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Bounds for Hilbert Coefficients

Cao Huy Linh* and Ton That Quoc Tan

Abstract. Let (A,m) be a noetherian local ring and J an m-primary ideal. Elias [3]

proved that depth(G(Jk)) is constant for k � 0 and denoted this number by σ(J). In

this paper, we prove the non-positivity for the Hilbert coefficients ei(J) under some

conditions for σ(J). In case of J = Q is a parameter ideal, we establish bounds for

the Hilbert coefficients of Q in terms of the dimension and the first Hilbert coefficient

e1(Q).

1. Introduction

Let (A,m) be a noetherian local ring of dimension d and J an m-primary ideal of A. Let

`(·) denote the length of an A-module. The Hilbert–Samuel function of A with respect to

J is a function HJ : Z→ N0 given by

HJ(n) =

`(A/Jn) if n ≥ 0,

0 if n < 0.

There exists a unique polynomial PJ(x) ∈ Q[x] (called the Hilbert–Samuel polynomial)

of degree d such that HJ(n) = PJ(n) for n� 0 and it is written by

PJ(n) =

d∑
i=0

(−1)i
(
n+ d− i− 1

d− i

)
ei(J).

Then, the integers ei(J) are called Hilbert coefficients of J . Let G(J) =
⊕

n≥0 J
n/Jn+1

be the associated graded ring of A with respect to J . In [3], Elias denoted σJ(k) =

depth(G(Jk)) and proved that σJ(k) is constant for k � 0. We call this number σ(J).

The aim of this paper is to investigate the non-positivity of ei(J) under some conditions

for σ(J). In the case J is a parameter ideal, we establish bounds for the Hilbert coefficients

ei(J), for i = 2, . . . , d, in terms of the dimension and the first Hilbert coefficient e1(J).

First, we study the non-positivity of the Hilbert coefficients. If A is an arbitrary

ring, Mandal–Singh–Verma [14] showed that e1(Q) ≤ 0 for every parameter ideal Q of
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A. If depth(A) ≥ d − 1, Mccune [15] showed that e2(Q) ≤ 0 and Saikia–Saloni [20]

proved that e3(Q) ≤ 0 for every parameter ideal Q. In [15], Mccune also proved that if

Q is a parameter ideal such that depth(G(Q)) ≥ d − 1, then ei(Q) ≤ 0 for i = 1, . . . , d.

Later, Saikia–Saloni [20] and Linh–Trung [12] proved that if depth(A) ≥ d − 1 and Q

is a parameter ideal such that depth(G(Q)) ≥ d − 2, then ei(Q) ≤ 0 for i = 1, . . . , d.

In [17], Puthenpurakal obtained a remarkable result that if J is an m-primary ideal of a

Cohen–Macaulay ring with dimension 3 such that r(J) = 2, then e3(J) ≤ 0.

It is well known that the behavior of Hilbert coefficients ei(J) depend on depth(G(J)).

Elias [3] also proved that σ(J) ≥ depth(G(J)). The first main result of this paper is the

non-positivity of the last Hilbert coefficient ed(J) under the condition σ(J) ≥ d− 2.

Theorem 1.1. (= Theorem 3.2) Let (A,m) be a noetherian local ring of dimension d ≥ 2

and depth(A) ≥ d−1. Let J be an m-primary ideal such that r(J) ≤ d−1. If σ(J) ≥ d−2,

then ed(J) ≤ 0.

Theorem 1.1 implies an early result of Mafi and Nadery [13] that if A is a Cohen–

Macaulay ring of dimension 4 and J an m-primary asymptotically normal ideal such that

r(J) ≤ 3, then e4(J) ≤ 0. From Theorem 1.1, we also get some interesting properties

about the non-positivity of e3(J) and e4(J).

Theorem 1.1 gives the non-positivity for the last Hilbert coefficient ed(J), but other

Hilbert coefficients may be positive. The next result shows the non-positivity for Hilbert

coefficients of an m-primary ideal.

Theorem 1.2. (= Theorem 3.8) Let (A,m) be a noetherian local ring with dim(A) =

d ≥ 3 and depth(A) ≥ d − 1. Let J be an m-primary ideal of A such that r(J) ≤ 2. If

depth(G(J)) ≥ d− 2, then

ei(J) ≤ 0 for i = 3, . . . , d.

Theorem 1.2 is a generalization of an early results of Puthenpurakal [17, Theorem 9.1],

Saikia–Saloni [20, Corollary 3.2] and Linh–Trung [12, Theorem 2.9].

Hilbert coefficients reflect the structural information of rings and modules. So, the

problem finding bounds for the Hilbert coefficients in terms of several common invari-

ants has attracted the attention of many mathematicians in pass years. If A is Cohen–

Macaulay and generalized Cohen–Macaulay, Srinivas and Trivedi [21–23] gave bounds

for the Hilbert coefficients of m-primary ideals in terms of the dimension and multiplic-

ity. If A is an arbitrary ring, Rossi, Trung and Valla [18] established bounds for the

Hilbert coefficients of the maximal ideal in terms of the dimension and an extended de-

gree. Later, Linh [10] extended the result of Rossi, Trung and Valla [18] for m-primary

ideals. Goto and Ozeki [7] established uniform bounds for the Hilbert coefficients of pa-

rameter ideals in a generalized Cohen–Macaulay ring. Recently, Dung and Hoa [2] gave
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bounds for ed−t+1(I), ed−t+2(I), . . . , ed(I) in terms of e0(I), e1(I), . . . , ed−t(I) in the case

depth(A) = t ≥ 1. These bounds obtained in [2] depend on e0(I).

Question 1.3. Let (A,m) be a noetherian local ring of dimension d and depth(A) = t.

Does there exist bounds for Hilbert coefficients ed−t+1(I), . . . , ed(I) in terms of e1(I), . . . ,

ed−t(I) which do not depend on e0(I)?

In the case I = Q is a parameter ideal and t = d − 1, the problem of the question is

to find bounds for e2(Q), . . . , ed(Q) in terms of e1(Q) and these bounds do not depend

on e0(Q). The first Hilbert coefficient e1(Q) is called Chern number. Recent results

on the coefficient e1(Q) such as [5, 6] show that this coefficient is very important and

it reflects clearly structural information. By using the bound for the regularity of the

associated graded ring in [11], we establish bounds for e2(Q), . . . , ed(Q) in terms of the

Hilbert coefficient e1(Q).

Theorem 1.4. (= Theorem 4.4) Let A be a noetherian local ring of dimension d ≥ 2 and

depth(A) ≥ d− 1. Let Q be a parameter ideal of A. Then

|ei(Q)| ≤ 3 · 2i−2ri−1|e1(Q)| for i = 2, . . . , d,

where r = max{[−4e1(Q)](d−1)! + e1(Q)− 1, 0}+ 1.

The paper is divided into three sections. In Section 2, we prepare some facts related

to the Hilbert coefficients and regularity. In Section 3, we prove the non-positivity for the

Hilbert coefficients of m-primary ideals. In Section 4, we establish bounds for the Hilbert

coefficients of parameter ideals in terms of the dimension and the first Hilbert coefficient.

2. Preliminaries

Let (A,m) be a noetherian local ring of dimension d and J an m-primary ideal of A. A

numerical function

HJ : Z −→ N0

n 7−→ HJ(n) =

`(A/Jn) if n ≥ 0,

0 if n < 0

is said to be a Hilbert–Samuel function of A with respect to the ideal J . It is well known

that there exists a polynomial PJ ∈ Q[x] of degree d such that HJ(n) = PJ(n) for n� 0.

The polynomial PJ is called the Hilbert–Samuel polynomial of A with respect to the ideal

J and it is written in the form

PJ(n) =
d∑

i=0

(−1)i
(
n+ d− i− 1

d− i

)
ei(J).
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The integers ei(J) are called Hilbert coefficients of J . In particular, e(J) = e0(J) and

e1(J) are called the multiplicity and Chern coefficient of J , respectively. The postulation

number of J is defined as the integer

n(J) = max{n | HJ(n) 6= PJ(n)}.

An element x ∈ J \ mJ is said to be superficial for J if there exists a number c ∈ N
such that (Jn : x) ∩ Jc = Jn−1 for n > c. If A/m is infinite, then a superficial element

for J always exists. A sequence of elements x1, . . . , xr ∈ J \mJ is said to be a superficial

sequence for J if xi is superficial for J/(x1, . . . , xi−1) for i = 1, . . . , r.

Suppose that dim(A) = d ≥ 1 and x ∈ J \ mJ is a superficial element for J , then

`(0 : Ax) < ∞ and dim(A/(x)) = dim(A) − 1 = d − 1. The following lemma give us a

relationship between ei(J) and ei(J), where J = J(A/(x)).

Lemma 2.1. [19, Proposition 1.3.2] Let A be a noetherian local ring of dimension d ≥ 2

and J an m-primary ideal of A. Let x ∈ J \ mJ be a superficial element for J and set

J = J(A/(x)). Then

(i) ei(J) = ei(J) for i = 0, . . . , d− 2,

(ii) ed−1(J) = ed−1(J) + (−1)d`(0 : x).

If we denote by G(J) =
⊕

n≥0 J
n/Jn+1 the associated graded ring of A with respect

to J and

ai(G(J)) = sup{n | H i
G(J)+

(G(J))n 6= 0},

then the Castelnuovo–Mumford regularity of G(J) is defined by

reg(G(J)) = max{ai(G(J)) + i | i ≥ 0}.

Lemma 2.2. Let (A,m) be a noetherian local ring of dimension d and J be an m-primary

ideal of A. Let x ∈ J \ mJ be a superficial element for J . Set A = A/(x) and J = JA.

Then

(i) n(J) ≤ reg(G(J)),

(ii) reg(G(J)) ≤ reg(G(J)),

(iii) Jn+1 : x/Jn ∼= (0 : x) for n > reg(G(J)).

Proof. (i) It is implied from [11, Lemmas 2.1 and 2.2].

(ii) Let x∗ be an initial form of x in G(J). Then

reg(G(J)/(x∗)) ≤ reg(G(J)).
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On the other hand, there is a natural graded epimorphism from G(J)/(x∗) to G(J) whose

kernel is

K =
⊕
n≥0

(Jn+1 + x ∩ Jn)/(Jn+1 + xJn−1).

Since x is superficial for J , x ∩ Jn+1 = xJn for n� 0. Hence Kn = 0 for n� 0. Thus K

is a module with finite length. Hence

reg(G(J)) ≤ reg(G(J)/(x∗)).

This implies

reg(G(J)) ≤ reg(G(J)).

(iii) From the exact sequence

0 −→ Jn+1 : x/Jn −→ A/Jn x−→ A/Jn+1 −→ A/(Jn+1, x) −→ 0,

we get

`(Jn+1 : x/Jn) = `(A/Jn)− `(A/Jn+1) + `(A/J
n+1

)

= `(A/J
n+1

)− `(Jn/Jn+1).

It is well known that Jn+1 : x/Jn ∼= (0 : x) for n� 0. From (i) and (ii), we have

n(J) ≤ reg(G(J)) and n(J) ≤ reg(G(J)).

It follows that

Jn+1 : x/Jn ∼= (0 : x) for n > reg(G(J)).

Recall that an ideal K ⊆ J is called a reduction of J if Jn+1 = KJn for n� 0. If K

is a reduction of J and no other reduction of J is contained in K, then K is said to be a

minimal reduction of J . If K is a minimal reduction of J , then the reduction number of

J with respect to K, rK(J), is given by

rK(J) := min{n | Jn+1 = KJn}.

The reduction number of J , denoted by r(J), is given by

r(J) := min{rK(J) | K is a minimal reduction of J}.

The following lemma gives a relationship between the reduction number of J and the

regularity of G(J).

Lemma 2.3. [24, Proposition 3.2]

ad(G(J)) + d ≤ r(J) ≤ reg(G(J)).
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3. The non-positivity of Hilbert coefficients

Through this section, let (A,m) be a noetherian local ring of dimension d and J an m-

primary ideal of A. In this section, we investigate the non-positivity of Hilbert coefficients

ei(J).

In [3, Proposition 2.2], Elias proved that σJ(k) = depth(G(Jk)) is constant for k � 0

and call this number σ(J). By [8, Lemma 2.4],

ai(G(Jk)) ≤ [ai(G(J))/k] for i ≤ d and k ≥ 1,

where [a] = max{m ∈ Z | m ≤ a}. Therefore

(3.1) ai(G(Jk)) ≤ 0 for all i ≤ d and k � 0.

By [3, Proposition 2.2],

(3.2) σ(J) ≥ depth(G(J)).

The following lemma gives whenever the number σ(J) is positive.

Lemma 3.1. Let (A,m) be a noetherian local ring of dimension d ≥ 1 and J an m-primary

ideal of A. If depth(A) ≥ 1, then σ(J) ≥ 1.

Proof. From (3.1), we have ai(G(Jk)) ≤ 0 for k � 0. By [9, Theorem 5.2], a0(G(Jk)) <

a1(G(Jk)) ≤ 0. Hence H0
G(Jk)+

(G(Jk)) = 0 for k � 0. This implies that σ(J) =

depth(G(Jk)) ≥ 1 for all k � 0.

In the case J is a parameter ideal, Linh [11, Proposition 3.5] proved that if σ(J) ≥ d−2,

then ed(J) ≤ 0. In the case J is an m-primary ideal, we get a generalization for [11,

Proposition 3.5].

Theorem 3.2. Let (A,m) be a noetherian local ring of dimension d ≥ 2 and depth(A) ≥
d−1. Let J be an m-primary ideal such that r(J) ≤ d−1. If σ(J) ≥ d−2, then ed(J) ≤ 0.

Proof. For k � 0, let I = Jk. Denote by R = A[It] =
⊕

n≥0 I
n the Rees algebra of A

with respect to I and R+ =
⊕

n>0Rn. From [4, Proposition 2.7], we have ed(J) = ed(I).

By [1, Theorems 3.8 and 4.1],

(−1)ded(J) = (−1)ded(I) = PI(0)−HI(0)

=
d∑

i=0

(−1)i`(H i
R+

(R)0) =
d∑

i=0

(−1)i`(H i
G(I)+

G(I)0).
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Since σ(J) = depth(G(I)) ≥ d − 2, it follows that H i
G(I)+

(G(I)) = 0 for i = 0, . . . , d − 3.

On the other hand, we have ad(G(I)) + d ≤ r(I) by Lemma 2.3. From [8, Lemma 2.7],

r(I) ≤ ]r(J) + 1− s(J)[

k
+ s(I)− 1 =

]r(J) + 1− d[

k
+ d− 1 ≤ d− 1.

Hence ad(G(I)) < 0. Moreover, ai(G(I)) ≤ 0 for all i ≥ 0 from (3.1). By applying [9,

Theorem 5.2], we get ad−2(G(I)) < ad−1(G(I)) ≤ 0. It follows that

(−1)ded(J) = (−1)d−1`(Hd−1
G(I)+

G(I)0).

This implies that ed(J) = −`(Hd−1
G(I)+

(G(I))0) ≤ 0.

From the proof of Theorem 3.2, ed(J) = −`(Hd−1
G(I)+

(G(I))0). If A is Cohen–Macaulay

and σ(J) ≥ d− 1, then ad−1(G(I)) < 0. This gives us the following corollary.

Corollary 3.3. Let (A,m) be a Cohen–Macaulay ring of dimension d ≥ 2. Let J be an

m-primary ideal such that r(J) ≤ d− 1. If σ(J) ≥ d− 1, then ed(J) = 0.

An ideal J is said to be asymptotically normal if there exists an integer k ≥ 1 such

that Jn is integrally closed for all n ≥ k. If J is an asymptotically normal ideal of A,

σ(J) ≥ 2 by [16, Theorem 7.3]. Mafi and Naderi [13, Theorem 1.5] proved that if A is a

Cohen–Macaulay ring of dimension 4 and J is an m-primary asymptotically normal ideal

such that r(J) ≤ 3, then e4(J) ≤ 0. By applying Theorem 3.2, we get the following

corollary

Corollary 3.4. Let (A,m) be a noetherian local ring of dimension 4 and depth(A) ≥ 3.

Let J be an m-primary asymptotically normal ideal of A such that r(J) ≤ 3. Then e4(J) ≤
0.

Notice that the hypothesis of the ring A in Corollary 3.4 is not necessarily Cohen–

Macaulay.

Corollary 3.5. Let (A,m) be a noetherian ring of dimension 4 and depth(A) ≥ 3. Let J

be an m-primary ideal of A such that r(J) ≤ 2 If σ(J) ≥ 2, then

ei(J) ≤ 0 for i = 3, 4.

Proof. From Theorem 3.2, e4(J) ≤ 0.

Without loss of generality, assume that A/m is infinite and x1 is a superficial element

for J . Let A1 = A/(x1) and J1 = JA1. Then dim(A1) = 3, J1 is a m-primary ideal of

A1 and e3(J) = e3(J1). Since depth(A) ≥ 3, depth(A1) ≥ 2. By Lemma 3.1, σ(J1) ≥ 1.

Moreover, r(J1) ≤ r(J) ≤ 2. By applying Theorem 3.2, we obtain e3(J) = e3(J1) ≤ 0.
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In case of A is a Cohen–Macaulay ring of dimension d = 3 and r(I) = 2, Puthenpurakal

[17, Theorem 9.1] proved that e3(J) ≤ 0. The following corollary is a extension the result

of Puthenpurakal.

Corollary 3.6. Let (A,m) be a noetherian ring with dim(A) = d ≥ 3 and depth(A) ≥
d− 1. If J is an m-primary ideal of A and r(J) ≤ 2, then e3(J) ≤ 0.

Proof. By Lemma 3.1, one has σ(J) ≥ 1. If d = 3, by applying Theorem 3.2 we get

e3(J) ≤ 0.

If d > 3, without loss of generality, assume that A/m is infinite and x1, . . . , xd−3 is a

superficial sequence for J . Let A = A/(x1, . . . , xd−3) and J = JA. Then dim(A) = 3,

depth(A) ≥ 2 and r(J) ≤ r(J) ≤ 2. Since depth(A) ≥ 2, σ(J) ≥ 1 by Lemma 3.1.

Applying Theorem 3.2, we obtain e3(J) ≤ 0. From Lemma 2.1, we conclude that e3(J) =

e3(J) ≤ 0.

Theorem 3.2 gives the non-positivity of the last Hilbert coefficient ed(J) under as-

sumption σ(J) ≥ d − 2. For this assumption, other Hilbert coefficients may be positive.

The following example shows that ed ≤ 0, but other Hilbert coefficients are positive.

Example 3.7. Let A = Q[x, y, z](x,y,z) and J = (x3, y3, z3, x2y + z3, xz2, y2z + x2z, xyz).

Then K = (x3, y3, z3) is a minimal reduction of J and rK(J) = 2. Using Macaulay 2, we

compute depth(G(J)) = 0 and σ(J) = 1. On the other hand, the Hilbert series PG(J)(t)

of G(J) is

PG(J)(t) =
∑
n≥0

`(Jn/Jn+1)tn =
h(t)

(1− t)3
,

where h(t) = a0 + a1t+ · · ·+ as ∈ Z[t]. It follows that

h(t) = a0 + a1t+ · · ·+ as = (1− 3t+ 3t2 − t3)PG(J)(t).

Hence

a0 = `(A/J),

a1 = `(J/J2)− 3`(A/J),

a2 = `(J2/J3)− 3`(J/J2) + 3`(A/J),

ai = `(J i/J i+1)− 3`(J i−1/J i) + 3`(J i−2/J i−1)− `(J i−3/J i−2) for i ≥ 3.

By computing with Macaulay 2, we get

a0 = 13, a1 = 6, a2 = 13, a3 = −6, a4 = 1, a5 = a6 = · · · = 0.

This means

h(t) = 13 + 6t+ 13t2 − 6t3 + t4.
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So

e0(J) = h(1) = 27, e1(J) = h′(1) = 18, e2(J) =
h′′(1)

2!
= 1, e3(J) =

h(3)(1)

3!
= −2.

The following theorem provides us the non-positivity of other Hilbert coefficients.

Theorem 3.8. Let (A,m) be a noetherian local ring with dim(A) = d ≥ 3 and depth(A) ≥
d− 1. Let J be an m-primary ideal of A such that r(J) ≤ 2. If depth(G(J)) ≥ d− 2, then

ei(J) ≤ 0 for i = 3, . . . , d.

Proof. It is well known that ed(J) ≤ 0. If d ≤ 4, the corollary is proved by Corollary 3.5.

If d > 4, we need to prove that ed−i(J) ≤ 0 for i = 1, . . . , d − 3. Indeed, without loss

of generality, assume that A/m is infinite and x1, . . . , xd is a superficial sequence for J .

For each i = 1, . . . , d − 3, let Ai = A/(x1, . . . , xi) and Ji = JAi. By hypothesis, we have

dim(Ai) = d− i, depth(Ai) ≥ d− i− 1 and r(Ji) ≤ r(J) ≤ 2. Since depth(G(J)) ≥ d− 2,

depth(G(Ji)) ≥ d− i− 2. From (3.2), we have

σ(Ji) ≥ depth(G(Ji)) ≥ d− i− 2.

By applying Theorem 3.2, we get

ed−i(J) = ed−i(Ji) ≤ 0 for i = 1, . . . , d− 3.

It follows ei(J) ≤ 0 for i = 3, . . . , d−1. So, we conclude that ei(J) ≤ 0 for i = 3, . . . , d.

Remark 3.9. Theorem 3.8 is a generalization of early results of Puthenpurakal [17, Theo-

rem 9.1], Saikia–Saloni [20, Corollary 3.2] and Linh–Trung [12, Theorem 2.9].

4. Bound for Hilbert coefficients of parameter ideals

Let (A,m) be a noetherian local ring of dimension d and depth(A) ≥ d−1. In this section,

we will establish bounds for the Hilbert coefficients of parameter ideals.

Lemma 4.1. Let A be a noetherian local ring of dimension d ≥ 2 and depth(A) ≥ d− 1.

Let Q be a parameter ideal of A and x a superficial element for Q. For all n ≥ 1, we have

`(Qn+1 : x/Qn) ≤ −
(
n+ d− 3

d− 2

)
e1(Q).

Proof. Suppose that Q = (x1, . . . , xd) and x = xd is superficial for Q. Setting J =

(x1, . . . , xd−1), we have

Qn+1 : x/Qn = ((xQn + JnQ) : x)/Qn

= (Qn + (JnQ : x))/Qn

∼= (JnQ : x)/(Qn ∩ (JnQ : x)).
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Since Jn ⊆ Qn ∩ (JnQ : x),

`(Qn+1 : x/Qn) ≤ `(Jn : x/Jn).

By [11, Corollary 4.4],

`(Jn : x/Jn) ≤ −
(
n+ d− 3

d− 2

)
e1(Q).

This implies that

`(Qn+1 : x/Qn) ≤ −
(
n+ d− 3

d− 2

)
e1(Q).

Lemma 4.2. Let A be a noetherian local ring of dimension d ≥ 2 and depth(A) ≥ 1. Let

I be an m-primary ideal of A and x a superficial element for I. Then

(−1)ded(I) =
r∑

k=0

(HI(k)− PI(k))−
r∑

k=0

`(Ik+1 : x/Ik),

where some r ≥ reg(G(I)) + 1, A = A/(x) and I = IA.

Proof. From [15, Lemma 3.2], we have

(−1)ded(I) =
∞∑
k=0

(HI(k)− PI(k))−
∞∑
k=0

`(Ik+1 : x/Ik).

By Lemma 2.2,

n(I) ≤ reg(G(I)) ≤ reg(G(I)) < r and `(Ik+1 : x/Ik) = `(0 :A x) = 0

for k ≥ r. Thus

(−1)ded(I) =
r∑

k=0

(HI(k)− PI(k))−
r∑

k=0

`(Ik+1 : x/Ik).

In [11], the author gave a bound for the regularity of associated graded ring with

respect to parameter ideals in terms of the first coefficient e1(Q).

Theorem 4.3. [11, Theorem 4.5] Let A be a noetherian local ring of dimension d ≥ 1

and depth(A) ≥ d− 1. Let Q be a parameter ideal of A. Then

reg(G(Q)) ≤

max{−e1(Q)− 1, 0} if d = 1,

max{[−4e1(Q)](d−1)! + e1(Q)− 1, 0} if d ≥ 2.

Using the bound for the regularity of G(Q) in Theorem 4.3, we will establish bounds

for Hilbert coefficients ei(Q).



Bounds for Hilbert Coefficients 1169

Theorem 4.4. Let A be a noetherian local ring of dimension d ≥ 2 and depth(A) ≥ d−1.

Let Q be a parameter ideal of A. Then

|ei(Q)| ≤ 3 · 2i−2ri−1|e1(Q)| for i = 2, . . . , d,

where r = max{[−4e1(Q)](d−1)! + e1(Q)− 1, 0}+ 1.

Proof. Suppose that Q = (x1, . . . , xd). Without loss of generality, we may assume that

the residue field A/m is infinite. Let x = xd be a superficial element for Q. Set A = A/(x)

and Q = QA. By Lemma 4.2, we have

(−1)ded(Q) =

r∑
k=0

[HA(k)− PA(k)]−
r∑

k=0

`(Qk+1 : x/Qk)

=
r∑

k=0

[
`(A/Q

k
)−

d−1∑
i=0

(−1)i
(
k + d− i− 2

d− i− 1

)
ei(Q)

]
−

r∑
k=0

`(Qk+1 : x/Qk)

=
r∑

k=0

[
`(A/Q

k
)−

(
k + d− 2

d− 1

)
e0(Q)−

d−1∑
i=1

(−1)i
(
k + d− i− 2

d− i− 1

)
ei(Q)

]

−
r∑

k=0

`(Qk+1 : x/Qk).

By [11, Lemma 4.1],

0 ≤ `(A/Qk
)−

(
k + d− 2

d− 1

)
e0(Q) ≤ −

(
k + d− 3

d− 2

)
e1(Q).

On the other hand, from [11, Corollary 4.3],

`(Qk+1 : x/Qk) ≤ −
(
k + d− 3

d− 2

)
e1(Q) =

(
k + d− 3

d− 2

)
|e1(Q)|.

Thus

|ed(Q)| ≤ 3

r∑
k=0

(
k + d− 3

d− 2

)
|e1(Q)|+

r∑
k=0

d−1∑
i=2

(
k + d− i− 2

d− i− 1

)
|ei(Q)|

≤ 3

(
r + d− 2

d− 1

)
|e1(Q)|+

d−1∑
i=2

r∑
k=0

(
k + d− i− 2

d− i− 1

)
|ei(Q)|

= 3

(
r + d− 2

d− 1

)
|e1(Q)|+

d−1∑
i=2

(
r + d− i− 1

d− i

)
|ei(Q)|.

Notice that (
r + d− 2

d− 1

)
≤ rd−1 and

(
r + d− i− 1

d− i

)
≤ rd−i.
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Hence

|ed(Q)| ≤ 3 · rd−1|e1(Q)|+
d−1∑
i=2

rd−iei(Q).

By induction on d, we may assume that

|ei(Q)| ≤ 3 · 2i−2 · ri−1|e1(Q)| for i = 2, . . . , d− 1.

But ei(Q) = ei(Q) for i = 1, . . . , d− 1, from Lemma 2.1. This implies that

|ei(Q)| ≤ 3 · 2i−2 · ri−1|e1(Q)| = 3 · 2i−2 · ri−1|e1(Q)| for i = 2, . . . , d− 1.

It remains to prove the bound for ed(Q). Indeed, from inductive hypothesis we have

|ed(Q)| ≤ 3 · rd−1|e1(Q)|+
d−1∑
i=2

rd−i · 3 · 2i−2 · ri−1|e1(Q)|

= 3 · rd−1|e1(Q)|+
d−1∑
i=2

3 · rd−1 · 2i−2|e1(Q)|

= 3 · rd−1|e1(Q)|+ 3 · rd−1|e1(Q)|

(
d−1∑
i=2

2i−2

)
= 3 · rd−1|e1(Q)|+ 3 · rd−1|e1(Q)| · (2d−2 − 1)

= 3 · 2d−2 · rd−1|e1(Q)|.

This finishes the proof.
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