recently, in atomic and condensed
matter physics, experimental research to control the Fano
effect has been started [8,9] in order to investigate the detailed
dynamical system of Fano effect. Also in nuclear physics,
some observed resonances have been reported as candidate of
the Fano resonance [10,11]; however, so far there has been no
detailed study/analysis in terms of the Fano parameters.

In nuclear physics, sharp resonances found in the experi-
mental data of 15N(7Li, 7Be)15C reaction have been analyzed
by using the channel-coupling equation and introduced as the
candidates for the Fano resonance [10]. Another candidate
for the Fano resonance in nuclei is quasiparticle resonance
(or pair resonance) due to the particle-hole configuration
mixing caused by pairing effect at the ground state of the
open-shell nuclei. The experimental cross-section data of
the d ( 9Li, 10Li)p reaction has been analyzed in terms of
the effect of the pair resonance based on the Hartree-Fock-
Bogoliubov (HFB) formalism [11]. Despite mentioning the
possibility that these two candidates introduced in previous
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studies are Fano effect, there was no detailed study on Fano
parameters.

The aim of this study is to organize the Fano formula for
neutron elastic scattering on the open-shell nuclei with the
help of Jost function formalism [12] based on HFB [13], and
we shall discuss the role of Fano parameters for the quasipar-
ticle resonances seen in partial cross section of neutron elastic
scattering. This is because characteristic asymmetric shapes
of the cross sections have been shown as the numerical results
obtained by the HFB framework [13].

First, we divide the Jost function into two parts: the scat-
tering part and the pairing part. The Gell-Mann-Goldberger
relation for the T matrix (expressed by the Jost function)
has been obtained based on the HFB approach. Second, we
derive explicit expressions of the Fano parameters q and ε

for the neutron elastic scattering by open-shell nuclei within
the HFB framework. Finally, the role of Fano parameters has
been analyzed in comparison with the square of the T matrix
plotted as a function of incident energy of neutron.

II. METHOD

A. Gell-Mann-Goldberger relation in HFB

The Jost function based on the HFB [13] can be divided as

[J (±)
l j (E )]s1 = δs1J (±)

0,l j[k1(E )] ∓ 2m

h̄2

k1(E )

i

×
∫

drϕ(±)
0,l j[r; k1(E )]�(r)ϕ(rs)

2,l j (r; E ), (1)

using the Hartree-Fock (HF) solutions ϕ
(±)
0,l j[r; k1(E )] which

satisfy the out-going/in-coming boundary conditions, and
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ϕ
(rs)
2,l j (r; E ) is the lower component of the HFB solution which

is regular at the origin r = 0, where E is the quasiparticle
energy and k1(E ) is the momentum defined by k1(E ) =√

2m
h̄2 (λ + E ) with the Fermi energy λ(< 0). J (±)

0,l j[k1(E )] is the

HF Jost function given by

J (±)
0,l j[k1(E )]

= 1 ∓ 2m

h̄2

k1(E )

i

∫
drrh(±)

l [k1(E )r]Ul j (r)ϕr
0,l j[r; k1(E )],

(2)

where Ul j (r) and �(r) are the HF mean field and the pair
potential, respectively. We adopt the same Woods-Saxon form
and their parameters as in Ref. [13] for numerical calculation.
ϕr

0,l j[r; k1(E )] is the regular solution of the HF equation.

ϕr
0,l j[r; k1(E )] and ϕ

(±)
0,l j[r; k1(E )] are connected by using

J (±)
0,l j[k1(E )] as

ϕr
0,l j[r; k1(E )] = 1

2 {J (+)
0,l j[k1(E )]ϕ(−)

0,l j[r; k1(E )]

+ J (−)
0,l j[k1(E )]ϕ(+)

0,l j[r; k1(E )]}. (3)

From Eqs. (1) and (3), we derive

[J (−)
l j (E )]s1J (+)

0,l j[k1(E )] − [J (+)
l j (E )]s1J (−)

0,l j[k1(E )]

= 2m

h̄2

2k1(E )

i

∫
drϕr

0,l j[r; k1(E )]�(r)ϕ(rs)
2,l j (r; E ). (4)

Applying the HFB T matrix given by Eq. (60) in Ref. [13]
and the HF T matrix given by

T (0)
l j (E ) = i

2

{
J (−)

0,l j[k1(E )]

J (+)
0,l j[k1(E )]

− 1

}

= 2mk1(E )

h̄2

∫ ∞

0
drr jl [k1(E )r]Ul j (r)ψ (+)

0,l j[r; k1(E )]

= 2mk1(E )

h̄2 〈 jl [k1(E )]|Ul j |ψ (+)
0,l j[k1(E )]〉 (5)

to Eq. (4), we obtain

Tl j (E ) − T (0)
l j (E )

= 2mk1(E )

h̄2

∫
drψ (+)

0,l j[r; k1(E )]�(r)ψ (+)
2,l j (r; E ), (6)

where ψ
(±)
0,l j[r; k1(E )] = ϕr

0,l j[r; k1(E )]/J (±)
0,l j[k1(E )] and

ψ
(+)
2,l j (r; E ) is the lower component of the HFB scattering

wave function [13].
Equation (6) is the “Gell-Mann-Goldberger relation” (two

potential formula) [14,15] in the HFB formalism. We can
read that the right-hand side of Eq. (6) represents the tran-
sition from the holelike component (lower component) of the
HFB scattering states to the HF scattering states caused by
the pairing field �(r). The HFB scattering wave function

ψ
(+)
l j (r; E ) = [

ψ
(+)
1,l j (r; E )

ψ
(+)
2,l j (r; E )

] can be represented in the integral form

as[
ψ

(+)
1,l j (r; E )

ψ
(+)
2,l j (r; E )

]
=

[
ψ

(+)
0,l j (= [r; k1(E )]

0

]

+
∫

dr′
[G11

l j (r, r′; E ) G12
l j (r, r′; E )

G21
l j (r, r′; E ) G22

l j (r, r′; E )

]

×
[

0 �(r′)

�(r′) 0

][
ψ

(+)
0,l j[r

′; k1(E )]

0

]
, (7)

using the HFB Green’s function given by 2 × 2 matrix form
[16–18].

Inserting Eq. (7) into the right-hand side of Eq. (6), one
obtains

Tl j (E ) − T (0)
l j (E )

= 2mk1(E )

h̄2

∫∫
drdr′ψ (+)

0,l j[r; k1(E )]�(r)

×G22
l j (r, r′; E )�(r′)ψ (+)

0,l j[r
′; k1(E )]. (8)

Since it has been proved that S11
l j (E ) satisfies the unitarity

on the scattering states defined on the real axis of E above
the Fermi energy −λ in Ref. [13], S11

l j (E ) can be expressed
as S11

l j (E ) = e2iδl j (E ). (The quasiparticle energy E is hereafter

supposed to be on the scattering states.) Also S(0)
l j (E ) can

be expressed S(0)
l j (E ) = e2iδ(0)

l j (E ) because of no absorption in

Ul j (r). Here, let us define a phase shift as δ
(1)
l j ≡ δl j − δ

(0)
l j to

define T (1)
l j ≡ −eiδ(1)

l j (E ) sin δ
(1)
l j (E ), and it may be rather trivial

that Tl j (E ), T (0)
l j (E ), and T (1)

l j (E ) are related by

Tl j (E ) = T (0)
l j (E ) + T (1)

l j (E )S(0)
l j (E ) (9)

= T (0)
l j (E )

[
1 − iT (1)

l j (E )
]

+ T (1)
l j (E )

[
1 − iT (0)

l j (E )
]
. (10)

B. Fano parameters

In this paper, we analyze the pairing effect on the partial
cross sections of p1/2 with λ = −8.0 MeV and d3/2 with λ =
−1.0 MeV by using the same Woods-Saxon parameters for
the numerical calculation as in Ref. [13]. Both resonances are
the so-called hole-type resonances originated from the hole
state resulting from particle-hole (p-h) configuration mixing
due to the pairing. As shown in Fig. 6 of Ref. [13], there is
only one hole state for both p1/2 and d3/2 at the no-pairing
limit.

In such cases, the Hartree-Fock-Green function can be
expressed as

GHF,l j[r, r′; ε(k)]

= φh,l j (r)φ∗
h,l j (r

′)

ε(k) − eh
− i

2mk

h̄2 ψ
(+)
0,l j (r; k)ψ (+)∗

0,l j (r′; k)

+ 2m

h̄2

2

π
P

∫ ∞

0
dk′k′2 ψ

(+)
0,l j (r; k′)ψ (+)∗

0,l j (r′; k′)

k2 − k′2 , (11)
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by dividing the continuum part into the principal and other
parts in the spectral representation. Here ε(k) = h̄2k2

2m .
Using Eq. (11), we obtain

〈φh,l j |G22
l j (E )|φh,l j〉 = 1

E − λ + eh − Fl j (E ) + i
l j (E )/2
,

(12)

Fl j (E ) = 2m

h̄2

2

π
P

∫ ∞

0
dk′k′2

× |〈ψ (+)
0,l j (k

′)|�|φh,l j〉|2
k2

1 (E ) − k′2 , (13)


l j (E )/2 = 2mk1(E )

h̄2 |〈ψ (+)
0,l j[k1(E )]|�|φh,l j〉|2,

(14)

as an exact solution of the HFB Dyson equation for Gl j .
Using Eqs. (8), (10), and (12), we derive

T (1)
l j (E ) = 
l j (E )/2

E − λ + eh − Fl j (E ) + i
l j (E )/2
. (15)

This is the typical Breit-Wigner formula for the hole-type
quasiparticle resonance. From this formula, we can notice that
the hole state which satisfies 2λ − eh − Fl j (E ) > 0 can be
observed as the quasiparticle resonance in the neutron elastic
scattering cross section since the incident neutron energy Ei is
defined by Ei = E + λ.

One of the parameters introduced by U. Fano [1], εl j (E ) is
defined by

εl j (E ) = 1 − iT (1)
l j (E )

T (1)
l j (E )

, (16)

= E − λ + eh − Fl j (E )


l j (E )/2
. (17)

We notice that the quasiparticle resonance energy Er and the
width 
l j (Er ) can be estimated as

εl j (E = Er ) = 0, (18)

dεl j (E )

dE

∣∣∣∣
E=Er

= 2


l j (Er )
, (19)

by using Eq. (17).

When 〈ψ (+)
0,l j (k1(E ))|�|φh,l j〉 	= 0, we can obtain

1 − iT (0)
l j (E ) = 〈ψ (+)

0,l j[k1(E )]|�|φh,l j〉 − iT (0)
l j (E )〈ψ (+)

0,l j[k1(E )]|�|φh,l j〉
〈ψ (+)

0,l j[k1(E )]|�|φh,l j〉

= 〈ψ (+)
0,l j[k1(E )]|�|φh,l j〉 − 〈 jl [k1(E )]|Ul jG∗

HF,l j�|φh,l j〉
〈ψ (+)

0,l j[k1(E )]|�|φh,l j〉

+ 2m

h̄2

2

π
P

∫ ∞

0
dk′k′2 〈 jl [k1(E )]|Ul j |ψ (+)

0,l j (k
′)〉〈ψ (+)

0,l j (k
′)|�|φh,l j〉

[k2
1 (E ) − k′2]〈ψ (+)

0,l j[k1(E )]|�|φh,l j〉
, (20)

by using Eqs. (5) and (11). Note that 〈 jl [k1(E )]|Ul j |φh,l j〉 = 0 is also used.
Since |ψ (+)

0,l j (k)〉 satisfies the Lippmann-Schwinger equation |ψ (+)
0,l j (k)〉 = (1 + GHF,l jUl j )| jl (k)〉, we rewrite Eq. (20) as

1 − iT (0)
l j (E ) =

〈 jl [k1(E )]|�|φh,l j〉 + 2m
h̄2

2
π

P
∫ ∞

0 dk′k′2 〈 jl [k1(E )]|Ul j |ψ (+)
0,l j (k

′ )〉〈ψ (+)
0,l j (k

′ )|�|φh,l j〉
k2

1 (E )−k′2

〈ψ (+)
0,l j[k1(E )]|�|φh,l j〉

. (21)

Using Eq. (21), another parameter ql j (E ) is defined by

ql j (E ) = 1 − iT (0)
l j (E )

T (0)
l j (E )

, (22)

= 〈χl [k1(E )]|Ul j |�h,l j〉
T (0)

l j (E )〈ψ (+)
0,l j[k1(E )]|�|φh,l j〉

, (23)

where

|�h,l j〉=
[|�(1)

h,l j〉
|�(2)

h,l j〉

]
=

[
2m
h̄2

2
π

P
∫ ∞

0 dk′k′2 |ψ (+)
0,l j (k

′ )〉〈ψ (+)
0,l j (k

′ )|�|φh,l j〉
k2

1 (E )−k′2

|φh,l j〉

]
,

(24)

|χl (k)〉 =
[| jl (k)〉

0

]
, Ul j =

(
Ul j �

� − Ul j

)
. (25)

The upper component of |�h,l j〉 is originated from the admix-
ture of a hole state and continuum due to the pairing. Note that
Eq. (23) is quite analogous to Eq. (20) in Ref. [1].

C. Fano formula

Applying Eqs. (16) and (22) to Eq. (10), it is rather easy to
obtain

Tl j (E ) = −eiδ(1)
l j (E ) ql j (E ) + εl j (E )√

1 + ε2
l j (E )

T (0)
l j (E ). (26)

Thus, we finally obtain the so-called Fano formula,

|Tl j (E )|2∣∣T (0)
l j (E )

∣∣2 = [ql j (E ) + εl j (E )]2

1 + ε2
l j (E )

. (27)
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Using Eqs. (23) and (14), we obtain a very similar formula to
Eq. (22) of Ref. [1],

q2
l j (E )/2 = h̄2k2

1 (E )

2m

∣∣ 2m
h̄2

1√
k1(E )

〈χl [k1(E )]|Ul j |�h,l j〉
∣∣2

∣∣T (0)
l j (E )

∣∣2

l j (E )

. (28)

Since the resonance energy Er is determined by Eq. (18) and

l j (Er ) is the width of the quasiparticle resonance, we obtain

|Tl j (Er )|2∣∣T (0)
l j (Er )

∣∣2 = q2
l j (Er ), (29)

=
∣∣ 2m

h̄2
1√

k1(Er )
〈χl [k1(Er )]|Ul j |�h,l j〉

∣∣2

∣∣T (0)
l j (Er )

∣∣2

l j (Er )/2Er

i

, (30)

where Er
i = Er + λ = h̄2k2

1 (Er )
2m . The numerator of Eq. (30) is

the transition probability to the “modified quasihole” state at
the resonance Er .

Therefore, q2
l j (Er )/2 is regarded as the ratio of the tran-

sition probabilities to the “modified quasihole” state |�h,l j〉
and to a scaled width 
l j (Er )/Er

i of the HF continuum states
|ψ (+)

0,l j〉 at a quasiparticle resonance energy Er .
As is well known, the characteristic features of the Fano

formula Eq. (27) are

(1) The shape of | Tl j (E )

T (0)
l j (E )

|2 approaches the Breit-Wigner

shape at the limit |ql j (E )| → ∞.

(2) | Tl j (E )

T (0)
l j (E )

|2 becomes zero at the energy E = Ec which

satisfies ql j (Ec) = −εl j (Ec).

Also the parameter ql j (E ) causes the asymmetric shape of

| Tl j (E )

T (0)
l j (E )

|2 in E as shown in Fig. 1 of Ref. [1] when the absolute

value of ql j (E ) is nonzero small value (see Fig. 1 of Ref. [1]),
ql j (E ) is, therefore, called “Fano asymmetry parameter”
[19]. Besides, it is clear from Eq. (15) that |T (1)

l j (E )|2 always
keeps the shape of the Breit-Wigner formula if a quasiparticle
resonance exists.

III. NUMERICAL ANALYSIS

Numerical results for p1/2 with λ = −8.0 MeV and d3/2

with λ = −1.0 MeV are shown in Figs. 1 and 2, respectively,
by adopting the Woods-Saxon potential for the mean-field po-
tential and pair potential with same parameters as in Ref. [13].

In Figs. 1(a) and 2(a), the square of T matrix |Tl j |2 and
|T (0)

l j |2 of the neutron elastic scattering are plotted as a func-
tion of the incident neutron energy Ei(= E + λ) by red curves
and black curve. The solid red curve shows |Tl j |2 with 〈�〉 =
2.0 MeV. The dashed and dotted curves are the same ones with
〈�〉 = 2.5 and 3.0 MeV, respectively. Corresponding phase
shifts are shown in Figs. 1(b) and 2(b). In Figs. 1(c) and 2(c),
|Tl j |2/|T (0)

l j |2, which is representative of the quantity of the

Fano formula Eq. (27). We show |T (1)
l j | represented by Eq. (15)

in Figs. 1(d) and 2(d), and the corresponding phase shifts δ
(1)
l j

are shown in Figs. 1(e) and 2(e). The Fano parameters ql j and
εl j are plotted by the solid black curve and the red curves in

Figs. 1(f) and 2(f). The dashed black curve represents −ql j .
The pairing dependence for all quantities in Figs. 1(b)–1(f)
and Figs. 2(b)–2(f) is shown by solid, dashed, and dotted
curves (corresponding to 〈�〉 = 2.0, 2.5, and 3.0 MeV) as
well as Figs. 1(a) and 2(a). The values of Er , 
l j (Er ), ql j (Er ),
and Ec for p1/2 with λ = −8.0 MeV and d3/2 with λ = −1.0
MeV are shown in Table I. It is confirmed that these values
of Er and 
l j (Er ) match with the zeros of the absolute values
of the Jost function on the complex energy plane shown in
Ref. [13].

In Fig. 1, there is a dip at Ec
i (= Ec + λ) and asymmetric

shape in |Tl j |2 [Fig. 1(a)] and |Tl j |2/|T (0)
l j |2 [Fig. 1(c)]. Ac-

 1
(a)

|T
lj|

2  o
r 

|T
lj(0

) |2

λ=-8.0 MeV, lj=p1/2

|T(0)|2

|T|2

 1

(c)

|T
lj|

2 /|T
lj(0

) |2

 1
(d)

|T
lj(1

) |2

-0.8

-0.4

 0

 0.4

 0.8

 0  2  4  6  8

(f)

qF
an

o 
pa

ra
m

.

Ei(=E+λ) [MeV]

q
-q
ε

-π
0
π (b)

δ l
j o

r 
δ l

j(0
)

-π
0
π (e)

δ l
j(1

)

FIG. 1. The numerical results of square of T matrix of the
neutron elastic scattering, corresponding phase shift, and the Fano
parameters q and ε for p1/2 plotted as a function of the incident neu-
tron energy Ei(= E + λ) with λ = −8.0 MeV. See text for details.
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 1
(a)

|T
lj|

2  o
r 

|T
lj(0

) |2
λ=-1.0 MeV, lj = d3/2

|T(0)|2

|T|2

 0

 100

(c)

|T
lj|

2 /|T
lj(0

) |2

 0.2

 0.4

 0.6

 0.8 (d)

|T
lj(1

) |2

-40
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(f) q

F
an

o 
pa

ra
m

.

Ei(=E+λ) [MeV]

q
-q
ε

 0

 1
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 0  5  10

(c’)

0

π
(b)

δ l
j o

r 
δ l

j(0
)

-π

0

π
(e)

δ l
j(1

)

FIG. 2. Same with Fig. 1 but for d3/2 with λ = −1.0 MeV.

cording to the characteristic of the Fano formula Eq. (27), this
asymmetric shape is due to the small absolute value of ql j at
the resonance energy Er as shown in Fig. 1(f) and Table I.
In Fig. 1(d), |T (1)

l j |2 shows a typical Breit-Wigner resonance
shape representing a hole-type quasiparticle resonance origi-
nates from a deep-lying hole state (ep1/2 = −19.71 MeV) due
to the pairing correlation. The typical behavior of the phase
shift for a resonance can be seen in Fig. 1(e). In Fig. 2, there is
a sharp resonance in Figs. 2(a), 2(c) and 2(d). This resonance
originates from a hole state at ed3/2 = −5.12 MeV. According
to the characteristic of the Fano formula Eq. (27), this is due
to the large absolute value of ql j at the resonance energy Er

as shown in Fig. 2(f) and Table I. The typical behavior of the
phase shift for a resonance can be seen in Figs. 2(b) and 2(e).

In Table I, one can see that the energies Er and Ec are
shifted to higher energy, and the width 
l j (Er ) becomes larger

TABLE I. The pairing gap dependence of Er , 
l j (Er ), ql j (Er ),
and Ec for p1/2 with λ = −8.0 MeV and d3/2 with λ = −1.0 MeV.
The energies Ei

r and Ei
c defined by Er

i = Er + λ and Ec
i = Ec + λ are

shown in parenthesis. The results are shown in units of MeV except
ql j , ql j is a dimensionless quantity.

p1/2 d3/2

(λ = −8.0 MeV) (λ = −1.0 MeV)

Er Ec Er Ec

〈�〉 (Er
i ) 
l j ql j (Ec

i ) (Er
i ) 
l j ql j (Ec

i )

2.0 12.14 0.28 −0.55 12.21 4.53 0.20 13.80 2.94
(4.14) (4.21) (3.53) (1.94)

2.5 12.37 0.42 −0.58 12.49 4.75 0.34 12.67 2.27
(4.37) (4.49) (3.75) (1.27)

3.0 12.65 0.56 −0.63 12.84 4.99 0.52 11.55 1.45
(4.65) (4.84) (3.99) (0.45)

as the pairing gap 〈�〉 increases. These are rather trivial
pairing effects, because the energy shift Fl j and width 
l j are
represented by Eqs. (13) and (14), and the pairing does not
change the relative position between Er and Ec. However, the
pairing effect on ql j (Er ) is not so simple. In the case of p1/2

with λ = −8.0 MeV, the absolute value of ql j (Er ) increases as
the pairing gap 〈�〉 increases. On the other hand, the absolute
value of ql j (Er ) decreases as the pairing gap 〈�〉 increases in
the case of d3/2 with λ = −1.0 MeV.

In order to clarify the pairing effect on ql j (Er ), we analyzed
the pairing gap 〈�〉 dependence of Eq. (30) in Fig. 3. The
numerator of Eq. (30), the scaled width, and |T0(Er )|2 are
plotted as a function of the pairing gap 〈�〉 in Figs. 3(a),
3(b) and 3(c), respectively. The red solid and blue dashed
curves represent p1/2 and d3/2, respectively. The numerator
of Eq. (30) and the scaled width increase as the pairing gap
increases. The numerator of Eq. (30) for d3/2 (with λ = −1.0
MeV) is larger than the one for p1/2 (with λ = −8.0 MeV).
This indicates that d3/2 is more sensitive to the pairing than
p1/2 because d3/2 is closer to the Fermi energy λ than p1/2. In
Fig. 3(b), the scaled widths show almost the same values and
dependence on the pairing gap. The reason is rather trivial.
As shown by Eq. (14), the width is expressed by the square
of the coupling strength by pairing between the HF hole state
and continuum. Therefore, the width should be similar value
with the same pairing gap. Also, both quasiparticle resonances
appear at the similar incident energies as shown in Table I. The
|T0(Er )|2 values for p1/2 are much larger than the one for d3/2.
The difference of the q2

l j (Er ) between p1/2 and d3/2 is due to
the difference of the ratios of the transition probability to the
“modified quasihole” state and to the HF continuum between
p1/2 and d3/2.

The small absolute value of ql j (Er ) for p1/2 with
λ = −8.0 MeV is due to the large value of the transition
probability to the HF continuum and the small transition
probability to the “modified quasihole” state because of the
small pairing effect for the deep-lying hole state. However, the
small absolute value of ql j (Er ) causes the asymmetric shape
of the partial cross section of the neutron elastic scattering,
which is known as a typical sign of the Fano effect.
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FIG. 3. The pairing gap 〈�〉 dependence for the numerator of
Eq. (30), the scaled width 
/Er

i , and |T0|2 are shown in panels
(a), (b), and (c), respectively. The red solid and blue dashed curves
represent p1/2 with λ = −8.0 MeV and d3/2 with λ = −1.0 MeV, re-

spectively. A coefficient used for (a) is given by C(Er ) = ( 2m
h̄2 )

2 1
k1(Er ) .

On the other hand, the large absolute value of ql j (Er ) for
d3/2 with λ = −1.0 MeV is due to the small value of the
transition probability to the HF continuum and the larger tran-
sition probability to the “modified quasihole” state. The hole
d3/2 state with λ = −1.0 MeV is much closer to the Fermi
energy than p1/2 with λ = −8.0 MeV at the zero pairing limit,
and the d3/2 state with λ = −1.0 MeV is more sensitive to
the pairing effect. This is the reason of the larger transition
probability to the “modified quasihole” state. The shape of
the cross section for the quasiparticle resonance becomes the
shape of the Breit-Wigner formula with the large ql j (Er ).
More Breit-Wigner type resonances are therefore expected to
be observed in the neutron elastic-scattering cross section on
the neutron-rich open-shell nuclei.

IV. CONCLUSION

The Fano effect is known as a universal quantum in-
terference effect between the sharp resonance (or discrete
bound state) and continuum appears in the channel-coupling
system including the particle-hole configuration mixing by
pairing in the broad sense. In this paper, we have derived
the Fano parameters within the HFB framework and analyzed
the asymmetric shape of the quasiparticle resonance which
appears on a partial wave component of the cross section
for neutron elastic scattering off open-shell nuclei in terms
of the Fano parameters. We found that, in case of the stable
nucleus, the asymmetric shape of the cross section is due
to the small absolute value of ql j parameter because of the
large transition probability to the HF continuum and small
transition probability to the “modified quasihole” state. The
latter transition probability is due to the weak pairing effect
because the quasiparticle resonance for the stable nucleus
originates from the deep-lying hole state. In contrast, the ql j

parameter for the quasiparticle resonance of unstable nucleus
becomes large because of the small transition probability to
the HF continuum and the large transition probability to the
“modified quasihole” state due to the strong pairing effect. The
shape of the cross section becomes the Breit-Wigner type with
the large absolute value of ql j parameter.

However, a coupling with other types of channel could
also be the candidates of the origin of the Fano effect. It is
already known that the channel coupling can be the origin
of the sharp resonances on nucleon-nucleus elastic scatter-
ing [20–22]. Also, channel coupling originates the complex
optical potential which gives a proper absorption for elastic
scattering [21–24]. This proper absorption is important for
the quantitative discussion of results in comparison with
the experimental data. In addition, the correlation between
different types of channel coupling are also expected. In
order to investigate these points, we are planning the further
extension of the Jost function by following two steps. As
the first step, we will extend the Jost function formalism
for the complex potential since the potential is supposed to
be real in the current formalism. Second, we will extend
the Jost function framework based on the particle-vibration
formalism (including the pairing) in order to take into account
the channel-coupling effect. Hopefully, we can discuss the
existence of the Fano effect based on more realistic calculation
and analysis in the near future.
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