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A B S T R A C T   

Two new compounds, adinandrolide (1) and adipoiloside (2), together with twelve known compounds 3–14, 
were isolated and identified from Adinandra poilanei leaves. In the α-glucosidase activity evaluation, compounds 
5–7 and 10 strongly inhibited enzyme activity with IC50 values ranging from 1.29 ± 0.03 μg/mL to 
3.13 ± 0.07 μg/mL. Compounds 9, 11, and 13–14 showed significant inhibition with IC50 values of 
13.01 ± 0.32 μg/mL to 16.00 ± 0.35 μg/mL, while adipoiloside (2) displayed moderate inhibitory activity. In 
addition, pomolic acid (10) showed strong cytotoxicity against four tested cancer cell lines.   

1. Introduction 

The genus Adinandra, which are shrubs or evergreen trees in Pen
taphylacaceae family, consist of over 100 species distributed in South 
Asia, China, Japan, and Africa. Thirteen Adinandra species in Vietnam 
have been documented (Ho, 2000; Son et al., 2014). Several Adinandra 
plants have been traditionally used for the treatment of throat cancer, 
stomach aches, and snake bites (Chi, 2012). However, scientific data on 
phytochemicals and biological activities of Adinandra species are quite 
limited. Most of the studies focus on Adinandra nitida species in China, 
which has been consumed as a health tea (Shiyacha) and herbal medi
cine due to its many curative effects, such as reducing blood pressure 
and blood lipids, antioxidant, and antitumor activity (Chen et al., 2015; 
Gao et al., 2010; Liu et al., 2010). Previous investigations of A. nitida 
revealed that this species contained flavonoids, flavonoid glycosides, 
and triterpenoid saponins (Gao et al., 2010; Zhang et al., 2006; Wang 
et al., 2008; Yuan et al., 2019). 

The Adinandra poilanei species was found in central provinces of 
Vietnam, but no chemical or biological studies have been reported. Our 
preliminary study revealed the methanolic extract of A. poilanei leaves 
exhibited good cytotoxicity against the KB cancer cell line (IC50 of 
9.41 ± 0.73 μg/mL) and strong α-glucosidase enzyme inhibition (IC50 of 
0.28 ± 0.03 μg/mL). Herein, we describe the isolation and structural 

elucidation of phytochemicals from the leaves of A. poilanei. The 
inhibitory effect on the enzyme α-glucosidase and the cytotoxic activity 
of isolated compounds were also evaluated. 

2. Results and discussion 

Phytochemical study of the n-hexane and EtOAc extracts of the 
leaves of A. poilanei led to the isolation of a new 18α-oleanane triterpene 
(1) and an atisane-type nor-diterpene glucoside (2) (Fig. 1), together 
with twelve known compounds 3–14. The known metabolites, including 
betulinal (3), betulin (4) (Sholichin et al., 1980), massagenic acid (5) 
(Macías et al., 1998), oleanderolide (6) (Fu et al., 2005), plantanic acid 
(7) (Fujoka et al., 1994), ursolic acid (8) (Woo et al., 2014), diospyrolide 
(9) (Kuo et al., 2000), pomolic acid (10) (Lee et al., 2005), 4,5-dihydro
blumenol (11) (De Marino et al., 2004), sitoindoside I (12) (Zhang et al., 
2013), syringaresinol (13) (Panyo et al., 2016), and kajiichigoside F1 
(14) (Yuan et al., 2019), were identified by comparing their NMR data to 
the previously published literature (Fig. S1). 

Compound 1 was isolated as a white amorphous powder. The IR 
spectrum showed absorption bands at 3375 cm− 1 (OH group) and 
1706 cm− 1 (C––O). The negative HR-ESI-MS spectrum showed the ion 
peak m/z 507.3235 [M + Cl]- corresponding to the molecular formula of 
C30H48O4 (calcd. for C30H48O4Cl− 507.3247). The NMR spectrum 
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revealed characteristic signals of a pentacyclic triterpene with six 
angular methyl groups at δH 1.06, 0.96, 0.94, 0.91, 0.87, and 0.76 (each 
3H, s) and two modified methyls as a hydroxymethylene group (δH 3.65 
[d, J = 11.0 Hz] and 3.40 [d, J = 11.0 Hz]; δC 67.2) and a carbonyl group 
(δC 182.2). The HMBC correlations from oxygenated methine proton H- 
19 (δH 4.28) to C-17 (δC 46.7)/C-18 (δC 46.8)/C-28 (δC 182.2) suggested 
the presence of a 28,19-γ-lactone ring in 1. Furthermore, the singlet 
lactonic proton H-19 at δH 4.28 is associated with a 28β,19β-configu
ration in an 18α-oleanane structure due to the a quasi 90 ◦ angle between 
H-18α and H-19α (Macías et al., 1996). The hydroxy group was found at 
the C-30 position based on the HMBC cross-peaks of these hydroxy
methylene protons (H-30: δH 3.65 and 3.40) to carbon signals C-19 (δC 
85.5)/C-20 (δC 39.0)/C-21 (δC 29.2)/C-29 (δC 24.0) and NOESY corre
lations of H-19 (δH 4.28) to H-29 (δH 1.06) and of H-18 (δH 1.97) to H-30 
(δH 3.65) (Fig. 2). The coupling constants (J  = 5.5 Hz and 11.0 Hz) of 
oxymethine signal at δH 3.16 (1H, dd) suggested the remaining hydroxy 
group was at the 3β position (Macías et al., 1996). Therefore, compound 
1 is assigned as 3β,30-dihydroxy-18Hα-oleane-28β,19β-olide, named 
adinandrolide. 

Compound 2 was isolated as a white solid. The molecular formula of 
2 was identified as C25H40O8 based on the negative ion peak at m/z 
503.2421 [M + Cl]− in the HR-ESI-MS spectrum (calcd. for C25H40O8Cl−

503.2417). The 1H NMR spectrum showed signals of a β-configuration 
glycoside compound with the anomeric proton at δH 5.43 (d, J = 8.0 Hz, 
H-1’), four oxymethine groups at δH 3.44–3.33 (4H, H-2’, 3’, 4’, 5’), and 
a hydroxymethylene group at δH 3.84 (1H, dd, J = 2.0, 12.0 Hz, H-6’a) 
and 3.70 (1H, dd, J = 4.5, 12.0 Hz, H-6’b). The aglycone moiety had two 
tertiary methyl groups at δH 1.23 and 0.93 (each 3H, s) and an oxy
methine proton at δH 3.90 (dd, J = 9.5, 3.5, 3.0 Hz). The 13C NMR and 

DEPT spectra showed 25 carbon signals, including six signals of a hexose 
at δC 95.6 (C-1’), 74.1 (C-2’), 78.7 (C-3’), 71.2 (C-4’), 78.7 (C-5’), and 
62.5 (C-6’), which suggested a glucopyranosyl moiety (Galala et al., 
2016). The aglycone skeleton presented two methyls, nine methylenes, 
four methines, and four quaternary carbons. The HMBC showed the 
correlations of H-1’ (δH 5.43) and methyl group (δH 1.23) to the carboxyl 
group (δC 178.2). From the spectral evidence, compound 2 was deduced 
as glucoside of a tetracylic nor-diterpene with an ent-atisane or 
ent-kaurane skeleton with a hydroxy group at the C-16 position and a 
carboxylate ester group at the C-18 or C-19 position, respectively. The 
chemical shift of C-16 of compound 2 was 70.4 ppm, suggesting the 
structure of 2 was ent-atisane skeleton (Ding et al., 1991). The ent-ati
sane structure was further confirmed by 1H-1H COSY correlations of 
H-11/H-12/H-16/H-15 and H-12/H-13/H-14 systems. The hydroxy 
group of C-16 was assigned at β-orientation due to the NOESY correla
tion of H-16 (δH 3.90) to H-13 (δH 1.52). On the other hand, the NOESY 
spectrum showed the cross-peaks of H-5 (δH 1.10) and H-6β (δH 1.75) to 
H-19, which suggested the carboxyl group was located at the C-18 po
sition. Other important NOESY cross-peaks between H-20 (δH 0.93) and 
H-2α (δH 1.40)/H-6α (δH 2.00)/H-14 (δH 1.95) and between H-5 and H-9 
(δH 1.22), together with the lack of correlations between H-16 (δH 3.90) 
and H-20 (δH 0.93)/H-11 (δH 1.93, 1.20), led to assign the complete 
stereostructure of 2 (Fig. 3). Thus, 2 was identified as ent-17-nor-
atisane-16β-hydroxy-18-oic acid β-glucopyranosyl ester, which was 
named adipoiloside. 

Since the MeOH extract of the leaves of A. poilanei exhibited strong 
α-glucosidase enzyme inhibition (IC50 value of 0.28 ± 0.03 μg/mL), 
several isolated compounds showed good α-glucosidase inhibitory ac
tivity in the assay (Table S1). Compounds 5–7 and 10 strongly inhibited 

Fig. 1. The chemical structure of compounds 1–2.  

Fig. 2. Key HMBC and NOESY correlations of compound 1.  

Fig. 3. Key 1H-1H COSY and HMBC correlations of compound 2 and NOESY correlations of the ent-atisane aglycone.  
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enzyme activity with IC50 values ranging from 1.29 ± 0.03 μg/mL to 
3.13 ± 0.07 μg/mL. Compounds 9, 11, and 13–14 showed significant 
inhibition with IC50 values of 13.01 ± 0.32 μg/mL to 16.00 ± 0.35 μg/ 
mL. Adipoiloside (2) also showed moderate enzyme α-glucosidase 
inhibitory activity with an IC50 value of 64.05 ± 1.59 μg/mL, while 
adinandrolide (1) was inactive. 

The isolated compounds were also evaluated for their cytotoxicity 
against four cancer cell lines including KB, MCF-7, HepG-2, and Lu-1 
using MTT method (Ha et al., 2020). However, only pomolic acid (10) 
showed strong cytotoxicity against all tested cancer cell lines with IC50 
values ranging from 0.65 ± 0.05 μg/mL to 5.83 ± 0.49 μg/mL. Our 
results showed that pomolic acid (10) made the most significant 
contribution to the biological activity of the leaves of A. poilanei. 

3. Materials and methods 

3.1. Plant materials 

The plant leaves were collected in Bidoup Nui Ba National Park, Lam 
Dong Province in May 2018 and taxonomically identified as Adinandra 
poilanei by Dr. Luong Van Dung (Department Biology, Dalat University) 
and Dr. Bui Thu Ha (Department of Botany, Hanoi National University of 
Education). A voucher specimen (AP-2) was deposited at the Herbarium 
of the Institute of Marine Biochemistry, Vietnam Academy of Science 
and Technology. 

3.2. General experimental procedures 

Optical rotations were determined on a JASCO P-2000 polarimeter. 
IR spectra were obtained on a Bruker TENSOR 37 FT-IR spectrometer. 
The 1D and 2D NMR spectra were recorded on an AVANCE III HD 500 
spectrometer with tetramethylsilane (TMS) used as an internal standard. 
High-resolution mass spectra (HR-ESI-MS) were obtained on an Agilent 
6530 Accurate-Mass Q-TOF LC/MS system. Column chromatography 
(CC) was conducted using 230–400 mesh silica gel, Sephadex LH-20, 
and RP-18 (YMC*GEL, ODS-A, 30–50 μm). Analytical thin-layer chro
matography (TLC) was performed on precoated silica gel 60 F254 
(Merck) and RP-18 F254S plates (Merck), and the spots were visualized 
by spraying with 10 % H2SO4 in water, followed by heating. The com
pound models were generated using MM2 force field calculations in 
Chem3D Ultra Software Perkin Elmer ver. 18.2.0.48. 

3.3. Extractions and isolation of compounds 1 and 2 

The dried, powdered stems of A. poilanei (3.4 kg) were macerated 
with MeOH at room temperature (15 L × 4 times ×24 h). The combined 
filtrate was evaporated under reduced pressure to obtain 242 g crude 
extract. It was suspended in distilled water then partitioned with n- 
hexane and EtOAc, successively. The organic solvent layers were sepa
rated and evaporated in vacuo to obtain n-hexane (46 g) and EtOAc 
(104.2 g) residues. 

The EtOAc extract was subjected to normal-phase silica gel CC, 
eluted with gradient solvent of n-hexane/EtOAc (from 100:1 to 0:1), 
which resulted in 6 fractions (E1–E6). Fraction E4 (20.8 g) was applied 
to normal-phase silica gel CC, eluted with a solvent mixture of CH2Cl2/ 
EtOAc (9:1) to obtain 7 subfractions (E4.1–E4.7). Subfraction E4.4 
(1.21 g) was purified by normal-phase silica gel CC, eluted with n-hex
ane/EtOAc (8/2, v/v) to give 8 smaller fractions (E4.4.1–E4.4.8). Sub
fraction E4.4.8 (84 mg) was purified on silica gel CC, eluted with n- 
hexane/EtOAc (7/3, v/v) to afford 1 (5.3 mg). Fraction E6 (13.5 g) was 
fractionated by Sephadex LH-20 CC using MeOH as eluent to give 6 
subfractions (E6.1–E6.6). Subfraction E6.3 (2.3 g) was purified by 
normal-phase silica gel CC then eluted with n-hexane/EtOAc (8/2, v/v) 
to afford 5 smaller fractions (E6.3.1–E6.3.5). Fraction E6.3.3 (200 mg) 
was first fractionated by silica gel CC then purified by C18 reversed- 
phase silica gel CC using gradient elution (20 %–50 % MeOH/water) 

to obtain compound 2 (9.5 mg). 

3.3.1. Adinandrolide (1) 
White amorphous powder, [α]D

25 + 27.7 (c 0.18, MeOH); IR νmax 
(KBr) 3376, 2940, 1706, 1453, 1381, 1247 cm–1; HR-ESI-MS: m/z 
507.3235 [M+35Cl]− and 509.3214 [M+37Cl]− . For 1H-NMR (500 MHz, 
CDCl3 + CD3OD) and 13C-NMR (125 MHz, CDCl3 + CD3OD), see Table 1. 

3.3.2. Adipoiloside (2) 
White amorphous powder, [α]D

25 - 34.3 (c 0.35, MeOH); IR νmax 
(KBr) 3379, 2899, 1719, 1264, 1220 cm–1; HR-ESI-MS: m/z 503.2421 
[M+35Cl]− and 505.2400 [M+37Cl]− . For 1H-NMR (500 MHz, CD3OD) 
and 13C-NMR (125 MHz, CD3OD), see Table 1. 

Table 1 
1H (500 MHz) and 13C-NMR (125 MHz) data of compounds 1–2.   

1 (in CDCl3+CD3OD)  2 (in CD3OD) 

C δH δC C δH δC 

1 
1.72 (m, 1 H) 39.7 1 1.63 (m, 1 H) 

40.7 
0.94 (m, 1 H)   0.91 (m, 1 H) 

2 1.63 (m, 2 H) 27.4 2 1.95 (m, 1 H) 19.8 
1.40 (m, 1 H) 

3 3.16 (1H, dd, J 
= 6.0 Hz; 11.0 Hz) 

79.1 3 
2.20 (brd, J = 13.0 Hz, 
1 H) 39.2 
1.10 (m, 1 H) 

4 – 39.4 4 – 45.1 
5 0.71 (br d, J = 11.0 Hz) 56.3 5 1.10 (m, 1 H) 58.9 

6 1.54 (m, 1 H) 18.8 6 2.00 (m, 1 H) 21.4 
1.38 (m, 1 H)   1.75 (m, 1 H) 

7 1.47 (m, 1 H) 34.4 7 1.40 (m, 1 H) 41.1 
1.38 (m, 1 H)   1.10 (m, 1 H) 

8 – 40.5 8 – 33.3 
9 1.34 (m, 1 H) 52.0 9 1.22 (m, 1 H) 53.0 
10 – 37.8 10 – 39.6 

11 1.53 (m, 1 H) 21.5 11 1.93 (m, 1 H) 22.1 
1.37 (m, 1 H)   1.20 (m, 1 H) 

12 1.70 (m, 1 H) 26.9 12 1.66 (m, 1 H) 34.0 
1.06 (m, 1 H) 

13 1.38 (m, 1 H) 37.1 13 1.52 (m, 2 H) 25.3 

14 – 41.2 14 
1.95 (m, 1 H) 

27.9 0.86 (m, 1 H) 

15 
1.29 (m, 2 H) 28.5 15 

1.70 (dd, J = 13.5, 
10.0 Hz) 51.6 

1.25 (m, 2 H)   0.97 (ddd, J = 13.5, 
3.5, 3.0 Hz) 

16 
1.80 (m, 1 H) 

26.1 16 
3.90 (ddd, J = 9.5, 3.5, 
3.0 Hz) 70.4 1.41 (m, 1 H) 

17 – 46.7 17 – – 
18 1.97 (d, J = 11.0 Hz) 46.8 18 – 178.2 
19 4.28 (s) 85.5 19 1.23 (s) 29.0 
20 – 39.0 20 0.93 (s) 12.8 

21 1.44 (m, 2 H) 29.2 Glc   
1.32 (m, 2 H) 

22 
1.70 (m, 1 H) 

32.5 1’ 5.43 (d, J = 8.0 Hz) 95.6 1.06 (m, 1 H) 
23 0.96 (s) 28.3 2’ 3.37 (m, 1 H) 74.1 
24 0.76 (s) 15.8 3’ 3.40 (m, 1 H) 78.7 
25 0.87 (s) 16.9 4’ 3.38 (m, 1 H) 71.2 
26 0.94 (s) 15.9 5’ 3.40 (m, 1 H) 78.7 

27 0.91 (s) 14.0 6’ 

3.84 (dd, J = 2.0 Hz, 
12.0 Hz) 62.5 
3.70 (dd, J = 4.5 H, 
12.0 Hz) 

28 – 182.2    
29 1.06 (s) 24.0    

30 3.65 (d, J = 11.0 Hz) 67.2    
3.40 (d, J = 11.0 Hz) 

Solvent chemical shifts in CD3OD + CDCl3: δH 7.58 (CHCl3), 4.52 (HDO), 3.36 
(CH3OD); δC 78.1 (CDCl3), 49.0 (CD3OD). 
Solvent chemical shifts in CD3OD: δH 4.83 (HDO), 3.36 (CH3OD); δC 49.0 
(CD3OD). 
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3.4. α-Glucosidase inhibition assay 

The in vitro α-glucosidase enzyme (G0660, Sigma-Aldrich) inhibition 
assay of compounds was performed in triplicate following the previously 
published method (Tran et al., 2014). The sample solution (2 μL dis
solved in dimethyl sulfoxide) and 0.5 U/mL α-glucosidase (40 μL) were 
mixed in 120 mL of 0.1 M phosphate buffer (pH 6.8) were preincubated 
at 37 ◦C for 5 min. After incubation, 5 mM p-nitro
phenyl-α-D-glucopyranoside solution (40 μL) was added, and the solu
tion was incubated again at 37 ◦C for another 30 min. The absorbance of 
the resulting mixture was measured at 410 nm by using a microplate 
reader (Biotek, USA). Acarbose was used as positive control. IC50 values 
of potent inhibitors were determined using the program Table Curve. 

3.5. Cytotoxicity assay 

The evaluation of cytotoxic activity against the KB, MCF-7, HepG-2, 
and LU cancer cell lines (ATCC) was previously described in our article 
(Ha et al., 2020). 

4. Conclusion 

Two new compounds adinandrolide (1) and adipoiloside (2), along 
with thirteen known compounds, were isolated from the leaves of 
A. poilanei. Adipoiloside (2) showed moderate α-glucosidase inhibitory 
activity with IC50 value of 64.05 ± 1.59 μg/mL and compounds 5–7, 
9–11, and 13–14 inhibited enzyme activity, with IC50 values ranging 
from 1.29 ± 0.03 μg/mL to 16.00 ± 0.35 μg/mL. In the cytotoxic assay, 
pomolic acid (10) displayed strong cytotoxicity against all tested cancer 
cell lines. 
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