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Abstract
A closed convex subset of a normed linear space is said to have the strong separation prop-
erty if it can be strongly separated from every other disjoint, closed, and convex set by a
closed hyperplane. In this paper, we give some results on the separation of convex sets notic-
ing the role of barrier cones, develop some characterizations of subsets having the strong
separation property, and apply them to consider a class of convex optimization problems.

Keywords Convex set · Separation theorem · Barrier cone · Recession cone · Set having
the strong separation property
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1 Introduction

Let C and D be convex subsets of a real normed linear space X with dual space X∗. If there
exists x∗ ∈ X∗ \ {0} such that

sup
{〈x∗, c〉 | c ∈ C

} ≤ inf
{〈x∗, d〉 | d ∈ D

}
,

then we say that C and D are separated. Furthermore, if

sup
{〈x∗, c〉 | c ∈ C

}
< inf

{〈x∗, d〉 | d ∈ D
}
,

then C and D are said to be strongly separated.
A convex subset of X is said to have the (strong) separation property if it can be

(strongly) separated from every other disjoint closed convex subset.
Let C be a closed convex subset of X. We denote by rec(C) and bar(C), respectively, the

recession cone and the barrier cone of C, i.e.,

rec(C) := {v ∈ X | c + v ∈ C,∀c ∈ C} ;
bar(C) := {x∗ ∈ X∗ | σC(x∗) < +∞} ,

� Huynh The Phung
huynhthephung@gmail.com

1 Department of Mathematics, Hue College of Sciences, Hue University, Hue, Vietnam

Acta Mathematica Vietnamica (2020) 45: 345–363

Published online: 5 June 2020

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s40306-020-00367-1&domain=pdf
mailto: huynhthephung@gmail.com


Huynh The P.

where σC : X∗ → R is the support function of C, defined by

σC(x∗) = sup
{〈x∗, c〉 : c ∈ C

}
, x∗ ∈ X∗.

The set C is called linearly bounded if rec(C) = {0}. It is obvious that a bounded subset
is also linearly bounded. The set C is said to be locally compact if there exist c0 ∈ C and
r > 0 such that

B(c0; r) ∩ C is compact, (1)

where B(c0; r) denotes the closed ball of radius r around c0. It should be noted that, since
C is convex and closed, this definition does not depend on both c0 and r , i.e., if (1) holds,
then for every c ∈ C and s > 0, B(c; s) ∩ C is also compact.

The following results are well known (see, for instance, [2, 4, 7–9, 11]) in convex
analysis.

Theorem 1 Let C and D be disjoint convex subsets of X. Then, they are separated if at
least one of the following conditions holds:

(a) int(C) ∪ int(D) �= ∅;
(b) dim(X) < ∞.

Theorem 2 Let C and D be the convex subsets of X. The following statements are
equivalent:

(a) C and D are strongly separated;
(b) d(C; D) := inf{‖c − d‖ | c ∈ C, d ∈ D} > 0.

Theorem 3 Let C and D be disjoint convex subsets in X. If

C or D is weakly compact, (2)

and the other is closed, then they are strongly separated.

Corollary 1 Let C and D be disjoint closed convex subsets of a reflexive Banach space X.
If one of the sets is bounded, then they are strongly separated.

Theorem 4 Let C and D be disjoint closed convex subsets satisfying:

rec(C) ∩ rec(D) = {0}. (3)

If, in addition, C or D is locally compact, then they are strongly separated.

It is evident that any closed set in a finite-dimensional space is locally compact. Thus, a
locally compact set may still be unbounded and, hence, may not be weakly compact.

Since a convex set is linearly bounded whenever it is bounded, (3) is much weaker than
(2). Therefore, to compensate for that weakness, in Theorem 4 one of the sets is required to
be locally compact for a strong separation.

Remark 1 For the strong separation, (3) seems to be essential even in the case of finite-
dimensional spaces. Indeed, it is obvious that the following subsets of R2

C =
{
(x, y) ∈ R

2 | x > 0, y ≥ 1

x

}
and D =

{
(x, 0) ∈ R

2 | x ∈ R

}
(4)
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are convex, closed, and disjoint, but are not strongly separated. The reason for this is that

rec(C) ∩ rec(D) = {(u, 0) | u ≥ 0} �= {(0, 0)}.

Remark 2 In Corollary 1, if the underlying space is infinte-dimensional, then the bounded-
ness (or weak compactness) hypothesis of one of the subsets cannot be substituted by (3).
Indeed, consider the following subsets of the Hilbert space l2:

C =
{

ξ = (xn) ∈ l2

∣∣∣∣∣

∞∑

n=1

xn

n
= 1; xn ≥ 0,∀n

}

,

D =
{

ζ = (yn) ∈ l2

∣∣∣∣∣

∞∑

n=1

yn

n + 1
= 1; yn ≥ 0,∀n

}

.

Obviously, C and D are disjoint unbounded closed convex subsets of l2. Let (ξk) ⊂ C and
(ζ k) ⊂ D be sequences defined by

ξk =
(
0, . . . , 0, kk−th, 0, . . .

)
; ζ k =

(
2

k + 1
, 0, . . . , 0, kk−th, 0, . . .

)
; k ∈ N.

Since ‖ξk − ζ k‖2 = 2
k+1 → 0, C and D are not strongly separated. It should be noted that,

although being unbounded, both C and D are linearly bounded; hence, rec(C) ∩ rec(D) =
{0}.

Remark 3 The local compactness assumption on the sets in Theorem 4 seems a bit strong
in the case of infinite-dimensional spaces. For example, consider the following subsets of l2

C =

⎧
⎪⎨

⎪⎩
x = (xn) ∈ l2 | x1 ≥

⎛

⎝
∑

i �=1

x2
i

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
,

D =

⎧
⎪⎨

⎪⎩
x = (xn) ∈ l2 | x2 ≥ 1 + 2

⎛

⎝
∑

i �=2

x2
i

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
.

Firstly, we have rec(C) ∩ rec(D) = {0} because

rec(C) =

⎧
⎪⎨

⎪⎩
v ∈ l2 | v1 ≥

⎛

⎝
∑

i �=1

v2i

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
,

rec(D) =

⎧
⎪⎨

⎪⎩
v ∈ l2 | v2 ≥ 2

⎛

⎝
∑

i �=2

v2i

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
.

It is easy to check that C and D are disjoint closed convex sets and are strongly separated
by the vector x∗ = (1,−1, 0, 0, . . .) ∈ l2.

On the other hand, by setting e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), we have e1 ∈ intC
and 2e2 ∈ intD. Thus, C and D are not locally compact; hence, Theorem 4 cannot be
applied to establish a strong separation for them.
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Our first aim in this paper is to develop a new result on the strong separation of con-
vex sets by imposing an assumption on the barrier cones of the sets in place of weak
compactness or local compactness assumptions.

From Theorems 1, 3, and 4, it follows that if C has a nonempty interior or X is finite-
dimensional, then C has the separation property; and if C is weakly compact or it is locally
compact and linearly bounded, then it has the strong separation property. Some further
features of subsets having (strong) separation property have been established in the literature
(for instance, see [5, 6]). Especially, in the case of Hilbert spaces, we have the interesting
result below. For a convex set C ⊂ X, let riC denote its relative interior; that is

riC := {x ∈ C | ∃ε > 0, B(x; ε) ∩ C ⊂ aff(C)} ,

where aff(C) is the affine hull of C and B(x; ε) denotes the open ball with radius ε around
x.

Theorem 5 [5, Theorem 2] An unbounded closed convex subset C of a Hilbert space X has
the separation property if and only if aff(C) is a finite-codimensional closed affine subspace
and riC is nonempty.

Our second aim is to provide some necessary and/or sufficient conditions for a closed
convex subset in a normed space to have the strong separation property.

Recall that if M ⊂ R
n is a nonempty closed convex set and f : Rn → R is a convex,

lower semicontinuous and coercive function, then the optimization problem

P(M; f ) :
{

f (x) → inf,
x ∈ M

has a nonempty compact solution set.
The third aim is to prove a similar result for the convex programming problem with the

constraint set having the strong separation property and the coerciveness assumption of the
objective function is replaced by a weaker one.

The rest of the paper is organized as follows: The next section will present a characteriza-
tion for the interior of the barrier cones of convex sets in normed linear spaces. In Section 3,
we develop a new result on strong separation noticing the role of barrier cones. In Section 4,
we provide some conditions for a closed convex set to have the strong separation property.
Finally, Section 5 is devoted to considering convex optimization problems with constraint
set having the strong separation property.

2 A Characterization of the Interior of the Barrier Cone

In this section, we try to characterize the interior of the barrier cone of a closed convex
subset C in a normed linear space X. We first note that, since the support function σC is
sublinear and σC(0) = 0, the barrier cone of C is a convex cone containing the origin.

With the sets given in (4), we have

bar(C) =
{
(u, v) ∈ R

2 | u ≤ 0, v ≤ 0
}

; bar(D) = {(0, v) | v ∈ R} .
Thus, int bar(C) �= ∅ and int bar(D) = ∅.

It is well known that the weak∗-closure of bar(C) coincides with the polar cone of rec(C);
i.e.,

bar(C)
∗ = rec(C)0 = {x∗ ∈ X∗ | 〈x∗, v〉 ≤ 0, ∀v ∈ rec(C)

}
.
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If X is a reflexive Banach space then the norm-closure and the weak∗-closure of bar(C)

coincide. Thus, we have
bar(C) = rec(C)0.

However, this relation may fail in a general normed linear space. In [1], the authors have
given a complete description of the norm-closure of bar(C) when C is a closed convex
subset of a normed linear space X

bar(C) =
{
x∗ ∈ X∗

∣∣∣∣ limr→∞

(
inf

c∈C;〈x∗,c〉≥r

‖c‖
r

)
= ∞

}
.

In fact, bar(C) can be represented in another form as stated below.

Theorem 6

bar(C) =
{

x∗ ∈ X∗
∣∣∣∣∣

lim sup
c∈C;‖c‖→∞

〈x∗, c〉
‖c‖ ≤ 0

}

.

Proof We need to show that, for every x∗ ∈ X∗

lim
r→∞

(
inf

c∈C;〈x∗,c〉≥r

‖c‖
r

)
= ∞ ⇔ lim sup

c∈C;‖c‖→∞
〈x∗, c〉
‖c‖ ≤ 0.

Since both sides of the relation hold for x∗ = 0, we may assume x∗ �= 0 and prove that the
statements below are equivalent:

(i) ∀M > 0, ∃N > 0,∀r ≥ N,∀c ∈ C, 〈x∗, c〉 ≥ r ⇒ ‖c‖
r

> M;
(ii) ∀ε > 0, ∃K > 0, ∀c ∈ C, ‖c‖ ≥ K ⇒ 〈x∗,c〉

‖c‖ < ε.

(i) ⇒ (ii) For every ε > 0, we set M = 1
ε
. Then, there exists N > 0 satisfying (i). Let

K = N
ε

> 0. For every c ∈ C such that ‖c‖ ≥ K , by letting r := 〈x∗, c〉, we have
• If 〈x∗, c〉 = r ≥ N , then ‖c‖

〈x∗,c〉 = ‖c‖
r

> M; hence, 〈x∗,c〉
‖c‖ < ε.

• If 〈x∗, c〉 < N , then 〈x∗,c〉
‖c‖ < N

K
= ε.

(ii) ⇒ (i) For every M > 0, we set ε = 1
M

> 0 again. Then, there exists K > 0 satisfying
(ii). Let now N = K‖x∗‖. For every r ≥ N and c ∈ C such that 〈x∗, c〉 ≥ r , we have:

K‖x∗‖ = N ≤ r ≤ 〈x∗, c〉 ≤ ‖x∗‖‖c‖.
This shows that ‖c‖ ≥ K , which, by (ii), implies r

‖c‖ ≤ 〈x∗,c〉
‖c‖ < ε and hence ‖c‖

r
> M .

Inspired by this result, we derive a characterization for the interior of bar(C) as below:

int bar(C) =
{

x∗ ∈ X∗
∣∣∣∣∣

lim sup
c∈C;‖c‖→∞

〈x∗, c〉
‖c‖ < 0

}

.

We state this fact in the following result.

Theorem 7 Let x∗ ∈ bar(C). The following statements are equivalent:
(a) x∗ ∈ int bar(C);
(b) There exists γ > 0 such that

sup
c∈C\B(0;γ )

〈x∗, c〉 < σC(x∗); (5)
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(c) There exist positive numbers α, R such that

〈x∗, c〉 ≤ −α‖c‖,∀c ∈ C \ B(0;R); (6)

(d) lim supc∈C;‖c‖→∞
〈x∗,c〉
‖c‖ < 0,

where, B(0; γ ) and B(0; R) denote, respectively, the open balls of radii γ and R around
the origin.

Proof Since the equivalence between (c) and (d) is rather obvious, we only need to prove
(a) ⇒ (b) ⇒ (c) ⇒ (a).
(a) ⇒ (b) Suppose that (5) fails to hold for every γ > 0, or equivalently,

sup
c∈C\B(0;γ )

〈x∗, c〉 = σC(x∗),∀γ > 0. (7)

Then, there is a sequence (cn) ⊂ C such that ‖cn‖ → ∞ and

lim
n→∞〈x∗, cn〉 = σC(x∗).

Since the sequence (cn) is unbounded, by virtue of Banach-Steinhaus theorem, there exists
u∗ ∈ X∗ such that

lim sup
n→∞

〈u∗, cn〉 = ∞.

It implies that

σC(x∗ + λu∗) ≥ lim sup
n→∞

〈x∗ + λu∗, cn〉 = ∞,∀λ > 0.

In other words, x∗ + λu∗ �∈ bar(C), for every λ > 0. Thus, x∗ �∈ int bar(C).
(b) ⇒ (c) By (5), there exists c0 ∈ C ∩ B(0; γ ) such that, for some ε > 0

sup
c∈C\B(0;γ )

〈x∗, c〉 < 〈x∗, c0〉 − ε.

Choose R large enough such that R > γ and 〈x∗, c0〉 − ε
4γ R ≤ 0. We shall prove that (6)

holds for such R and α := ε
4γ .

Take c ∈ C \ B(0;R) arbitrarily. Since ‖c‖ ≥ R > γ > ‖c0‖, there exists λ ∈ (0, 1)
such that ‖u‖ = γ with u = λc + (1 − λ)c0 ∈ C. We have

γ = ‖λc + (1 − λ)c0‖ ≥ λ‖c‖ − (1 − λ)‖c0‖,
which implies that

λ ≤ γ + ‖c0‖
‖c‖ + ‖c0‖ ≤ 2γ

‖c‖ . (8)

Since u ∈ C \ B(0; γ ), we have

〈x∗, c0〉 − ε > 〈x∗, u〉 = λ〈x∗, c〉 + (1 − λ)〈x∗, c0〉,
which together with (8) implies that

ε <
2γ

‖c‖
(〈x∗, c0〉 − 〈x∗, c〉) ,

or,

〈x∗, c〉 ≤ − ε

2γ
‖c‖ + 〈x∗, c0〉.

Noting that ‖c‖ ≥ R and − ε
4γ R + 〈x∗, c0〉 ≤ 0, we have

〈x∗, c〉 ≤ − ε

4γ
‖c‖ − ε

4γ
R + 〈x∗, c0〉 ≤ −α‖c‖.
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(c) ⇒ (a) If (6) fulfills, then for every u∗ ∈ B(x∗;α), we have

〈u∗, c〉 ≤ 〈x∗, c〉 + ‖u∗ − x∗‖‖c‖ ≤ 〈x∗, c〉 + α‖c‖ ≤ 0,∀c ∈ C \ B(0; R),

and hence,
σC(u∗) ≤ max

{
0, σC∩B(0;R)(u

∗)
} ≤ R‖u∗‖ < ∞.

Thus, B(x∗; α) ⊂ bar(C), from which (a) follows.

Corollary 2 C is bounded if and only if bar(C) = X∗.

Proof Since bar(C) is a cone, bar(C) = X∗ if and only if 0 ∈ int bar(C). On the other
hand, it follows from Theorem 7 that 0 ∈ int bar(C) if and only if there exists γ > 0 such
that C \ B(0; γ ) = ∅, or equivalently, C is bounded.

3 Separation Theorems via Recession Cone and Barrier Cone

As we have seen in Theorem 4, for the strong separation of unbounded subsets, besides (3),
the assumption of local compactness is also required. In the following discussion, instead
of using local compactness assumption on the sets, we require one of their barrier cones to
have a nonempty interior. The main result of the section is stated below.

Theorem 8 Let C and D be disjoint closed convex subsets of a reflexive Banach space,
satisfying (3). If, in addition,

(int bar(C)) ∪ (int bar(D)) �= ∅, (9)

then C and D are strongly separated.

Before proceeding to the proof, we prove the following lemmas.

Lemma 1 Let C be a closed convex subset of X and (cn) be a sequence in C such that
‖cn‖ → ∞ and

cn

‖cn‖
w−→ u ∈ X.

Then, u ∈ rec(C).

Proof Take c ∈ C we prove that c + u ∈ C. Since ‖cn‖ → ∞,

vn :=
(
1 − 1

‖cn‖
)

c + 1

‖cn‖cn ∈ C

for n large enough (such that 1 < ‖cn‖). On the other hand, (vn) weakly converges to c+u.
By noting that a closed convex set is also weakly closed, we deduce c + u ∈ C. Since this
inclusion holds for every c ∈ C, it follows that u ∈ rec(C).

Lemma 2 Let (cn) and (dn) be sequences in X such that ‖cn‖ → ∞, and for some r > 0,
‖cn − dn‖ ≤ r for every n. If

cn

‖cn‖ −→ u, or
cn

‖cn‖
w−→ u,

with u ∈ X, then

dn

‖dn‖ −→ u, or
dn

‖dn‖
w−→ u, respectively.
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Proof Since
∥∥∥∥

cn

‖cn‖ − dn

‖dn‖
∥∥∥∥ ≤ ‖cn − dn‖

‖cn‖ +
∣∣∣∣

1

‖cn‖ − 1

‖dn‖
∣∣∣∣ ‖dn‖ ≤ 2r

‖cn‖ → 0,

we have
cn

‖cn‖ − dn

‖dn‖ −→ 0,

from which the lemma follows.

Proof of Theorem 8 Assume int bar(C) is nonempty. We prove d(C; D) > 0 by contradic-
tion. Suppose that there exist sequences (cn) ⊂ C, (dn) ⊂ D such that ‖cn − dn‖ → 0.
There are two cases depending on whether or not ‖cn‖ tends to ∞.
• ‖cn‖ → ∞. Since the space is reflexive, without loss of generality, we may assume that

cn

‖cn‖
w−→ u ∈ X,

and hence, from Lemma 2,
dn

‖dn‖
w−→ u.

Thus, by Lemma 1, u ∈ rec(C) ∩ rec(D).
Choose x∗ ∈ int bar(C) such that x∗ �= 0. By Theorem 7, for some α > 0, we have

〈
x∗, cn

‖cn‖
〉

≤ −α

for n large enough. By letting n → ∞, we obtain

〈x∗, u〉 ≤ −α < 0,

which implies u �= 0, contradicting (3).
• ‖cn‖ �→ ∞. By restricting to a subsequence if necessary, we may assume that (cn) weakly
converges to u ∈ X. However, in this situation, (dn) also weakly converges to u. Since C

and D are convex and closed, they are weakly closed. Thus, u ∈ C ∩ D, contradicting to
the assumption that C and D are disjoint.

Example 1 Let C and D be the sets given in Remark 3. For each x ∈ C, we have x1 ≥ 0 and

‖x‖22 =
∞∑

i=1

x2
i ≤ 2x2

1 .

It implies that

〈−e1, x〉 = −x1 ≤ − 1√
2
‖x‖2; ∀x ∈ C.

Therefore, by Theorem 7, −e1 ∈ int bar(C). Applying Theorem 8, we deduce that C and D

are strongly separated. While, as mentioned in Remark 3, Theorem 4 cannot be applied to
establish a strong separation here.

Remark 4 The sets C and D given in Remark 2 satisfy (3), but are not strongly separated.
It is not difficult to verify that

bar(C) = bar(D) =
{

(yn) ∈ l2

∣∣∣∣∣
sup
n≥1

(nyn) < ∞
}

,
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and hence,
int bar(C) = int bar(D) = ∅.

This fact shows that (9) is crucial even in the case where X is a Hilbert space.

Example 2 In Theorem 8, the assumption about reflexivity of the space is essential.
Consider two subsets of the nonreflexive space l1:

C =
{

ξ = (xn) ∈ l1

∣∣∣∣∣

∞∑

n=1

xn = 1; xn ≥ 0,∀n

}

,

D =
{

ζ = (yn) ∈ l1

∣∣∣∣∣

∞∑

n=1

nyn

n + 1
= 1; yn ≥ 0, ∀n

}

.

Obviously, C and D are disjoint bounded closed convex subsets of l1. Thus, (3) is fulfilled.
In addition, since C is bounded, int bar(C) = l∞. However, by letting (ξk) ⊂ C and (ζ k) ⊂
D be the sequences defined by

ξk =
(
0, . . . , 0, 1k−th, 0, . . .

)
; ζ k = k + 1

k
ξk; k ∈ N,

we have ‖ξk − ζ k‖1 = 1
k

→ 0. Thus, C and D are not strongly separated.

As we have seen, in a finite-dimensional space, any pair of disjoint closed convex sets
satisfying (3) is strongly separated. In the case of infinite-dimensional spaces, besides the
assumption of local compactness or (9), (3) is also required for the strong separation of
convex sets.

Thus, (3) plays an important role in the strong separation. However, it should be noted
that this condition alone is not enough to yield even the (weak) separation of two disjoint
closed convex subsets. The following example illustrates this point.

Example 3 Let X be a real Hilbert space, in which there exist two closed subspaces M and
N such that M ∩ N = {0}, M + N is dense but not closed in X, i.e., M + N �= X (see,
[3, Problem 2, p. 129]).

Take x0 ∈ X \ (M +N) and let C = x0 −M , D = N . Thus, C and D are disjoint closed
convex subsets. Furthermore, since rec(C) = M and rec(D) = N , rec(C) ∩ rec(D) = {0}.
We shall show that C and D are not separated. Suppose the contrary. Take v ∈ X \ {0} such
that

〈v, x0 − m〉 ≤ 〈v, n〉, ∀m ∈ M, n ∈ N .

It implies that
〈v, x0〉 ≤ 〈v, x〉,∀x ∈ M + N .

Since M + N is dense in X, it follows that v = 0, a contradiction. Hence, C and D are not
separated.

4 Subsets Having the Strong Separation Property

In this section, we are interested in properties of subsets having the strong separation prop-
erty. As usual, let S and S∗ denote the unit spheres in X and X∗, respectively. Let C be a
closed convex subset of X. In some cases, the following conditions are needed:
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(A) X is reflexive and int bar(C) �= ∅.
(B) C is locally compact.
(C) For some r > 0 and finite-dimensional subspace Z, we have

C ⊂ B(0; r) + Z.

Remark 5 The conditions (A), (B), and (C) are strongly independent in the sense that each
of them cannot be followed from the two remaining ones. This fact will be shown by the
examples below.
• C = {(x, y) ∈ R

2 | y ≤ 0} satisfies (B) and (C) but fails (A).
• C = {x = (xn) ∈ l2 | ‖x‖2 ≤ 1} satisfies (A) and (C) but fails (B).
• Let

C =
{
x := (xn) ∈ l2 | 0 ≤ xn+1 ≤ n

n + 1
xn,∀n ≥ 1

}
.

Then, C is a closed convex cone. For every x ∈ C, we have

0 ≤ x1, 0 ≤ x2 ≤ x1

2
, 0 ≤ x3 ≤ 2x2

3
≤ x1

3
, . . . , 0 ≤ xn ≤ x1

n
, . . .

It implies that

0 ≤ x1 ≤ ‖x‖2 =
√√√√

∞∑

i=1

x2
i ≤ x1

√√√√
∞∑

i=1

1

i2
= πx1√

6
.

Taking x∗
0 = (−1, 0, 0, . . .) ∈ l2, we obtain

〈x∗
0 , x〉 = −x1 ≤ −

√
6

π
‖x‖2,∀x ∈ C,

which, by Theorem 7, implies x∗
0 ∈ int bar(C). Thus, C satisfies (A).

We have

C ∩ B(0; 1) =
{
x ∈ l2 | ‖x‖2 ≤ 1; 0 ≤ xn+1 ≤ n

n + 1
xn,∀n ≥ 1

}

⊂ E :=
{
x ∈ l2 | 0 ≤ xn ≤ 1

n
,∀n ≥ 1

}
.

Since E is compact, C satisfies (B). Finally, we show that C does not satisfy (C). Indeed,
if (C) holds then, since C is a closed convex cone, C = rec(C) ⊂ Z. But this is impossi-
ble because Z is finite-dimensional while C contains the following infinite set of linearly
independent vectors:

V =
{
(1, 0, 0, . . .),

(
1,

1

2
, 0, . . .

)
,

(
1,

1

2
,
1

3
, 0, . . .

)
, . . .

}
.

Theorem 9 below will provide a necessary condition for a closed convex subset of X to
have the strong separation property.

Lemma 3 Let C be a closed convex subset of X and (cn) ⊂ C is a sequence such that
‖cn‖ → +∞. If one of the conditions (A), (B), or (C) is satisfied, then there exists a
subsequence (cnk

) of (cn) such that, for some x∗
0 ∈ S∗ and ρ > 0, we have

lim
nk→∞

〈
x∗
0 ,

cnk

‖cnk
‖
〉

= −ρ. (10)
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Proof We prove the lemma under each of the conditions (A), (B), or (C).
(A) Take x∗

0 ∈ S∗ ∩ int bar(C). By Theorem 7, for some α > 0 and R > 0, we have

〈x∗
0 , c〉 ≤ −α‖c‖,∀c ∈ C \ B(0; R). (11)

Since X is reflexive, there exists a subsequence (cnk
) of (cn) such that

cnk

‖cnk
‖

w−→ s ∈ X.

This, together with (11), implies (10) with ρ = −〈x∗
0 , s〉 ≥ α > 0.

(B) Since C is locally compact, there exists a subsequence (cnk
) of (cn) such that

cnk

‖cnk
‖ −→ s ∈ S.

By choosing x∗
0 ∈ S∗ such that 〈x∗

0 , s〉 = −1, we obtain (10) with ρ = 1.
(C) Since C ⊂ B(0; r) + Z, there exists a sequence (zn) ⊂ Z such that ‖zn − cn‖ < r

for all n; hence, ‖zn‖ → ∞. Since dimZ < ∞, there exists a subsequence (znk
) of (zn)

such that
znk

‖znk
‖ −→ s ∈ S.

From Lemma 2, we also have
cnk

‖cnk
‖ −→ s ∈ S,

and by choosing x∗
0 as in the case of (B) we obtain (10).

Theorem 9 Let C ⊂ X be a closed convex subset having the strong separation property. In
addition, at least one of the conditions (A), (B), or (C) is satisfied. Then

bar(C) = int bar(C) ∪ {0}, (12)

that is to say, x∗ ∈ int bar(C) whenever x∗ ∈ bar(C) \ {0}.

Proof The proof is by contradiction. Suppose that there exists x∗ ∈ bar(C) \ {0} so that
x∗ �∈ int bar(C). Since bar(C) is a cone, we may assume ‖x∗‖ = 1. By Theorem 7, (7)
holds; hence, there exists a sequence (cn) ⊂ C such that ‖cn‖ → +∞ and

〈x∗, cn〉 → β := σC(x∗) < ∞.

Without loss of generality, we may assume that

β − 1

n
< 〈x∗, cn〉 ≤ β; ∀n.

From Lemma 3, without loss of generality, we may assume that the sequence ( cn‖cn‖ )

converges (strongly or weakly) to s ∈ X and

lim
n→∞

〈
x∗
0 ,

cn

‖cn‖
〉

= 〈x∗
0 , s〉 = −ρ < 0

for some x∗
0 ∈ S∗ and ρ > 0.

Choose v ∈ S such that 〈x∗, v〉 > 1
2 and put dn := cn + 4

n
v, for each integer n ≥ 1. We

now show that the following subset

D = co{dn | n ≥ 1}
is convex, closed, and disjoint from C.
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Clearly, D is convex and closed. We prove C ∩ D = ∅ by contradiction. Suppose that
there exists c0 ∈ C ∩D. Since the sequence ( cn‖cn‖ ) converges (strongly or weakly) to s ∈ X,

by virtue of Lemma 2, the sequence (
cn−c0‖cn−c0‖ ) also converges to s. Therefore, by setting

sn := cn − c0

‖cn − c0‖ , tn := ‖cn − c0‖,
we have sn ∈ S, (sn) converges (strongly or weakly) to s, tn → +∞,

cn = c0 + tnsn; ∀n ≥ 1,

and
lim

n→∞〈x∗
0 , sn〉 = 〈x∗

0 , s〉 = −ρ < 0.

Take k ∈ N large enough such that

〈x∗
0 , sn〉 < −ρ

2
, tn > 12; ∀n > k, (13)

and then set

γ := max{t1, t2, . . . , tk} + 1; ε := min

{
1

2kγ
,

2ρ

5 + kγ

}
<

1

2k
. (14)

Since c0 ∈ D = co{dn | n ≥ 1}, there exist nonnegative numbers λ1, λ2, . . . , λm, with
m > k, such that

m∑

n=1

λn = 1;
∥∥∥∥∥

m∑

n=1

λndn − c0

∥∥∥∥∥
< ε.

Noting that ‖x∗‖ = 1, we have

ε >

∥∥∥∥∥

m∑

n=1

λndn − c0

∥∥∥∥∥
≥
〈

x∗,
m∑

n=1

λndn − c0

〉

=
m∑

n=1

λn

〈
x∗, cn + 4

n
v

〉
− 〈x∗, c0〉

≥
m∑

n=1

λn

(
β − 1

n

)
+

m∑

n=1

λn

2

n
− β =

m∑

n=1

λn

n
. (15)

It follows that

ε >

k∑

n=1

λn

n
≥ 1

k

k∑

n=1

λn,

which, together with (14), gives

k∑

n=1

λn < kε ≤ 1

2
, (16)

and hence,
m∑

n=k+1

λn >
1

2
. (17)

On the other hand, we also have

ε >

∥∥∥∥∥

m∑

n=1

λndn − c0

∥∥∥∥∥
=
∥∥∥∥∥

m∑

n=1

λn(dn − c0)

∥∥∥∥∥
=
∥∥∥∥∥

m∑

n=1

λn

(
tnsn + 4

n
v

)∥∥∥∥∥

≥
∥∥∥∥∥∥

m∑

n=k+1

λntnsn

∥∥∥∥∥∥
−
∥∥∥∥∥

k∑

n=1

λntnsn

∥∥∥∥∥
−
∥∥∥∥∥

(
m∑

n=1

4λn

n

)

v

∥∥∥∥∥
.
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Noting that v, sn ∈ S, x∗
0 ∈ S∗ and 〈x∗

0 , sn〉 < − ρ
2 for n > k, one has

ε >

〈

−x∗
0 ,

m∑

n=k+1

λntnsn

〉

−
k∑

n=1

λntn − 4
m∑

n=1

λn

n

>
ρ

2

m∑

n=k+1

λntn −
k∑

n=1

λntn − 4
m∑

n=1

λn

n
.

It follows that

ρ

2

m∑

n=k+1

λntn < ε +
k∑

n=1

λntn + 4
m∑

n=1

λn

n
. (18)

Since (13) and (17), we have

ρ

2

m∑

n=k+1

λntn >
ρ

2

1

2
12 = 3ρ. (19)

On the other hand, from (14) and (16), it follows that

k∑

n=1

λntn < γ

k∑

n=1

λn < kγ ε. (20)

Combining (15), (18), (19), (20), and the definition of ε, we obtain

3ρ < ε + kγ ε + 4ε = (5 + kγ )ε ≤ 2ρ

which is clearly absurd. Consequently, C ∩ D = ∅.
Consequently, D is a closed convex subset disjoint from C. On the other hand, since

‖cn − dn‖ = 4
n

→ 0, d(C; D) = 0; hence, C and D are not strongly separated. Thus, C

does not have the strong separation property. This completes the proof of the theorem.

Proposition 1 If C is unbounded and aff(C) �= X, then

bar(C) �= int bar(C) ∪ {0}. (21)

Proof Indeed, since aff(C) �= X, there exists x∗ ∈ X∗ \ {0} such that
〈x∗, c〉 = α := σC(x∗),∀c ∈ C.

Hence, x∗ ∈ bar(C). On the other hand, since C is unbounded, (7) holds. It now follows
from Theorem 7 that x∗ �∈ int bar(C) and (21) is derived.

From Theorem 9 and Proposition 1, we deduce the next corollary.

Corollary 3 LetC be an unbounded closed convex subset ofX having the strong separation
property. In addition, suppose that at least one of the conditions (A), (B), or (C) is satisfied.
Then, aff(C) = X. Furthermore, if dim(C) < ∞, then aff(C) = X and intC �= ∅.

As a converse of Theorem 9, we have the following.

Theorem 10 Let X be a reflexive Banach space and C ⊂ X be a closed convex subset. If
C has the separation property and (12) holds, then C has the strong separation property.
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Proof We shall prove that, if C has the separation property but does not have the strong
separation property, then (12) fails to hold.

Let D be a closed convex subset of X, disjoint from C, but cannot be strongly separated
from C. That is d(C; D) = 0, i.e., there exist sequences (cn) ⊂ C, (dn) ⊂ D such that
‖cn − dn‖ → 0. If ‖cn‖ �→ +∞ then, since X is reflexive, by restricting to a subsequence
if necessary, we may assume that cn

w→ x̄; hence, dn
w→ x̄ too. Since C and D are (weakly)

closed, x̄ must belong to both of them, contradicting the assumption that they are disjoint.
Consequently,

‖cn‖ → +∞. (22)

On the other hand, by the separation property of C, there is a hyperplane H(x∗;α) (x∗ �=
0) separating C and D, i.e.,

〈x∗, c〉 ≤ α ≤ 〈x∗, d〉; ∀c ∈ C,∀d ∈ D. (23)

It implies that x∗ ∈ bar(C) and

〈x∗, cn〉 ≤ α ≤ 〈x∗, dn〉; ∀n.

Noting that 〈x∗, dn − cn〉 ≤ ‖x∗‖‖dn − cn‖ → 0, we derive the equalities

lim
n→∞〈x∗, cn〉 = lim

n→∞〈x∗, dn〉 = α,

which, together with (22)–(23), implies (7). Thus, x∗ ∈ bar(C) \ int bar(C).

Theorem 11 Let X be an infinite-dimensional real Hilbert space and C be an unbounded
closed convex subset of X. If, in addition, C is locally compact, then it does not have the
strong separation property.

Proof Suppose the contrary that C has the strong separation property. By virtue of Theorem
5, aff(C) is a finite-codimensional closed affine subspace and riC �= ∅. On the other hand,
by Corollary 3, aff(C) = aff(C) = X; hence, intC = riC �= ∅. But this is impossible
because C is a locally compact subset in an infinite-dimensional space.

Theorem 12 Let X be a real Hilbert space and C ⊂ X be an unbounded closed convex
subset satisfying either condition (A) or (C). Then, C has the strong separation property if
and only if intC is nonempty and (12) holds.

Proof If C has the strong separation property then, by Theorems 5, Theorem 9, and
Corollary 3, we deduce that intC is nonempty and (12) holds.

Conversely, if intC is nonempty and (12) holds then, by Theorems 1 and 10, C has the
strong separation property.

Corollary 4 Let C be a closed convex subset in a finite-dimensional space X. Then, C has
the strong separation property if and only if (12) holds. Furthermore, if C is unbounded
and C has the strong separation property, then intC is nonempty.

Proof If X is finite-dimensional then it is reflexive and every closed convex subset of X is
locally compact and has the separation property. The conclusion of the corollary therefore
follows directly from Theorems 9 and 10.
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Remark 6 Corollary 4 shows that, in finite-dimensional spaces, apart from bounded subsets,
every unbounded closed convex subset also has the strong separation property whenever
(12) is fulfilled. The example below presents a set of this type.

Example 4 The following subset

C =
{
(x, y) ∈ R

2 | y ≥ x2
}

is convex, closed, and unbounded. It is not hard to verify that

σC(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

+∞ if (v > 0) or ((v = 0) and (u �= 0)),
0 if u = v = 0,

−u2

4v
if v < 0.

Consequently, bar(C) = {(0, 0)} ∪ {(u, v) | v < 0}, int bar(C) = {(u, v) | v < 0}. Thus,
(12) holds, and C has the strong separation property.

Example 5 Consider the subset of R2

C =
{
(x, y) ∈ R

2 | exp(x) − y ≤ 0
}
.

Since

σC(u, v) =

⎧
⎪⎨

⎪⎩

+∞, (u < 0 or v ≥ 0) and ((u, v) �= (0, 0)),

u ln
(
−u

v

)
− u, u > 0 > v,

0, v ≤ 0 = u,

bar(C) = {(u, v) | u ≥ 0 > v} ∪ {(0, 0)}. Thus,
int bar(C) ∪ {(0, 0)} = {(u, v) | u > 0 > v} ∪ {(0, 0)} �= bar(C).

It implies that C does not have the strong separation property.

5 Application to a Convex Optimization Problem

In this section, we shall establish some results for a convex optimization problem whose
constraint set has the strong separation property. We assume throughout the section that
f : Rn → R is a proper convex, lower semicontinuous function, andM ⊂ R

n is a nonempty
closed convex set. Consider the optimization problem

P(M; f ) :
{

f (x) → inf,
x ∈ M,

in which we seek x̄ ∈ M such that

f (x̄) = f̄ := inf{f (x) : x ∈ M}.
The solution set of P(M; f ) is denoted by Sol(M; f ), that is

Sol(M; f ) = {x̄ ∈ M | f (x̄) = f̄ }.
The horizon function f ∞ : Rn → R, associated with f , is defined by

f ∞(v) := lim
λ→+∞

f (x0 + λv) − f (x0)

λ
,
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with some x0 ∈ dom f . In fact, such a limit is independent of x0 ∈ dom f . The function
f ∞ is proper, sublinear, and lower semicontinuous (see, for example, [10]). f is said to be
coercive if

lim‖x‖→∞ f (x) = +∞.

Since f is convex on a finite-dimensional space, it is not difficult to verify that f is coercive
if and only if

lim inf‖x‖→∞
f (x)

‖x‖ > 0,

or, equivalently,
∀v �= 0, f ∞(v) > 0. (24)

It is well known that, if the objective function f is coercive and the constraint set M is
closed, then Sol(M; f ) is nonempty and compact. In the following, we show that if M has
the strong separation property then, in order for the solution set to be compact, f need not
be coercive, instead, it is required to satisfy the next weaker condition

∀0 �= v ∈ C(f ∞; 0), ∃x̃ ∈ dom f, lim
λ→+∞ f (x̃ + λv) = −∞, (25)

where
C(f ∞; 0) := {v ∈ R

n | f ∞(v) ≤ 0}.
This fact is stated in the following theorem.

Theorem 13 If M has the strong separation property, f is bounded below on M and
satisfies (25), then the solution set of P(M; f ) is nonempty and compact.

Proof Since f is convex and lower semicontinuous, Sol(M; f ) is a closed convex set. Sup-
pose that Sol(M; f ) is not compact or empty. Then, there exists a sequence (xn) ⊂ M such
that ‖xn‖ → +∞ and

lim
n→∞ f (xn) = f̄ .

By an argument analogous to the proof of Lemma 3 (under condition (C)), we may assume
that

xn

‖xn‖ → s ∈ S.

Take x0 ∈ M . By Lemmas 1 and 2, we have s ∈ rec(M),

sn := xn − x0

‖xn − x0‖ → s,

and xn = x0 + tnsn with tn = ‖xn − x0‖ → +∞.
Fix a number λ > 0. For n large enough, one has λ < tn and

f (x0 + λsn) − f (x0)

λ
≤ f (x0 + tnsn) − f (x0)

tn
= f (xn) − f (x0)

tn
.

Since f (xn) → f̄ , the right-hand side of the inequality tends to 0 while the left-hand side
tends to f (x0+λs)−f (x0)

λ
, when n → +∞. Consequently,

f (x0 + λs) − f (x0)

λ
≤ 0; ∀λ > 0,

and hence, f ∞(s) ≤ 0. Because f satisfies (25), there exists x̃ ∈ dom f such that

lim
λ→∞ f (x̃ + λs) = −∞. (26)
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We shall show that the following straight line

L = {x̃ + λs | λ ∈ R}
does not intersect M . Assume the contrary. Let λ0 ∈ R such that x̃ + λ0s ∈ M . Since
s ∈ rec(M), x̃ + λs ∈ M for all λ ≥ λ0. This together with (26) implies that f̄ = −∞,
contradicting the fact that f is bounded below on M .

Since L is convex and disjoint from M , there exists a vector x∗
0 ∈ R

n \ {0} separating L

and M; that is to say

sup{〈x∗
0 , x〉 | x ∈ M} ≤ inf{〈x∗

0 , y〉 | y ∈ L}.
Thus, x∗

0 ∈ bar(M) \ {0}. Since M has the strong separation property, it follows from
Theorems 7 and 9 that

lim
x∈M‖x‖→∞

〈x∗
0 , x〉 = −∞.

Since x0 + λs ∈ M , for all λ > 0, it implies that 〈x∗
0 , s〉 < 0. On the other hand, because

〈x∗
0 , ·〉 is bounded below on L, we have 〈x∗

0 , s〉 = 0. This contradiction completes the
proof.

Example 6 Let consider the problem P(M; f ) with

M = {(x, y) ∈ R
2 | y ≥ x2},

and

f (x, y) = y + x2, (x, y) ∈ R
2.

The set M has the strong separation property as shown in Example 4. The function f is
bounded below on M by 0. On the other hand,

f ∞(u, v) = lim
λ→+∞

f ((0, 0) + λ(u, v)) − f (0, 0)

λ

= lim
λ→+∞

λv + λ2u2

λ
=
{+∞, u �= 0,

v, u = 0.

Therefore,

C(f ∞; 0) = {(0, v) | v ≤ 0}.
For every (0, 0) �= (u, v) ∈ C(f ∞; 0), that is, u = 0 and v < 0, we have

lim
λ→+∞ f ((0, 0) + λ(0, v)) = −∞.

Thus, f satisfies (25). By virtue of Theorem 13, Sol(M; f ) is nonempty and compact. In
fact, by solving directly we can derive the solution set Sol(M; f ) = {(0, 0)}. It should be
noticed that the function f is not coercive since f ∞(0, v) < 0 for all v < 0.

Example 7 In Theorem 13, if f is not coercive then the assumption that M has the
strong separation property is essential and cannot be dropped. Let consider the optimization
problem P(M; f ) with

M = {(x, 0) | x ∈ R} ⊂ R
2,

and

f (x, y) =
{
exp(−x) − √

xy if x ≥ 0 and y ≥ 0,
+∞ if x < 0 or y < 0.
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We can verify that f is proper, convex, and lower semicontinuous on R
2. Besides,

f ∞((u, v)) = lim
λ→+∞

f (λu, λv) − f (0, 0)

λ
=
{−√

uv if u ≥ 0 and v ≥ 0,
+∞ if u < 0 or v < 0.

So, if (0, 0) �= (u, v) ∈ C(f ∞; 0) then u ≥ 0, v ≥ 0, u + v > 0; hence, by taking
(x̃, ỹ) = (1, 1), we have

lim
λ→+∞ f ((x̃, ỹ) + λ(u, v)) = lim

λ→+∞

[
exp(−1 − λu) −√(1 + λu)(1 + λv)

]
= −∞.

That means (25) holds. Furthermore, f is bounded below (by 0) on M . However, it is easy
to see that f = 0 and Sol(M; f ) = ∅. This happens because M does not have the strong
separation property and f is not coercive.

Sometimes, the constraint set M is defined by a system of convex inequalities as follows

M = {x ∈ R
n | fi(x) ≤ 0, 1 ≤ i ≤ m}, (27)

where fi , 1 ≤ i ≤ m, are convex functions on R
n. In order for the set given in (27) to have

the strong separation property, each constraint function is required to satisfy the following
condition:

∀0 �= v ∈ C(f ∞
i ; 0),∀x ∈ dom fi, lim

λ→+∞ fi(x + λv) = −∞. (28)

Theorem 14 Assume that fi : Rn → R, 1 ≤ i ≤ m are convex functions satisfying (28).
Then the set M defined as (27) has the strong separation property.

Proof Suppose the contrary. Let D ⊂ R
n be a closed convex subset, disjoint from M , but

cannot be strongly separated from M . It follows from Theorem 4 that there exists 0 �= v ∈
rec(M) ∩ rec(D). Take x0 ∈ M and y0 ∈ D. Since x0 + λv ∈ M for all λ > 0, we have

f ∞
i (v) = lim

λ→+∞
fi(x0 + λv) − fi(x0)

λ
≤ lim

λ→+∞
−fi(x0)

λ
= 0; 1 ≤ i ≤ m.

Because fi satisfies (28), we have

lim
λ→+∞ fi(y0 + λv) = −∞; 1 ≤ i ≤ m.

Consequently, there exists λ > 0 such that fi(y0 + λv) ≤ 0, 1 ≤ i ≤ m, or y0 + λv ∈ M .
On the other hand, since v ∈ rec(D), y0 + λv ∈ D. Thus, M ∩ D �= ∅, contradicting the
fact that M and D are disjoint.

Corollary 5 Let fi : Rn → R, 1 ≤ i ≤ m be convex functions satisfying (28), f0 : Rn → R

be a proper, convex, and lower semicontinuous function satisfying (25). Then, the solution
set of the following optimization problem

P(f1, f2, . . . , fm; f0) :
⎧
⎨

⎩

f0(x) → inf,
x ∈ R

n,

fi(x) ≤ 0, 1 ≤ i ≤ m

is nonempty and compact.

Remark 7 From assumptions imposed on convex functions, we observe that (24) ⇒ (28)
and (28) ⇒ (25). However, the converses are not true. For example, the function f given in
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Example 7 satisfies (25), while, by taking (1, 0) ∈ C(f ∞; 0) and (x, y) = (0, 0) ∈ dom f

we have:
lim

λ→+∞ f ((0, 0) + λ(1, 0)) = 0 > −∞.

Thus, f does not satisfy (28). Also, it is not hard to verify that the following function

f (x) =
{−√

x if x ≥ 0,
+∞ if x < 0

is proper, convex, and lower semicontinuous on R satisfying (28), but it is not coercive.

6 Conclusion

In this paper, we have studied strong separation of convex sets and characterization of sets
having the strong separation property by using results on the barrier cones of convex sets.
We provide a full description of the interior of the barrier cone of a convex set, and prove
a new strong separation theorem under an assumption on the barrier cones instead of local
compactness or weak compactness assumptions on the sets. We also develop some nec-
essary and/or sufficient conditions for a closed convex set to have the strong separation
property. The nonemptiness and compactness of the solution set in a convex optimization
problem whose constraint set has the strong separation property are also considered in the
paper.
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