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1 Introduction 

Let k  be a field and : →m n
k k  be a rational map. 

Such a map   is defined by homogeneous polynomials 

0 , , ,nf f  of the same degree ,d  in a standard graded 

polynomial ring 0= [ , , ],mR k X X  such that 

0( , , ) =1.gcd nf f  The ideal I  of R  generated by 

these polynomials is called the base ideal of  . The scheme 

:= ( / )  m
kProj R I  is called the base locus of  . Let 

0= [ , , ]nB k T T  be the homogeneous coordinate ring of 

.nk  The map   corresponds to the k-algebra 

homomorphism : , →B R  which sends each iT  to 

.if  Then, the kernel of this homomorphism defines the 

closed image  of .  In other words, after degree 

renormalization, 0[ , , ] / ( )nk f f B Ker  is the 

homogeneous coordinate ring of .  The minimal set of 

generators of ( )Ker  is called its implicit equations and 

the implicitization problem is to find these implicit 

equations. 

The implicitization problem has been of 

increasing interest to commutative algebraists and 

algebraic geometers due to its applications in 

Computer Aided Geometric Design as explained 

by Cox [1]. 

We blow up the base locus of   and obtain 

the following commutative diagram: 

 

The variety   is the blow-up of m
k  along 

, and it is also the Zariski closure of the graph of 

  in .m n
k k  Moreover,   is the geometric 

version of the Rees algebra  of ,I  i.e., 

( ) = .Proj  As  is the graded domain 

defining ,  the projection 2 ( ) =   is defined 

by the graded domain 0[ , , ] nk T T , and we 
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can thus obtain the implicit equations of  from 

the defining equations of .  

Besides the computation of implicit 

representations of parameterizations, in geometric 

modeling it is of vital importance to have a detailed 

knowledge of the geometry of the object and of the 

parametric representation one is working with. 

The question of how many times is the same point 

being painted (i.e., corresponds to distinct values 

of parameter) depends not only on the variety itself 

but also on the parameterization. It is of interest for 

applications to determine the singularities of the 

parameterizations. The main goal of this paper is 

to study the fibers of parameterizations in relation 

to the Rees and symmetric algebras of their base 

ideals. More precisely, we set  

2:= : .   →|
n
k  

For every closed point , n
ky  we will 

denote its residue field by ( )k y . If k  is assumed 

to be algebraically closed, then ( ) .k y k  The fiber 

of   at  n
ky  is the subscheme  

1
( )( ) = ( ( )) . −   m m

B k y ky Proj k y  

Suppose that m ≥ 2, and   is generically 

finite onto its image. Then, the set  

1
1 = { ( ) = 1} −
−  −| dim

n
m ky y m  

consists of only a finite number of points in .nk  

For each 1− my , the fiber of   at y  is an 

( 1)−m -dimensional subscheme of m
k , and thus 

the unmixed component of maximal dimension is 

defined by a homogeneous polynomial .yh R  

One of the interesting problems is to establish an 

upper bound for 
1

( )


−
 deg yy

m

h  in terms of d . 

This problem was studied in [2, 3]. 

The paper is organized as follows. In Section 

2, we study the structure of 1.−m  Some results in 

this section were proved in [2]. The main result of 

this section is Theorem 2.5 that gives an upper 

bound for 
1

( )


−
 deg yy

m

h  by the initial degree 

of certain symbolic powers of its base ideal. This is 

a generalization of [3, Proposition 1] where the first 

author only proved this result for 

parameterizations of surfaces 2 3: →k k  under 

the assumption that the base locus  is locally a 

complete intersection. More precisely, we have the 

following.  

Theorem If there exists an integer s  such that 

= (( ) ) < s sat
indeg I sd , then  

1

( ) < .


−

 deg y

y
m

h sd  

In particular, if ( ) <sat
indeg I d , then 

1

( ) < .


−
 deg yy

m

h d   

In Section 3, we study the part of graded m  

in iX  of the m -th local cohomology modules of 

the Rees algebra with respect to the homogeneous 

maximal ideal 0= ( , , )mX Xm   

( , ) 0= ( ) = ( ) .−   −m m s
m s sd mN H H Im m  

The main result of this section is the 

following.  

Theorem (Theorem 3.2) We have that N  is 

a finitely generated B -module satisfying   

(i) 1( ) = −B mSupp N  and ( ) =1.dim N   

(ii) 
1

( ) 1
( ) = .


−

+ − 
  
 


deg

deg
y

y
m

h m
N

m
  

In the last section, we treat the case of 

parameterization 2 3: →k k  of surfaces. We 

establish a bound for the Castelnuovo-Mumford 

regularity and the degree of the B -module  

2
0 2= ( ) , − s

s sdN H Im  

see Corollary 4.2 and Proposition 4.3.  
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Proposition Assume = ( / )Proj R I  is 

locally a complete intersection. Then  

2
( ) ( ) ,

3

+ 
   

 
and deg

n
reg N n N  

where 1
2= ( / ) −dimk dn H R Im .  

Moreover, if ( ) =sat
indeg I d , then  

( 3)
3.

2

−
  +

d d
d n  

2 Fibers of rational maps : →m n
k k   

Let 2 n m  be integers and 0= [ , , ]mR k X X  be 

the standard graded polynomial ring over an 

algebraically closed field k. Denote the homogeneous 

maximal ideal of R  by 0= ( , , )mX Xm . Suppose 

we are given an integer d ≥ 1 and n + 1 homogeneous 

polynomials 0 , , ,n df f R  not all zero. We may 

further assume that 0( , , ) =1,gcd nf f  replacing the 

if s  by their quotient by the greatest common 

divisor of 0 , , nf f  if needed; hence, the ideal I  of 

R  generated by these polynomials is of codimension 

at least two. Set := ( / ) := ( ) m
kProj R I Proj R  

and consider the rational map  

: − →m n
k k  

0( ( ) : : ( ))nx f x f x  

whose closed image is the subvariety  in .nk  

In this paper, we always assume that   is 

generically finite onto its image, or equivalently 

that the closed image  is of dimension .m  In 

this case, we say that   is a parameterization of the 

m -dimensional variety . 

Let 0  m n
k k  be the graph of 

: →\
m n
k k  and   be the Zariski closure of 

0 . We have the following diagram  

  

where the maps 1  and 2  are the canonical 

projections. One has  

 2 0 2= ( ) = ( ),    

where the bar denotes the Zariski closure. 

Furthermore,   is the irreducible subscheme of 

m n
k k  defined by the Rees algebra  

 0:= ( ) = . s
R sRees I I  

Denote the homogeneous coordinate ring of 

n
k  by 0:= [ , , ]nB k T T . Set  

0:= = [ , , ]k nS R B R T T  

with the grading ( ) = (1,0)deg iX  and 

( ) = (0,1)deg jT  for all i = 0,…,m and j=0,...,n. The 

natural bi-graded morphism of k -algebras  

0 0: = ( ) = ( )  →  s s
s sS I d I sd  

i iT f  

is onto and corresponds to the embedding 

  m n
k k . 

Let P  be the kernel of  . Then, it is a bi-

homogeneous ideal of S , and the part of degree 

one of P  in iT , denoted by 1 ( ,1)= ,P P  is the 

module of syzygies of the I   

0 0 1 0 0 = 0.+ +   + +n n n na T a T a f a fP  

Set := ( )RSym I  for the symmetric 

algebra of I . The natural bi-graded epimorphisms  

1 1/ ( ) : / ( ) /→ →andS S S SP P P  

correspond to the embeddings of schemes 

,   m n
k kV  where V  is the projective 

scheme defined by . 
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Let  be the kernel of ,  one has the 

following exact sequence  

0 0.→ → → →  

Notice that the module  is supported in 

 because I  is locally trivial outside . 

As the construction of symmetric and Rees 

algebras commutes with localization, and both 

algebras are the quotient of a polynomial extension 

of the base ring by the Koszul syzygies on a 

minimal set of generators in the case of a complete 

intersection ideal, it follows that   and V  

coincide on ( ) ,\
m n
k kX  where X  is the 

(possibly empty) set of points where  is not 

locally a complete intersection. 

Now we set 2:= : .   →|
n
k  For every 

closed point , n
ky  we will denote its residue 

field by ( )k y , that is, ( ) = / ,k y B Bp pp  where p  is 

the defining prime ideal of .y  As k  is 

algebraically closed, ( ) .k y k  The fiber of   at 

 n
ky  is the subscheme  

1
( )( ) = ( ( )) . −   m m

B k y ky Proj k y  

Let 0 , m  we define  

1= { ( ) = } . − | dim
n n
k ky y  

Our goal is to study the structure of .  

Firstly, we have the following.  

Lemma 2.1 [2, Lemma 3.1] Let : →m n
k k  

be a parameterization of m -dimensional variety and 

  be the closure of the graph of .  Consider the 

projection : → n
k . Then  

.+ dim m  

Furthermore, this inequality is strict for any 

l > 0. As a consequence,   has no m -dimensional 

fibers and only has a finite number of ( 1)−m -

dimensional fibers.  

The fibers of   are defined by the 

specialization of the Rees algebra. However, Rees 

algebras are difficult to study. Fortunately, the 

symmetric algebra of I  is easier to understand 

than , and the fibers of   are closely related 

to the fibers of  

2:= : .  →|
' n

V kV  

Recall that for any closed point , n
ky  the 

fiber of  '  at y  is the subscheme  

1
( )( ) = ( ( )) . −  ' m m

B k y ky Proj k y  

The next result gives a relation between 

fibers of   and  '  – recall that X  is the 

(possible empty) set of points where  is not 

locally a complete intersection. 

Lemma 2.2 [2, Lemma 3.2] The fibers of   

and  '  agree outside ,X  hence they have the same 

( 1)−m -dimensional fibers.  

The next result is a generalization of [4, 

Lemma 10] that gives the structure of the unmixed 

part of a ( 1)−m -dimensional fiber of .  Note 

that our result does not need the assumption that 

 is locally a complete intersection as in [4], 

thanks to Lemma 2.2. Recall that the saturation of 

an ideal J  of R  is defined by := ( ):
sat

RJ J m .  

Lemma 2.3 [2, Lemma 3.3] Assume  such 

that = 1ip . Then, the unmixed part of the fiber 

1( ) −
y  is defined by  

0 0= ( , , ).− −gcdy i n n ih f p f f p f  

Furthermore, if =−j j i y jf p f h g  for all j ≠ i, 

then  

0 1 1= ( ) ( , , , , , ) ( , ).− ++ and sat
i y i i n i yI f h g g g g I f h  

Remark 2.4 The above lemma shows that the 

( 1)−m -dimensional fibers of   can only occur when 

  as ( , ). i yV f h  It also shows that  
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( ) ( ),deg degyd h  

if there is a (m – 1)-dimensional fiber with unmixed part 

given by .yh  As a consequence, ( ) <deg yh d  for any 

1.− my   

By Lemma 2.1,   only has a finite number 

of ( 1)−m -dimensional fibers. The following gives 

an upper bound for this number in terms of the 

initial degree of certain symbolic powers of its base 

ideal. Recall that the initial degree of a graded R -

module M  is defined by  

( ) := { 0} inf | nindeg M n M  

with convention that = . +sup   

Theorem 2.5 If there exists an integer 1s  

such that = (( ) ) < s sat
indeg I sd , then  

1

( ) < .


−

 deg y

y
m

h sd  

In particular, if ( ) <sat
indeg I d , then  

1

( ) < .


−

 deg y

y
m

h d  

Proof. As 1−m  is finite, by Lemma 2.3, there 

exists a homogeneous polynomial f I  of degree 

d  such that, for any 1,− my   

1= ( ) ( , , ) ( , )+ and sat
y y ny yI f h g g I f h  

for some 1 , , y nyg g  R. Since ( , )yf h  is a complete 

intersection ideal, it follows from [5, Appendix 6, 

Lemma 5] that ( , )syf h  is unmixed, hence saturated 

for every integer s ≥ 1. Therefore, for all 1− my ,  

1

( ) (( ) ) (( , ) ) = ( , )

= ( , , , ).

s sat sat s sat s sat s
y y

s s s
y y

I I f h f h

f f h h
−

 
 

Now, let 0 ( )  s sat
F I  such that deg(F) = v 

< sd, then yh  is a divisor of F . Moreover, if  '
y y  

in 1−m , then ( , ) =1.gcd y 'y
h h  We deduce that  

1


−

 |y

y
m

h F  

which gives  

1

( ) ( ) = < .


−

 deg degy

y
m

h F sd  

Remark 2.6 In the case where 2 3: →k k  is a 

parameterization of surfaces. In [3], the first author 

showed that if  is locally a complete intersection of 

dimension zero, then  

1

4 = 3,

( )
1 4.

2




  
−  

 


if

deg
if

y

y

d

h d
d d

 

Example 2.7 Consider the parameterization 
2 3: →k k  of surface given by  

0 0 1 0 2 0 2 0 2

1 0 1 1 2 1 2 1 2

2 0 2 0 2 0 2 0 2

3 1 2 1 2 1 2 1 2

= ( )( )( 2 )

= ( )( )( 2 )

= ( )( )( 2 )

= ( )( )( 2 ).

− + −

− + −

− + −

− + −

f X X X X X X X X

f X X X X X X X X

f X X X X X X X X

f X X X X X X X X

 

Using Macaulay2 [6], it is easy to see that 

= sat
I I and 2(( ) )sat

indeg I = 8 < 2.5 = 10. Furthermore, 

I  admits a free resolution  

 

where matrix M  is given by  

2 1 2 1 2 1 2

2 0 2 0 2 0 2

1

0

0 ( )( )( 2 )

0 ( )( )( 2 )
.

0 0

0 0

− − + − 
 

− − − + − 
 
  
 

X X X X X X X

X X X X X X X

X

X

 

Thus, we obtain 1 1 2 3 4 5 6 7 8={ , , , , , , , }p p p p p p p p  

with
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1 0 2 1
1 2

3 0 2 4 0 2
3 4

5 0 2 6 1 2
5 6

7 1 2 8 1 2
7 8

= (0 : 0 : 0 :1) = = (0 : 0 :1: 0) =

= (0 :1: 0 :1) = = (0 : 1: 0 :1) =

= (0 : 2 : 0 :1) = 2 = (1: 0 :1: 0) =

= ( 1: 0 :1: 0) = = (2 : 0 :1: 0) = 2 .

h X h X

h X X h X X

h X X h X X

h X X h X X

− − +

− −

− + −

p p

p p

p p

p p

p p

p p

p p

p p

 

Consequently, we have 2

1

( ) = 8 = (( ) ).



 deg
sat

y

y

h indeg I

3 Local cohomology of Rees algebras of 

the base ideal of parameterizations 

Let : →m n
k k  be a parameterization of       

m-dimensional variety. Let 0= [ , , ]mR k X X  and 

0= [ , , ]nB k T T  be the homogeneous coordinate 

ring of m
k  and n

k , respectively. For every closed 

point  n
ky , the fiber of   at y  is the subscheme  

1
( )( ) = ( ( )) −   m m

B k y ky Proj k y  

and we are interested in studying the set  

1
1 = { ( ) = 1}. −
−  −|dim

n
m ky y m  

We now consider the B -module  

( , ) 0= ( ) = ( ) ,    +m m s
s sdM H H Im m  

where 0= ( , , )mX Xm  is the homogeneous 

maximal ideal of R . By [7, Theorem 2.1], M  is a 

finitely generated B -module for all  . The 

following result gives a relation between the 

support of M  and 1.−m  For each 

= ( ) n
ky Proj B , we can see y  as a homogeneous 

prime ideal of .B   

Proposition 3.1 One has  

1
1( ) ={ ( ( )) 1}.  −
−  + +| degB mSupp M y y m  

Proof. As k  is algebraically closed, we have  

1
( )( ) = ( ( )) . −   m m

B k y ky Proj k y  

Therefore, the homogeneous coordinate ring 

of 1
2 ( ) −

y  is  

( ) / ,B k y R J  

where J  is a satured ideal of R  depending on 

.y  Let 1− my . As 1( ) = 1 − −dim y m , one has  

( ( )) = / = .dim dimB k y R J m  

Since dimR = m + 1, there exists a homogeneous 

polynomial f  of degree fd  such that = ( ) ,
'

J f J

with ( ) 2. codim J  Notice that f  is exactly the 

defining equation of unmixed part of 1( ). −
y  

Consider the exact sequence  

0 ( ) / / / ( ) 0→ → → →f J R J R f  

which deduces the exact sequence in cohomology  

1

0 = (( ) / ) ( / )

( / ( )) (( ) / ) = 0,

m m

m m

H f J H R J

H R f H f J
+

→

→ →

m m

m m

 

since ( ) codim J  2, hence ( ) /f J  is of dimension 

at most 1.−m  It follows from the above exact 

sequence that  

( ( )) ( / ) ( / ( )).m m m
BH k y H R J H R fm m m  (3.1) 

We consider the following exact sequence  

 

which implies the exact sequence in cohomology  

 

In degree  , one has the following exact 

sequence  
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(3.2) 

 

On the other hand,  

1 1 1 1
0 0( ) ( ) [ , , ],+ − − −m

m mH R X X k X Xm  

hence  

1
1 1( ) ( ) := ( , ).  

+ 
+ + − − −

m
m R mH R R Homgr R km  

It follows that 1( ) = 0
+m

H Rm  for all 

> 1 − −m  and 1( ) 0
+ m

H Rm  for any 1  − −m . 

It follows from (3.2) that  

1

( / ( )) =

0 > 1

( / ( )) 0 1.

if

if

m

f

d m f
f

H R f

d m

R f d m








− + +

− −



  − −

m

 (3.3) 

By definition, M  is a graded B -module 

and ( ) ( ). BSupp M Proj B  Now let ( )Proj Bp , 

we have  

( ) 0    B BSupp M M Bpp  

( / ) 0   B BM B Bp p  

( , )( ) ( ) 0   m
BH km p  

( , )( ( )) 0.   m
BH km p  

In particular, ( ( )) 0  ,
m

BH km p hence 

( ( )) =dim B k mp  which shows that 1.− mp  

It follows from (3.1) and (3.3) that 
1( ( )) 1. −  + +deg mp   

In particular, if = −m , then the finitely 

generated B -module  

0= ( ) − m s
s sd mN H Im  

satisfies 1( ) = −B mSupp N  by Proposition 3.1. 

Furthermore, we have the following.  

Theorem 3.2 Let N  be the finitely generated 

B -module as above. Then   

(i) ( ) =1.dim N   

(ii) 
1

( ) 1
( ) = .


−

+ − 
  
 


deg

deg
y

y
m

h m
N

m
  

Proof. Let 0 1 1= ( : : : ) .−n my p p p  

Without loss of generality, we can assume that 

0 =1.p  Hence,  

1 1 0 0= ( , , )− − n nT p T T p T Bp  

is the defining ideal of y . For any f B , we have  

1 1 1 0 0 0= ( ) ( ) [ ].− + + − + forsomen n nf g T p T g T p T v v k T  

It follows that = .+ +f vp p  This implies 

that 0/ [ ].B k Tp  Therefore,  

1( / ) =1 −dim for any mB p p  

and thus,  

( )

( ) = ( / ) = 1


dim dimmax
Supp N

B

N B
p

p  

which shows (i). We now prove for item (ii). It was 

known that  

( ) = ( ) = = ( ) −dim dim
m s

k kN N s sd mHP s HF s N H Im  

for all 0s , where NHP  and NHF  is the 

Hilbert polynomial and the Hilbert function of N, 

respectively. As =1dimN , the Hilbert polynomial 

of N  is constant, which is equal to ( ).deg N  On 

the other hand,  

( / )=1

( ) = ( ). ( / ).
dim

deg degB

B

N length N Bp
p

p

p  

We proved that 0/ [ ],B k Tp  hence 

( / ) =1dim B p  and ( / ) =1deg B p  for the defining 

ideal p  of 1− my . Therefore,  

1

( ) = ( ).


−

deg B

y
m

N length Np
p

 

As Np is an Artinian Bp-module and 

0( / ) = ( [ ]) =1dim dimk ks sB k Tp  for any 0s , one 

has  
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( ) = ( )dimkB Blength N N Bp p
p

 

= ( )dimk B s

s

N Bp  

( , )= ( ( ) ) −dim
m

k B m s

s

H Bm p  

( , )= ( ( ) ) . ( / )−dim dim
m

k kB m s s

s

H B Bm p p  

( , )= ( / ) − dim
m

k B B m s

s

H B Bm p p  

( , )= ( ( )) −dim
m

k B m s

s

H km p  

(3.1)

= ( / ( ))−dim
m

k mH R fm  

(3.3)

1= ( / ( )) −dimk d
f

R f  

1= ( ) =− since degdimk d f
f

R f d  

1
= .

+ − 
  
 

fd m

m
 

It follows that  

1

( ) 1
( ) = .


−

+ − 
  
 


deg

deg
y

y
m

h m
N

m
 

4 Parameterization 2 3: →k k  of 

surfaces 

In this section, we consider a parameterization 

2 3: →k k  of surface defined by four homogeneous 

polynomials 0 3 0 1 2, , = [ , , ]f f R k X X X  of the same 

degree d  such that 0 3( , , ) =1gcd .f f Denote the 

homogeneous maximal ideal of R  by 

0 1 2= ( , , ).X X Xm From now on we assume that  is 

locally a complete intersection. Under this hypothesis, 

the module  is supported in mS, hence ( ) = 0i
Hm  

for any 1.i  The exact sequence  

0 0→ → → →  

deduces that  

( ) ( ), 1. i i
H H im m  

Let 0 3= [ , , ]B k T T  be the homogeneous 

coordinate ring of 3.k  It follows from Theorem 

3.2 that the finitely generated B -module  

2 2 2
0 2 ( 2, ) ( 2, ):= ( ) = ( ) ( ) − −  −  s

s sdN H I H Hm m m  

satisfying ( ) =1dim N  and  

3 1
1( ) = = { ( ) = 1}. − | dimB kSupp N y y  

Furthermore,  

2
2

1

( ) 1
= ( ) = ( )

2
−



+ 
  
 


deg

deg dim
y s

k sd

y

h
N H Im  

for s ≥ reg(N) + 1, where reg(N) is the Castelnuove-

Mumford regularity of N. Thus, it is useful to 

establish the bounds for deg(N) and reg(N). 

Let := ( ; )• • fK K R  and := ( ; )• • fZ Z R  be the 

Koszul complex and the module of cycles 

associated to the sequence 0 3:= , ,f f f  with 

coefficients in ,R respectively. Since the ideal 

= ( )fI  is homogeneous, these modules inherit a 

natural structure of graded R -modules. Let •  

be the approximation complex associated to I. The 

approximation complexes were introduced by 

Herzog, Simis and Vasconcelos in [8] to study the 

Rees and symmetric algebras of ideals. By 

definition  

0 3= [ ] [ , , ]( ) −q q RZ qd R T T q  

for all = 0, ,3q  with ( ) = (1,0)deg iX  and 

( ) = (0,1)deg iT . This complex is of the form 

( )•  

 

where 1 0 1 2 3 0 0 3 3( , , , ) = + +v a a a a a T a T . As  is 

locally a complete intersection, the complex ( )•  
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is acyclic and is a resolution of 0 ( )•H , see 

[9, Theorem 4]. 

Proposition 4.1 Assume  is locally a 

complete intersection. Then N  admits a finite 

representation of free B -modules  

( 2) ( 1) 0,− → − → →m n
B B N  

where  

1
2= ( / ) −dimk dn H R Im  and 3

2 2 2= ( ) .−dimk dm H Zm   

Proof. We consider the two spectral sequences 

associated to the double complex ( ),•
•Cm  where 

( )•
C Mm  denotes the Čech complex on M  

relatively to the ideal m. Since ( )•  is acyclic, 

one of them abuts at step two with:  

2

( ) = 0
= =

0 0.







for

for

p
h p h p

q q

H q
E E

q

m  

The other one gives at step one:  

1 0 3= ( ) = ( )[ ] [ , , ]( )

= ( )[ ] ( ).

 −

 −

v p p p
q q q R

p
q k

E H H Z qd R T T q

H Z qd B q

m m

m

 

By [9, Lemma 1], ( ) = 0p
qH Zm  for = 0,1p  

and by definition, 3 [ 4 ]−Z R d  and 0 = .Z R

Therefore, the first page of the vertical spectral 

sequence has only two nonzero lines

 

In bi-degree ( 2, )−  , we have 

3 3
0 2 2( ) = ( ) = 0.− − k kH Z B H R Bm m  Therefore, we 

obtain the complex ( )•C  of free B -modules  

 

Notice that 

3 2 1
1 2 2 2= ( ) = ( ) = ( / ) .− − −dim dim dimk k kd d dn H Z H I H R Im m m  

It remains to show that 1( ) = .•H C N  It is 

easy to see that  

2= = = 3 = 2, =1. unless orv p v p
q qE E p q p q  

Therefore, 

3 2
2 1

=2 =2

= = ( ) = , 

− −
 

v p v h p
q q

p q p q

E E H Em  

in other words,  

2 2
1 ( 2, ) ( 2, )( ) = ( ) = ( ) = .• −  − H C H H Nm m  

We now establish a bound for the 

Castelnuove-Mumford regularity and the degree 

of B-module N  in terms of 1
2= ( / ) −dimk dn H R Im  

as follows.  

Corollary 4.2 Suppose  is locally a complete 

intersection. Then  

2
( ) ( ) .

3

+ 
   

 
and deg

n
reg N n N  

Proof. As = 4dimB , hence ( ) = 3codim N  

and by Proposition 4.1, N  admits a finite 

representation  

( 2) ( 1) 0.− → − → →m n
B B N  

The corollary follows from [10, Corollaries 

2.4 and 3.4].  

Theorem 2.5 shows that if ( ) <sat
indeg I d , 

then  

1

( ) < .



 deg y

y

h d  

Hence, the delicate case is when the ideal I  

satisfies ( ) = ( ) = .sat
indeg I indeg I d  In this case, the 

first author in [3] established an upper bound for 
1

2= ( / ) −dimk dn H R Im  in terms of d  as follows.  
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Proposition 4.3 Assume  is locally a 

complete intersection and ( ) =sat
indeg I d . Then  

21
( 1) ( ) 2 3

2
+   − +degd d d d  

and  

1 ( 3)
= ( ) ( 1) 3.

2 2

−
 − −  +deg

d d
d n d d  

References 

1. Cox D. What is the role of algebra in applied 

mathematics?. Notices of the AMS.2005;52(10):1193-

1198. 

2. Chardin M, Cutkosky SD, Tran QH. Fibers of 

rational maps and jacobian matrices. Journal of 

Algebra. 2019. 

3. Tran QH. Bound for the number of one-dimensional 

fibers of a projective morphism. Journal of Algebra. 

2018;494:220-236. 

4. Botbol N, Busé L, Chardin M. Fitting ideals and 

multiple points of surface parameterizations. 

Journal of Algebra. 2014;420:486-508. 

5. Zariski O, Samuel P. Commutative algebra, Vol II. 

Berlin: Springer; 1960.  

6. Daniel G, Michael S, David E. Macaulay2. Version 

1.16. Illinois: National Science Foundation; 2020. 

7. Chardin M. Powers of ideals and the cohomology of 

stalks and fibers of morphisms. Algebra & Number 

Theory. 2013;7(1):1-18. 

8. Herzog J, Simis A, Vasconcelos W. Approximation 

complexes of blowing-up rings. Journal of Algebra. 

1982;74(2):466-493. 

9. Busé L, Chardin M. Implicitizing rational 

hypersurfaces using approximation complexes. 

Journal of Symbolic Computation. 2005;40(4-5): 

1150-1168. 

10. Chardin M, Fall AL, Nagel U. Bounds for the 

Castelnuovo–Mumford regularity of modules. 

Mathematische Zeitschrift. 2007;258(1):69-80. 

 


