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Abstract. In binary classification problems, two classes of data seem to be different from each

other. It is expected to be more complicated due to the clusters in each class also tend to be

different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine

(TWSVM) cannot sufficiently exploit structural information with cluster granularity of the data,

cause limitation on the capability of simulation of data trends. Structural Twin Support Vector

Machine (S-TWSVM) sufficiently exploits structural information with cluster granularity for learning

a represented hyperplane. Therefore, the capability of S-TWSVM’s data simulation is better than

that of TWSVM. However, for the datasets where each class consists of clusters of different trends, the

S-TWSVM’s data simulation capability seems restricted. Besides, the training time of S-TWSVM

has not been improved compared to TWSVM. This paper proposes a new Weighted Structural -

Support Vector Machine (called WS-SVM) for binary classification problems with a class-vs-clusters

strategy. Experimental results show that WS-SVM could describe the tendency of the distribution

of cluster information. Furthermore, both the theory and experiment show that the training time of

the WS-SVM for classification problem has significantly improved compared to S-TWSVM.

Keywords. Support vector machine; Twin support vector machine; Structural twin support vector

machine; Weighted structural - support vector machine.

1. INTRODUCTION

In the early years of the 20th century, the Support Vector Machine (SVM) [5, 17] was
a popular binary classification algorithm applied to many different fields in practice [1, 3,
11, 15, 16]. The SVM seeks a hyperplane separating two classes so that the margin between
them is largest. Actual data is often distributed with different structures and tendencies,
but SVM does not fully exploit structural information of data, so its ability to simulate data
is limited.

Nowadays, with rapid development, datasets are increasing in number and diversifying in
structure. This fact requires classification algorithms to guarantee accuracy and improve the
speed and ability to simulate data distribution. Many variants of SVM have been recently
proposed to improve the speed and other task of standard SVM [3, 10, 12, 16, 18]. Two
typical innovations of SVM are Twin Support Vector Machine (TWSVM) [7] and Structural
Twin Support Vector Machine (S-TWSVM) [13]. The main idea of TWSVM is to seek two
hyperplanes such that each hyperplane is closer to one class and far away from the other by
solving two Quadratic Programming Problems (QPPs) whose size are smaller than the QPP
in SVM. Despite having to solve two QPPs, the speed of TWSVM is approximately four
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times faster than standard SVM. S-TWSVM has the same strategy as TWSVM. Besides,
S-TWSVM fully exploits structural information with cluster granularity into learning the
model to build a more reasonable classifier. There is a reason for handling SVM with
structure. In some practical binary classification problems, each class will consist of more
than one cluster. For example, we consider the problem of classifying fruits with data
including five categories: Mango, Jackfruit, Pineapple, Apples, Grapes, but the fruits will be
only be classified according to the criteria “smooth skin” or “rough skin”. Obviously, data
in the “smooth skin” class will form 3 clusters, corresponding to Pineapple, Apples, and
Grapes, while data in the “rough skin” class will distribute into 2 clusters, corresponding to
Jackfruit and Pineapple. S-TWSVM proved to be quite effective in the simple case, where
each class consists of clusters with a similar distribution trend. However, for more complex
data types, where each class contains clusters of different trends, S-TWSVM was not efficient
at simulating data trends.

Based on the strategy of TWSVM and S-TWSVM, we propose a new binary classification
model: Weighted Structural - Support Vector Machine (called WS-SVM) with a class-vs-
clusters strategy. Instead of solving two QPPs as in S-TWSVM, WS-SVM will solve (l+ k)
QPPs, where k and l are the number of clusters in class {+} and class {−}, respectively.
This method allows WS-SVM to effectively simulate the distribution trends for complex data
types while also improving computation speed.

The paper is organized as follows. Section 2 briefly introduces the background of SVM,
TWSVM and S-TWSVM; Section 3 is devoted to a detailed description of WS-SVM along
with the algorithms and discussions; All experimental results are presented in Section 4, to-
gether with the comparative evaluation; The conclusion is given in Section 5. All algorithms
are settled by version 3.8.3 of Python Programming Language.

2. BACKGROUND

2.1. Structural granularity

Consider a binary classification problem with the dataset, denoted by matrix C, consist-
ing of m points (each point is a row of C) xTj ∈ Rn, j = 1, . . . , m. We also write xj ∈ C
to indicate that xj is a row of C. Suppose that yj ∈ {−1, 1} is the j−th data point label.
Class {+} consists of mA points denoted by a matrix A ⊂ RmA×n, class {−} consists of
mB points denoted by a matrix B ⊂ RmB×n. There are k clusters in class {+}, whose i−th
cluster consists of mAi points and is denoted by matrix Ai ⊂ RmAi×n. Also, there are l
clusters in class {−}, whose i−th cluster consists of mBi points and is denoted by matrix
Bi ⊂ RmBi×n. A, B, Ai, Bi are called structural granularity [19]. We are interested in the
following quantities of structural granularity.

• Class granularity: ΣA =
1

mA

∑
xj∈A

(xj − µA)(xj − µA)T ,

ΣB =
1

mB

∑
xj∈B

(xj − µB)(xj − µB)T .

• Cluster granularity: Σi+ =
1

mAi

∑
xj∈Ai

(xj − µAi)(xj − µAi)T ,
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Σi− =
1

mBi

∑
xj∈Bi

(xj − µBi)(xj − µBi)T ,

here, µX denotes the average vector of the dataset X.

2.2. Support vector machine

Standard SVM [17] seeks a hyperplane wTx + b = 0 separating class {+} and class {−}
such that the margin 2

‖w‖ between two classes is largest. However, Standard SVM is only
available when the data is linearly separable. In the case when the data is not linearly
separable, soft SVM [17] is recommended with the more loser constraintsmin

w,b,ξ
ceT ξ +

1

2
‖w‖22,

s.t. D(Cw + eb) + ξ ≥ e, ξ ≥ 0,
(1)

where D ∈ Rm×m is the diagonal matrix with Djj = yj ; ∀j, ξ ∈ Rm is the vector of slack
variables, c ∈ R is the penalty coefficient, appropriately selected to adjust the role between
terms in the objective function, e ∈ Rm is the vector of ones. A new data point x will be
classified in class {+} if sgn(f(x) = wTx + b) > 0 and in class {−} if sgn(f(x)) < 0. SVM
does not effectively exploit structural information of the data, resulting in simulating the
distribution structure of the two classes being the same (see Figure 1.a).

2.3. Twin support vector machine

Based on the strategy of multi-surface proximal support vector classification via gener-
alized eigenvalues (GEPSVM) [9]. The main idea of TWSVM [7] for binary classification
problem is to seek two hyperplanes:
• f+(x) = wT

+x + b+ = 0 is closer to class {+} and far away from class {−},
• f−(x) = wT

−x + b− = 0 is closer to class {−} and far away from class {+}
by solving two QPPs as follows

(TWSVM1)

 min
w+,b+,ξ

1

2
‖Aw+ + e+b+‖22 + c1e

T
−ξ,

s.t. −(Bw+ + e−b+) + ξ ≥ e−, ξ ≥ 0,
(2)

(TWSVM2)

 min
w−,b−,η

1

2
||Bw− + e−b−‖22 + c2e

T
+η,

s.t. (Aw+ + e+b+) + η ≥ e+, η ≥ 0,
(3)

where c1, c2 are penalty coefficients to adjust the role between terms in the objective func-
tions, e+ ∈ RmA , e− ∈ RmB are vectors of ones, ξ ∈ RmB , η ∈ RmA are vectors of slack
variables. A new data x is classified into class {+} or class {−} depending on whether it is
closer to the hyperplane f+(x) = 0 or the hyperplane f−(x) = 0. TWSVM simulates the
structural distribution of the two classes independently, but it does not actually simulate the
distribution trend of the data within each class (see Figure 1.b). It has been shown in [7]
that the training time of TWSVM is approximately four times faster than that of standard
SVM (see Table 1).
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2.4. Structural twin support vector machine

S-TWSVM [13] has two steps: The first step is to extract the structural information
within classes by Ward’s linkage clustering method [8, 19]; The second step is the model
learning. Suppose that there are k clusters A1, . . . , Ak in class A, each cluster Ai consists
of mAi data points, and there are l clusters B1, . . . , Bl in class B, each cluster Bi consists
of mBi data points. S-TWSVM determines two hyperplanes

f+(x) = wT
+x + b+ = 0; f−(x) = wT

−x + b− = 0, (4)

by solving two QPPs as follows min
w+, b+, ξ

1

2
‖Aw+ + e+b+‖22 + c1e

T
−ξ +

1

2
c2(‖w+‖22 + b2+) +

1

2
c3w

T
+Σ+w+,

s.t. −(Bw+ + e−b+) + ξ ≥ e−, ξ ≥ 0,
(5)

 min
w−, b−, η

1

2
‖Bw− + e−b−‖22 + c4e

T
+η +

1

2
c5(‖w−‖22 + b2−) +

1

2
c6w

T
−Σ−w−,

s.t. (Aw− + e+b−) + η ≥ e+, η ≥ 0,
(6)

where c1, . . . , c6 ≥ 0 are penalty coefficients to adjust the role between terms in the objective
functions, ξ ∈ RmB ,η ∈ RmA are vectors of slack variables. Σ+ = Σ1+ + Σ2+ + · · · +
Σk+, Σ− = Σ1− + Σ2− + · · · + Σl−, Σi+ and Σi− are respectively the covariance matrices
corresponding to the clusters Ai and Bi, e+ ∈ RmA , e− ∈ RmB are vectors of ones. A new
data point is assigned into class {+} or {−} in the same manner as in TWSVM. In the

problem (5),
1

2
‖Aw+ +e+b+‖22 is the sum of the squares of the distances from data points in

class {+} to the hyperplane {f+(x) = 0}. c1e
T
−ξ is the sum of errors,

1

2
c2(‖w+‖22 +b2+) is the

regularization,
1

2
c3w

T
+Σ+w+ is the sum of covariance matrices with the cluster granularity

of class {+} projected onto vector w+. The constraints of (5) is defined by the points of
class {−}. The problem (6) is similarly established for class {−} with the constraints defined
by class {+}. Thus, S-TWSVM exploits structural information with cluster granularity of
one class in each problem. Therefore, the data simulation capability of S-TWSVM is more
accurate than that of TWSVM (see Figure 1.c). However, as the data become more complex,
this ability of the S-TWSVM remains limited (see Figure 2.c).

By using sufficient information about the cluster granularity of the classes, S-TWSVM
finds the hyperplanes that represent the classes better than TWSVM. However, due to the
calculation of all the covariance matrices Σi+ and Σi− of both classes, the training speed of
S-TWSVM is not improved compared to that of TWSVM (see Table 1).

3. WEIGHTED STRUCTURAL - SUPPORT VECTOR MACHINE

In this section, we describe a new classification algorithm: Weighted Structural - Support
Vector Machine (called WS-SVM). Both theoretically and experimentally, we show that WS-
SVM overcomes the S-TWSVM in data simulation and training speed.
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a b c

Figure 1. For datasets in which clusters in each class are constituted by the same trend, the SVM

(a) simulates the distribution trend of the two classes being the same, TWSVM (b) simulates the

distribution trend of the two classes as different, but does not actually simulate the distribution trend

of data in each class, S-TWSVM (c) simulates the distribution trend in each class quite accurately.

a b c

Figure 2. For datasets in which clusters in each class are constructed according to different dis-

tribution trends, SVM (a), TWSVM (b), and S-TWSVM (c) all have difficulty in simulating the

distribution trend of the data.

Table 1. Training time (seconds), with the dataset shown in Figure 2

Algorithms 1200 data points 1600 data points 2000 data points 2400 data points

SVM 2.143 5.308 6.754 11.512

TWSVM 0.351 0.700 1.193 1.805

S-TWSVM 0.388 0.853 1.434 2.158

Figure 3. (WS-SVM) f1+ (thin solid line) shows

that cluster B1 (small square) tends to deviate

vertically, f2+ (bold solid line) shows that clus-

ter B2 (large square) tends to deviate horizon-

tally. f1− (thin dashed line) shows that cluster

A1 (small circle) tends to deviate horizontally,

f2− (bold dashed line) shows that cluster A2

(large circle) tends to deviate vertically.



6 N.T. CUONG, H.T. PHUNG

Similar to S-TWSVM, WS-SVM also has two steps. The first step is to extract structural
information within classes by Ward’s linkage clustering method [8, 13, 19]; The second step
is the model learning. Suppose that there are k clusters A1, . . . , Ak in class {+} and l
clusters B1, . . . , Bl in class {−}. WS-SVM uses a class-vs-clusters strategy to determine
(l + k) hyperplanes such that each of which is closer to one class and far away from one
cluster in the other class. Specifically, the method need to find l hyperplanes such that
the i−th hyperplane, fi+(x) = wT

i+x + bi+ = 0, is closer to class {+} and far away from
cluster Bi of class {−}; Also, It need to find k hyperplanes such that the i−th hyperplane,
fi−(x) = wT

i−x + bi− = 0, is closer to class {−} and far away from cluster Ai of class {+}
(see Figure 3). Here wi+,wi− ∈ Rn, bi+, bi− ∈ R.

The classifier is now selected as

f(x) = argmin
+, −

(f+(x), f−(x)), (7)

with
f+(x) =

l∑
i=1

mBi

mB
|fi+(x)|, f−(x) =

k∑
i=1

mAi

mA
|fi−(x)|. (8)

From the definition, we see that f+(x) is the average, taking into account the weights,
distances from x to the hyperplanes {fi+(x) = 0}. The i−th hyperplane’s weight is propor-
tional to mBi - the number of data points in the cluster Bi. Similarly, f−(x) is the weighted
average of distances from x to the hyperplanes {fi−(x) = 0}. By virtue of (7), a new data
point x is classified into class {+} or class {−} depending on whether f+(x) is less than or
greater than f−(x).

3.1. The linear case

WS-SVM determines (l + k) hyperplanes by solving (l + k) QPPs as follows

(WS-SVM+
i )

 min
wi+,bi+,ξi

1
2‖Awi++emAbi+‖22+c+e

T
mBi

ξi+
µ+
2 (‖wi+‖22+b2i+)+ λ+

2 wT
i+Σ+wi+,

s.t. − (Biwi+ + emBibi+) + ξi ≥ emBi ; ξi ≥ 0,

i= 1, . . . , l, and

(WS-SVM−i )

 min
wi−,bi−,ηi

1
2‖Bwi−+emBbi−‖22+c−e

T
mAi

ηi+
µ−
2 (‖wi−‖22+b2i−)+ λ−

2 wT
i−Σ−wi−,

s.t. (Aiwi− + emAibi−) + ηi ≥ emAi ; ηi ≥ 0,

i = 1, . . . , k. Here, emA ∈ RmA×1, emB ∈ RmB×1, emAi ∈ RmAi×1, emBi ∈ RmBi×1 are vectors
of ones; ηi ∈ RmAi×1, ξi ∈ RmBi×1 are vectors of slack variables; Σ+ = Σ1+ + · · · + Σk+,
Σ− = Σ1− + · · · + Σl−, Σi+ and Σi− are the covariance matrices corresponding to the
clusters Ai and Bi; c+, c−, λ+, λ−, µ+, µ− are penalty coefficients to adjust the role
between terms in the objective functions; wT

i+Σ+wi+ is the sum of covariance matrices
with cluster granularity of class {+} projected onto to wi+ and wT

i−Σ−wi− is the sum of
covariance matrices with cluster granularity of class {−} projected onto wi−. The constraints
in problem (WS-SVM+

i ) is defined by the points of cluster Bi and the constraints in problem
(WS-SVM−i ) is defined by cluster Ai.
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The Lagrangian of (WS-SVM+
i ) is given by

Li(wi+, bi+, ξi,αi,βi) =
1

2
‖Awi+ + emAbi+‖

2
2 + c+e

T
mBi

ξi +
1

2
µ+(‖wi+‖22 + b2i+)

+
1

2
λ+w

T
i+Σ+wi+ −αTi (−(Biwi+ + emBibi+) + ξi − emBi)− β

T
i ξi.

Therefore, the KKT conditions of problem (WS-SVM+
i ) are

AT (Awi+ + emAbi+) + µ+wi+ + λ+Σ+wi+ +BT
i αi = 0, (9)

eTmA
(Awi+ + emAbi+) + µ+bi+ + eTmBi

αi = 0, (10)

eTmBi
c+ −αi − βi = 0, (11)

αTi (−(Biwi+ + emBibi+) + ξi − emBi) = 0, (12)

βTi ξi = 0. (13)

By defining H = [A emA ], ui+ =

[
wi+

bi+

]
, F+ =

[
Σ+ 0
0 0

]
, Gi = [Bi emBi ], and I being

the identity matrix of order (n+ 1), it follows from (9) and (10) that

[HTH + µ+I + λ+F+]ui+ +GTi αi = 0,

which implies

ui+ = −[HTH + µ+I + λ+F+]−1GTi αi, i = 1, . . . , l. (14)

Substituting (14) into the Lagrangian, and combined with the conditions (11), (12), and (13)
we have the dual problem of (WS-SVM+

i ) as follows

(DWS-SVM+
i )

max
αi

eTmBi
αi −

1

2
αTi Gi[H

TH + µ+I + λ+F+]−1GTi αi,

s.t. 0 ≤ αi ≤ c+emBi .
(15)

In the same way, we also obtain the dual problem of (WS-SVM−i )

(DWS-SVM−i )

max
γi

eTmAi
γi − 1

2γ
T
i Hi(G

TG+ µ−I + λ−F−)−1HT
i γi,

s.t. 0 ≤ γi ≤ c−emAi ,
(16)

where G = [B emB ], F− =

[
Σ− 0
0 0

]
, Hi = [Ai emAi ]. The augmented vectors ui− =

[
wi−
bi−

]
are also given by

ui− = [GTG+ µ−I + λ−F−]−1HT
i γi, i = 1, . . . , k. (17)

Algorithm 1. [Linear WS-SVM]

Give m data points in Rn represented by a m × n matrix C. Class {+} includes mA

points represented by a mA × n matrix A, class {−} includes mB points represented by a
mB × n matrix B. We generate the linear classifier f(x) as follows:
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(i) Clustering dataset by using Ward’s linkage [13]. Suppose that, there are k clusters in class
{+}, each cluster consists of mAi points and is represented by matrix Ai ⊂ RmAi×n,
there are l clusters in class {−}, each cluster consists of mBi points and is represented
by matrix Bi ⊂ RmBi×n.

(ii) Solving the problems (15), (16) to obtain α1, . . . ,αl; γ1, . . . ,γk.

(iii) Determining (w1+, b1+), . . . , (wl+, bl+) and (w1−, b1−), . . . , (wk−, bk−) via (14), (17).

(iv) Classifying a new data x by using (7) and (8).

Remark 1. In Linear WS-SVM, we have to solve (l+ k) problems of the form (15) or (16).
These are QPPs with the number of decisive variables being mBi or mAi. If the number

of data samples in each cluster is approximately equal to
m

k + l
, then the complexity of the

algorithm is O
(
(k+ l)

( m

k + l

)3)
= O

( m3

(k + l)2

)
. While the complexity of SVM and TWSVM

are O(m3) and O(
m3

4
), respectively. From the above formula, it is easy to see that the more

clusters in the data set, the less the runtime of WS-SVM. This is also clearly demonstrated
in experimentation.

Remark 2. There are many different clustering methods that we can use to implement for
Step (i) of Algorithm 1. Here we choose Ward’s clustering algorithm (with k and l being
chosen independently via elbow method) for convenience in comparison with S-TWSVM
because the authors have also used this technique in the experiment in [13]. When processing
actual data we can choose another clustering algorithm that is more efficient.

3.2. The nonlinear case

Let Φ : Rn → H be a nonlinear mapping, where H is a Hilbert space whose dimension
is not less than n (maybe infinite-dimensional). Since S = span(Φ(CT )) is a subspace of H
whose dimension does not exceedm, we can consider S as an Euclidean space and Φ : Rn → S.
Suppose that after the clustering step on space S we obtain k clusters Φ(A1), . . . ,Φ(Ak) in the
class Φ(A), each cluster Φ(Ai) consists of mAi data points; and l clusters Φ(B1), . . . ,Φ(Bl)
in the class Φ(B), each cluster Φ(Bi) consists of mBi data points. In space S, a hyperplane
Φ(xT )h+b = 0 (with h ∈ S being the normal vector) can be rewritten as Φ(xT )Φ(CT )u+b =
0 for some vector u ∈ Rm. Therefore, by defining Φ(xT )Φ(CT ) = K(xT , CT ), the hyperplane
has the form K(xT , CT )u + b = 0, where K is a predefined kernel [14].

WS-SVM determines l hyperplanes such that the i−th one K(xT , CT )ui+ + bi+ = 0 is
closer to class Φ(A) and far away from cluster Φ(Bi). It also determines k hyperplanes such
that the i−th one K(xT , CT )ui−+ bi− = 0 is closer to class Φ(B) and far away from cluster
Φ(Ai). Specifically, we have (l + k) QPPs as follows min

ui+,bi+,ξi

1

2
‖K(A,CT )ui++emAbi+‖

2
2+c+e

T
mBi

ξi+
µ+

2
(‖ui+‖22+b2i+)+

λ+

2
uTi+Φ(C)ΣΦ

+Φ(C)Tui+,

s.t. − (K(Bi, C
T )ui+ + emBibi+) + ξi ≥ emBi , ξi ≥ 0,

(18)
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i = 1, . . . , l, and min
ui−,bi−,ηi

1

2
‖K(B,CT )ui−+emBbi−‖

2
2+c−e

T
mAi

ηi+
µ−
2

(‖ui−‖22+b2i−)+
λ−
2
uTi−Φ(C)ΣΦ

−Φ(C)Tui−,

s.t. (K(Ai, C
T )ui− + emAibi−) + ηi ≥ emAi , ηi ≥ 0,

(19)
i = 1, . . . , k. Here, ΣΦ

+ = ΣΦ
1+ + · · ·+ΣΦ

k+, ΣΦ
− = ΣΦ

1−+ · · ·+ΣΦ
l−, ΣΦ

i+, ΣΦ
i− are respectively

the covariance matrices corresponding to clusters Φ(Ai) and Φ(Bi).
The classification function in the nonlinear case is selected as

f(x) = argmin
+, −

(f+(x), f−(x)), (20)

with f+(x) =

l∑
i=1

mBi

mB
|K(xT , CT )ui+ + bi+|, f−(x) =

k∑
i=1

mAi

mA
|K(xT , CT )ui− + bi−|. (21)

The dual problem of (18)max
αi

eTmBi
αi − 1

2α
T
i Gi[H

TH + µ+I + λ+F+]−1GTi αi,

s.t. 0 ≤ αi ≤ c+emBi ,
(22)

where H = [K(A,CT ) emA ], F+ =

[
Φ(C)ΣΦ

+Φ(C)T 0
0 0

]
, Gi = [K(Bi, C

T ) emBi ], I is the

identity matrix of order (m+ 1), and the augmented vectors

ui+ =

[
ui+
bi+

]
= −[HTH + µ+I + λ+F+]−1GTi αi. (23)

The dual problem of (19)max
γi

eTmAi
γi − 1

2γ
T
i Hi(G

TG+ µ−I + λ−F−)−1HT
i γi,

s.t. 0 ≤ γi ≤ c−emAi ,
(24)

where G = [K(B,CT ) emB ], F− =

[
Φ(C)ΣΦ

−Φ(C)T 0
0 0

]
, Hi = [K(Ai, C

T ) emAi ], and

ui− =

[
ui−
bi−

]
= (GTG+ µ−I + λ−F−)−1HT

i γi. (25)

Remark 3. We can calculate the matrix F+ as follows. For each Ai ∈ RmAi×n we denote
by MAi ∈ RmAi×n the average matrix of Ai (i.e., all rows of MAi are the same and equal to

the average vector of Ai). Therefore, ΣΦ
i+ =

1

mAi

(Φ(Ai)− Φ(MAi))
T (Φ(Ai)− Φ(MAi)),

Φ(C)ΣΦ
i+Φ(C)T =

[ 1
√
mAi

(Φ(Ai)− Φ(MAi))Φ(C)T
]T [ 1
√
mAi

(Φ(Ai)− Φ(MAi))Φ(C)T
]

=
[ 1
√
mAi

(K(Ai, C
T )−K(MAi, C

T ))
]T[ 1
√
mAi

(K(Ai, C
T )−K(MAi, C

T ))
]
.
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Similarly, we can use the following formula to calculate the matrix F−

Φ(C)ΣΦ
i−Φ(C)T =

[ 1
√
mBi

(Φ(Bi)− Φ(MBi))Φ(C)T
]T [ 1
√
mBi

(Φ(Bi)− Φ(MBi))Φ(C)T
]

=
[ 1
√
mBi

(K(Bi, C
T )−K(MBi, C

T ))
]T[ 1
√
mBi

(K(Bi, C
T )−K(MBi, C

T ))
]
,

where MBi ∈ RmBi×n is the average matrix of Bi.

Remark 4. In (22), (24) we need to compute the inverse of square matrices in order (m+1).
This work will become difficult when m is large. So it is necessary to reduce the size of those
matrices. This problem can be solved by using the Sherman-Morrison-Woodbury (SMW)
formula [6] as in [7].

Algorithm 2. [Nonlinear WS-SVM]

Give m data points in Rn represented by the m × n matrix C. Class {+} includes mA

points represented by the mA × n matrix A, class {−} includes mB points represented by
the mB × n matrix B. We generate the nonlinear classifier f(x) as follows:

(i) Choosing a kernel function K(xT , CT ), typically the Gaussian kernel [14].

(ii) Clustering the dataset by using Ward’s linkage [13]. Suppose that, there are k clusters
in class {+}, each cluster consists of mAi points and represented by matrix Φ(Ai); and
there are l clusters in class {−}, each cluster consists of mBi points and represented
by matrix Φ(Bi).

(iii) Solving the problems (22) and (24) to obtain α1, . . . ,αl; γ1, . . . ,γk.

(iv) Determining (u1+, b1+), . . . , (ul+, bl+) and (u1−, b1−), . . . , (uk−, bk−) via (23), (25).

(v) Classifying a new data x by using (20) and (21).

Remark 5. As usual, the linear algorithm will be applied when the training data is almost
linearly separable. If the data overlap occurs too seriously, the linear algorithm will not work
effectively, and the accuracy is not high. In that situation, the nonlinear algorithm should
be used for better accuracy.

4. EXPERIMENTS

In this section, we compare the WS-SVM against S-TWSVM [13] and TWSVM [7] on
various datasets. All algorithms (our model, S-TWSVM as in [13], TWSVM as in [7]) are
settled by version 3.8.3 of Python programming language, and run on a Laptop with an AMD
Ryzen 5 with 8GB RAM. We use the following libraries: “scipy.cluster.hierarchy” to cluster
the data, “cvxopt” to solve the QPP, “matplotlib” to show figure, “panda” and “numpy” to
process data, ‘sklearn’ to evaluate and adjust hyperparameters of all models.

For simplicity, let c+ = c−, µ+ = µ−, λ+ = λ− in WS-SVM, c1 = c4, c2 = c5, c3 = c6 as in
S-TWSVM [13], all hyperparameters belong to the set {0.0001, 0.001, 0.1, 1, 10, 100, 1000}
and are obtained by using Grid-search technique. All settings are uploaded to [4].
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4.1. Toy data

We first experiment with 2-D toy data. Note that the training time of WS-SVM and
S-TWSVM includes clustering time. The 2-D toy data consists of 800 points belonging
to class {+} and 800 points belonging to class {−}, randomly generated according to two
Gaussian distributions in each class. The dataset is scaled 90/10, which means 90% of the
data was used for training and the rest of the data for testing. We use standard 10-fold
cross validation (CV) to evaluate the testing accuracy of all models. Implementing SVM,
TWSVM, S-TWSVM, we obtained the results as shown in Figure 4, and WS-SVM, we
obtained the results as shown in Figure 5.

a b c

Figure 4. SVM (a): The run-time: 10.677 (s); The CV accuracy: 98.516 +/- 0.649. TWSVM (b):

The run-time: 0.510 (s); The CV accuracy: 98.438 +/- 0.988. S-TWSVM (c): The run-time: 0.562

(s); The CV accuracy: 98.594 +/- 0.911.

Figure 5. WS-SVM: The run-time: 0.142 (s); The CV accuracy: 98.359 +/- 0.547

4.2. UCI datasets

Next, we implement these algorithms on the UCI datasets [2] which have been experi-
mented in [13] and [7]. We randomly select 90% of each extracted dataset for training and
10% for testing. We also use 10-fold cross validation to evaluate the accuracy of all algo-
rithms. All hyperparameters belong to the set {0.0001, 0.001, 0.1, 1, 10, 100, 1000} and are
obtained by using Grid-search technique. The results are shown in Table 3, Table 4 (by
applying Algorithm 1), and Table 5 (by applying Algorithm 2).

Table 3 shows that the training time of WS-SVM is better than that of S-TWSVM and
TWSVM, while Table 4 shows that the accuracy in data classification is not much different
between methods. WS-SVM training time is even better when the data size is large and the
data is constructed in many clusters. That is shown in Table 2.
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Table 2. Training time (s) with the increase in the size of the data set. The computational complexity

of WS-SVM is clearly less than that of S-TWSVM and TWSVM.

Algorithms 4000 data points 6000 data points 8000 data points 10000 data points

TWSVM 7.267 21.872 58.101 104.355

S-TWSVM 5.614 16.244 44.397 75.549

WS-SVM 1.33 6.251 8.675 16.863

Table 3. Test training time (s) with a Linear Kernel (Algorithm 1)

Dataset Number of clusters WS-SVM S-TWSVM TWSVM

Hepatitis(155 x 19) (5× 3) 0.001 0.005 0.004

Australian(690 x 14) (4× 5) 0.033 0.089 0.043

BUPA-liver(345 x 6) (4× 2) 0.015 0.020 0.014

CMC (844 x 9) (3× 5) 0.047 0.099 0.083

Credit (690 x 19) (2× 3) 0.037 0.055 0.050

Diabetes (768 x 8) (5× 2) 0.099 0.166 0.117

Flare-solar(1066 x 10) (2× 2) 0.117 0.330 0.278

German (1000 x 20) (3× 3) 0.065 0.180 0.166

Heart-statlog (270 x 13) (3× 4) 0.011 0.011 0.011

Image (2310 x 18) (3× 2) 0.356 1.279 1.444

Ionosphere (350 x 34) (3× 2) 0.012 0.017 0.014

Spect (265 x 22) (3× 3) 0.012 0.016 0.012

Sonar (208 x 60) (6× 3) 0.008 0.009 0.008

Heart-c (303 x 13) (8× 2) 0.013 0.019 0.010

Table 4. Test set accuracy (%) with a Linear Kernel (Algorithm 1)

Dataset WS-SVM S-TWSVM TWSVM

Hepatitis(155 x 19) 83.516 +/- 10.078 87.088 +/- 8.888 84.176 +/- 8.910

Australian(690 x 14) 86.452 +/- 4.903 86.613 +/- 4.507 85.968 +/- 4.565

BUPA-liver(345 x 6) 68.065 +/- 7.133 67.097 +/- 11.613 65.806 +/- 5.983

CMC (844 x 9) 65.223 +/- 3.637 65.221 +/- 5.010 64.821 +/- 5.204

Credit (690 x 19) 86.157 +/- 3.127 86.964 +/- 4.444 85.192 +/- 4.223

Diabetes (768 x 8) 75.118 +/- 4.993 77.000 +/- 5.759 77.205 +/- 4.605

Flare-solar(1066 x 10) 81.760 +/- 4.127 81.969 +/- 4.200 81.761 +/- 4.306

German (1000 x 24) 69.375 +/- 5.356 71.667 +/- 5.449 71.042 +/- 7.184

Heart-statlog (270 x 13) 84.850 +/- 7.223 86.483 +/- 5.367 85.650 +/- 5.776

Image (2310 x 18) 86.196 +/- 1.619 84.415 +/- 1.244 85.089 +/- 1.745

Ionosphere (350 x 34) 92.056 +/- 6.574 91.744 +/- 4.982 90.504 +/- 6.104

Spect (265 x 22) 81.449 +/- 6.503 84.801 +/- 4.992 83.134 +/- 6.120

Sonar (208 x 60) 80.263 +/- 11.966 78.099 +/- 8.244 78.129 +/- 10.286

Heart-c (303 x 13) 84.577 +/- 5.116 83.836 +/- 4.668 83.823 +/- 4.435
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Table 5. Test set accuracy (%) with an RBF Kernel (Algorithm 2)

Dataset(mxn) WS-SVM S-TWSVM TWSVM

Hepatitis(155 x 19) 84.835 +/- 9.939 83.407 +/- 12.052 83.462 +/- 11.958

BUPA-liver(345 x 6) 70.000 +/- 6.297 69.032 +/- 3.290 72.258 +/- 3.592

Votes (303 x 13) 95.154 +/- 2.626 95.667 +/- 2.519 95.917 +/- 2.321

WPBC (198x35) 81.669 +/- 8.879 79.412 +/- 9.727 80.588 +/- 10.156

5. CONCLUSIONS

This paper has proposed a new Weighted Structural - Support Vector Machine (known
as WS-SVM) for classification problems with a class-vs-clusters strategy. This algorithm is
performed in two steps: The first step is to extract structural information of the data using
Ward’s linkage clustering method; The second step is to apply structural information with
cluster granularity to the learning model. The classifier is based on the weighted average
distances from the data point to the class representative hyperplanes. Both theory and
experiment show that training time of WS-SVM is better than S-TWSVM and TWSVM in
most cases. Besides, when the data is large, and there are many clusters with too different
distribution trends, the WS-SVM algorithm effectively simulates the distribution trend of
clusters and thus improves the accuracy in data classification. When k = l = 1, WS-SVM
is exactly S-TWSVM, and if λ+ = λ− = 0 it becomes TWSVM again. The WS-SVM
algorithm generally only achieves high accuracy when the clustering within each class is
clear. In the case of clustering being ambiguous the algorithm needs to be improved, for
example by combining it with a cluster-vs-class strategy flexibly. The WS-SVM algorithm
may not be really suitable for a multi-class problem. However, it seems to be useful in solving
a classification problem with unbalanced data. And this is an interesting research direction
in the future.
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