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Abstract
Given a finite set of points in the projective plane, we use the module of Kähler dif-
ferentials to investigate the configurations of these points. More precisely, depending
on the values of the Hilbert function of the module of Kähler differential 3-forms we
determine whether the set of points lies on a non-singular conic or on two different
lines or on a line.

Keywords: Kähler differential module; finite set of points; configuration of points;
Hilbert function.

Contents
1 Introduction 64

2 Kähler differential modules for sets of points 65

3 Several configurations of points in the projective plane 68

Acknowledgements. The authors were supported by Hue University under grant number
DHH2021-03-159.

Article identifier: http://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/887
Article type: (peer-reviewed) Full-length research article/review article
Copy right ©2022 The author(s).
Licensing: This article is licensed under a CC BY-NC-ND 4.0

63



Tran Nguyen Khanh Linh, Le Ngoc Long

1 Introduction
The theory of Kähler differentials has been used very extensively in the literature as a tool to
study finitely generated algebras. Many structural properties of the algebra can be reflected
in terms of the modules of Kähler differentials, for instance, the smoothness criterion, the
regular criterion, the ramification criterion of the algebra (see Kunz, 1986; Scheja and Storch,
1988). In de Dominicis and Kreuzer, 1999, the authors introduced methods using this theory
into the study of finite sets of points in the projective n-space Pn over a field K of charac-
teristic zero. Explicitly, given a set of points X ⊆ Pn with homogeneous coordinate ring
R = K[X0, ...,Xn]/IX, the module of Kähler differential 1-forms of R/K is Ω1

R/K = J /J 2,
where J is the kernel of the multiplication map µ : R⊗K R→ R, f ⊗g 7→ f g. One of main
results of de Dominicis and Kreuzer, 1999 is the formula

HF
Ω1

R/K
(i) = (n+1)HFX(i−1)−

n
∑
j=1

HFX(i−d j)

when X is a complete intersection of hypersurfaces of degrees d1, ...,dn. Also, they showed
that the module Ω1

R/K contains more information about X. Later, in Kreuzer et al., 2015,
2019, these differential algebra techniques have been developed for arbitrary 0-dimensional
schemes in Pn.

In this paper we are interested in applying the theory of Kähler differentials to investigate
the geometrical structure of finite sets of points in the projective spaces. More precisely, we
first look at the Hilbert functions of the modules of Kähler differential m-forms for a finite
set of points in the projective n-space Pn over a field K of characteristic zero and use these to
determine the smallest projective space which contains the set of points. Then we restrict our
attention to finite sets of points in P2 and show whether a set of points lies on a non-singular
conic, on two different lines or on a line by detecting the the Hilbert functions of the modules
of Kähler differential 3-forms.

Now let us describe the content of the paper in details. In Section 2, we first introduce the
modules of Kähler differential m-forms and their basic properties for a finite set X of points
in Pn. In particular, we define the matrix of coordinates of points of X and show that the
rank of the matrix is exactly the smallest positive integer m such that the module of Kähler
differential m-forms is not zero (see Theorem 2.6). Also, we show that the Hilbert function
of the module of Kähler differential m-forms for a subset of X is bounded by that one for X.

Next, in Section 3, we use the modules of Kähler differential m-forms for X to investigate the
configurations of X in case X ⊆ P2. Basically, we apply the Hilbert function of the module
of Kähler differential 3-forms to characterize the geometrical properties of X. Several nice
properties about the shapes of X are provided. For example, Proposition 3.2 shows that X
lies on a conic, not a double line if and only if HF

Ω3
R/K

(3) = 1 and HF
Ω3

R/K
(i)≤ 1 for all i≥ 0.

Specially, Theorem 3.8 shows us how to determine the set X to be on a line, on two different
lines, or on a non-singular conic by checking the certain values of the Hilbert functions of
Ω3

R/K .

All examples in this paper were calculated by using the computer algebraic system ApCo-
CoA (see The ApCoCoA Team, 2021). Some of the results in this paper were improved and
developed from part of Linh, 2015.
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2 Kähler differential modules for sets of points
In the following let K be a field of characteristic zero, let S = K[X0, . . . ,Xn], and let X =
{p1, . . . , ps} be a set of s distinct K-rational points in the projective n-space Pn. One may
suppose that no point of X lies on the hyperplane at infinity Z +(X0). This enables us to
write p j = (1 : p j1 : · · · : p jn) with p j1, . . . , p jn ∈ K for j = 1, . . . ,s. Each point p j ∈ X has
its associated homogeneous prime ideal in S given by

p j := 〈p j1X0−X1, . . . , p jnX0−Xn〉 ⊆ S.

Then the homogeneous vanishing ideal of X is IX=
⋂s

j=1 p j and the homogeneous coordinate
of X is R = S/IX. The ring R is a Cohen-Macaulay ring of dimension 1 and is also a graded
K-algebra (see e.g. Kreuzer and Robbiano, 2005, Section 6.3 or Linh, 2015, Section 2.4).

The ring Re := R⊗K R is known as the enveloping algebra of the algebra R/K. We have the
canonical multiplication map µ : Re→ R with µ( f ⊗g) = f g for all f ,g∈ R. It is clearly true
that this map is homogeneous of degree zero and its kernel J := Ker(µ) is a homogeneous
ideal of Re. For a homogeneous system of generators of J see Kunz, 2005, Theorem G.7.
These notions lead us to the following definition of Kähler differential modules of the algebra
R/K.

Definition 2.1. Let m be a positive integer.

(a) The graded R-module Ω1
R/K := J /J 2 is called the module of Kähler differentials of

R/K. The homogeneous K-linear map d : R→Ω1
R/K given by f 7→ f ⊗1−1⊗ f +J 2

is called the universal derivation of R/K.

(b) The exterior power Ωm
R/K :=

∧m
R Ω1

R/K is called the module of Kähler differential m-
forms of R/K.

By xi we denote the image of Xi in R for i = 0, . . . ,n. Then we have deg(dxi) = deg(xi) = 1
and Ω1

R/K = Rdx0 + · · ·+Rdxn. Hence Ωm
R/K = 0 if m ≥ n+ 2, and for m ≥ 1, Ωm

R/K is a
finitely generated graded R-module and its Hilbert function is defined by

HFΩm
R/K

(i) := dimK(Ω
m
R/K)i, for all i ∈ Z.

Moreover, from Kunz, 1986, Proposition 4.12 we get the following presentation for Ωm
R/K .

Proposition 2.2. For 1≤ m≤ n+1, the graded R-module Ωm
R/K has a presentation

Ω
m
R/K
∼= Ω

m
S/K/(IXΩ

m
S/K +dIXΩ

m−1
S/K )

where dIX = 〈dF | F ∈ IX〉.

In view of Kreuzer et al., 2019, Proposition 4.4, the Hilbert polynomial of the module of
Kähler differential m-forms Ωm

R/K can be described as follows.

Proposition 2.3. For 1≤ m≤ n+1, the Hilbert polynomial of Ωm
R/K satisfies

HPΩm
R/K

(z) =

{
s if m = 1,
0 if m≥ 2.

In addition, the regularity index of Ωm
R/K is bounded by ri(Ωm

R/K)≤ 2ri(R)+m.
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The next result found in Scheja and Storch, 1988, Proposition 85.12 is useful for the proof
of Theorem 2.6.

Lemma 2.4. For two R-modules M and N, there is a canonical isomorphism∧n
R(M⊕N)∼= ∑

n
i=0
∧n−i

R (M)⊗R
∧i

R(N).

Lemma 2.5. Let 1≤ m≤ n+1 and let K be the graded R-module

K = 〈( ∂F
∂x0

, . . . , ∂F
∂xn

) ∈ Rn+1 | F ∈ IX〉.

There is an exact sequence of graded R-modules

0−→K ∧R
∧m

R (R
n+1)−→

∧m+1
R (Rn+1)−→Ω

m+1
R/K (m+1)−→ 0. (1)

Proof. By de Dominicis and Kreuzer, 1999, Proposition 1.3, we have an epimorphism of
graded R-modules ϕ : Rn+1→Ω1

R/K(1) with ϕ((F0, ...,Fn))=F0dx0+· · ·+Fndxn for F0, ...,Fn ∈
R and the kernel of ϕ is K . Thus the exact sequence (1) follows from Scheja and Storch,
1988, p. X. 83.

From the coordinates of points p1, ..., ps of X, we form the matrix

AX = (p jk) i=1,...,s
j=0,...,n

∈Mats×(n+1)(K),

and we let ρX denote the rank of the matrix AX. The next theorem shows how the rank ρX
can be detected via the Hilbert functions of the Kähler differential modules for X.

Theorem 2.6. The set X has ρX =m if and only if HFΩm
R/K

(i) 6= 0 for some i and HF
Ω

m+1
R/K

(i) =

0 for all i ∈ Z.

In order to prove Theorem 2.6, we need only prove the following two lemmas.

Lemma 2.7. If m > ρX, then HFΩm
R/K

(i) = 0 for all i ∈ Z.

Proof. Set M = K ∧R
∧ρX

R (Rn+1) and N =
∧ρX+1

R (Rn+1). According to Lemma 2.5, it suf-
fices to show that HFM(i) = HFN(i) for all i≥ 0. Let {e1, . . . ,en+1} be a standard basis of the
graded-free R-module Rn+1, and let V be the space of solutions of the homogeneous system
of linear equations with coefficient matrix AX. Then we have t := dimK(V ) = n+ 1−ρX.
Let {v1, ...,vt} be a K-basis of V . W.l.o.g. we may assume that v j = e j +∑

n+1
k=t+1 a jkek for

j = 1, ..., t. For each j ∈ {1, ..., t}we see that X j−1+∑
n+1
k=t+1 a jkXk−1 ∈ IX, and hence v j ∈K .

This implies 〈v1, . . . ,vt〉R ⊆K ⊆ Rn+1.

Now we need only prove that M′ := 〈v1, . . . ,vt〉R∧R
∧ρX

R (Rn+1) = N. In M′, we have

v j∧ et+1∧·· ·∧ en+1 = e j∧ et+1∧·· ·∧ en+1.

If we can show that ei1 ∧·· ·∧eiρX+1 ∈M′ for all {i1, . . . , ik} ⊆ {1, . . . , t}, {ik+1, . . . , iρX+1} ⊆
{t + 1, . . . ,n+ 1} and 1 ≤ k ≤ ρX implies e j1 ∧ ·· · ∧ e jρX+1 ∈ M′ for all { j1, . . . , jk+1} ⊆
{1, . . . , t} and { jk+2, . . . , jρX+1} ⊆ {t +1, . . . ,n+1}. Then the set

{ei1 ∧·· ·∧ eiρX+1 | {i1, . . . , iρX+1} ⊆ {1, . . . ,n+1},∃ik ∈ {1, . . . , t}}
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is contained in M′, and hence M′ = N, since this set generates N as an R-module.

To see e j1 ∧·· ·∧ e jρX+1 ∈M′, we represent

e j1 ∧·· ·∧ e jρX+1 = (e j1 +
n+1
∑

`=t+1
a j1`e`)∧ e j2 ∧·· ·∧ e jρX+1

−
n+1
∑

`=t+1
(−1)ρXa j1`(e j2 ∧·· ·∧ e jρX+1 ∧ e`)

= v j1 ∧ e j2 ∧·· ·∧ e jρX+1

−
n+1
∑

`=t+1
(−1)ρXa j1`(e j2∧·· ·∧ e jk+1)∧ (e jk+2∧·· ·∧ e jρX+1 ∧ e`).

It follows from the hypothesis that e j1 ∧·· ·∧ e jρX+1 ∈M′, as desired.

Lemma 2.8. We have HF
Ω

ρX
R/K

(i) 6= 0 for some i ∈ Z.

Proof. Using the notation given in the proof of Lemma 2.7, let U= 〈et+1, . . . ,en+1〉R, V =
〈v1, . . . ,vt〉R, and N =

∧ρX
R (Rn+1). Then U,V are graded-free R-modules of rank ρX and t,

respectively. We want to show that V ∧R
∧ρX−1

R (Rn+1)( N. We have V ⊕U = Rn+1 and

V ∧R
∧ρX−1

R (Rn+1) =V ∧R
∧ρX−1

R (V ⊕U)

=V ∧R

(
ρX−1

∑
i=0

∧ρX−1−i
R (V )⊗R

∧i
R(U)

)
=

ρX−1
∑

i=0

∧ρX−i
R (V )⊗R

∧i
R(U),

where the second equality follows from by Lemma 2.4. Since U ∩V = 〈0〉, the graded-free
R-module V ∧R

∧ρX−1
R (Rn+1) has rank

rank(V ∧R
∧ρX−1

R (Rn+1)) =
ρX−1

∑
i=0

(n+1−ρX
ρX−i

)
·
(

ρX
i

)
.

Moreover, N is a graded-free R-module of rank rank(N) = ∑
ρX
i=0
(n+1−ρX

ρX−i

)
·
(

ρX
i

)
, and conse-

quently rank(N)− rank(V ∧R
∧ρX−1

R (Rn+1)) = 1 or V ∧R
∧ρX−1

R (Rn+1)( N. An application
of the the exact sequence (1) with V ⊆K yields HF

Ω
ρX
R/K

(i) 6= 0 for some i ∈ Z.

Due to Lemmas 2.7 and 2.8, HFΩm
R/K

(i) 6= 0 for some i and HF
Ω

m+1
R/K

(i) = 0 for all i ∈ Z if and

only if ρX = m, and Proposition 2.6 is completely proved.

Now let us look at an explicit example.

Example 2.9. Let X = {p1, ..., p6} ⊆ P4 be the set of six Q-rational points, where p1 =
(1 : 0 : 0 : 0 : 1), p2 = (1 : −1 : 1 : −1 : 2), p3 = (1 : 1 : 1 : 1 : 2), p4 = (1 : 2 : 4 : 8 : −1),
p5 = (1 :−2 : 4 :−8 : 11), and p6 = (1 : 3 : 9 : 27 :−14) are on the intersection of a twisted
cubic curve defined by X0X2−X2

1 ,X1X3−X2
2 ,X0X3−X1X2 and an hyperplane defined by

F1 = X0 +X1 +X2−X3−X4.
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By forming AX and calculating its rank, we have ρX = 4. The homogeneous vanishing ideal
IX of X is generated by {F1,F2,F3,F4,F5} with

F2 = X2
1 −2X2X3 +X2

3 −X2X4 +X3X4,

F3 = X1X2 +
23
22X2X3− 8

11X2
3 − 3

11X1X4 +
4

11X2X4− 3
4X3X4,

F4 = X2
2 − 1

22X2X3− 3
11X2

3 + 3
11X1X4− 4

11X2X4− 1
4X3X4,

F5 = X1X3− 1
22X2X3− 3

11X2
3 + 3

11X1X4− 4
11X2X4− 1

4X3X4

and HFX =HFR : 1 4 6 6 · · · . In this case we also have HF
Ω4

R/K
(4) = 1 6= 0 and HF

Ω5
R/K

(i) = 0

for all i ∈ Z.

Remark 2.10. When X= {p1, . . . , ps} ⊂ Pn is a set of s distinct K-rational points that lie on
a line, the Hilbert functions of X and of Ωm

RX/K satisfy

HFX : 1 2 3 4 · · · s−1 s s · · ·
HF

Ω1
RX/K

: 0 2 4 6 · · · (2s−2) (2s−1) (2s−2) (2s−3) · · · (s+1) s s · · ·

HF
Ω2

RX/K
: 0 0 1 2 · · · (s−2) (s−1) (s−2) · · ·2 1 0 0 · · ·

and HFΩm
RX/K

(i) = 0 for m≥ 3 and for all i ∈ Z.

We end this section with a relation between the Hilbert functions of the Kähler differential
modules for X and its subsets. This property is also true when X is a 0-dimensional scheme
in Pn.

Lemma 2.11. Let Y be a subset of X and let RY be the homogeneous coordinate of Y. Then
1≤ m≤ n+1 and for all i ∈ Z we have

HFΩm
RY/K

(i)≤ HFΩm
R/K

(i).

Proof. We know that IX ⊆ IY, and so there is a surjective homomorphism of rings π : R→
RY = S/IY. This map induces a surjective homomorphism of graded R-modules φ : Ω1

R/K→
Ω1

RY/K . For 1 ≤ m ≤ n+ 1, the map φ induces a surjective homomorphism of graded R-

modules φ (m) : Ωm
R/K→Ωm

RY/K . Therefore we get the inequality HFΩm
RY/K

(i)≤HFΩm
R/K

(i) for
all i ∈ Z.

3 Several configurations of points in the projective plane
In this section, we restrict our attention to the sets of K-rational points X = {p1, . . . , ps} in
the projective plane P2. More precisely, we will discuss some geometrical configurations of
points X in P2 which are reflected in terms of the Hilbert function of the module of Kähler
differential 3-forms. Firstly, we look at a representation of this module. We denote

∂ IX := 〈 ∂F
∂Xi
| F ∈ IX,0≤ i≤ n〉 ⊆ S.

The ideal ∂ IX is also known as the n-th Jacobian ideal (or the n-th Kähler different) of R/K
(see e.g. Kunz, 1986, Section 10). We can use this notation to give an explicit description
for the module of Kähler differential 3-forms of R/K as follows.
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Lemma 3.1. There is an isomorphism of graded R-modules

Ω
3
R/K
∼= (S/∂ IX)(−n−1).

In particular, HF
Ω3

R/K
(i) = HFS/∂ IX(i−n−1) for all i ∈ Z.

Proof. See Kreuzer et al., 2019, Corollary 2.3.

Now we may give a criterion for the set X to lie on a conic C = Z +(C), where

C = ∑
0≤i, j≤2

ai jXiX j (ai j ∈ K). (2)

Proposition 3.2. A set of s distinct K-rational points X ⊆ P2 lies on a conic C = Z +(C)
which is not a double line if and only if we have HF

Ω3
R/K

(i)≤ 1 for all i∈Z and HF
Ω3

R/K
(3) =

1.

Proof. We may assume that C 6= a`2 for any linear form ` ∈ S and a ∈ K and that a00 6= 0
(after a change of coordinates). We have ∂C

∂Xi
= ∑

2
j=0 ai jX j ∈ ∂ IX for i = 0,1,2, as C ∈ IX.

Put A := (ai j)i, j=0,1,2 ∈Mat3(K). Then rank(A ) = 1 if and only if A is of the form

A =


a00 a01 a02

a01
a2

01
a00

a01a02
a00

a02
a01a02

a00

a2
02

a00

 .

In this case we get C = 1
a00

`2 with ` = ∂C
∂X0

= ∑
2
j=0 a0 jX j, which is impossible. Hence

rank(A ) ≥ 2 and suppose that two first rows of A are linearly independent. Then ∂C
∂X0

,
∂C
∂X1

form a regular sequence for S. Notice that

J := 〈 ∂C
∂X0

, ∂C
∂X1
〉S ⊆ 〈 ∂C

∂Xi
| 0≤ i≤ 2〉 ⊆ ∂ IX.

Hence, according to Lemma 3.1, for all i ∈ Z we have

HF
Ω3

R/K
(i) = HFS/∂ IX(i−3)≤ HFS/J(i−3)≤ 1.

On the other hand, we also have ∂ IX ⊆ 〈X0,X1,X2〉S, because X does not lie on a line. This
implies HF

Ω3
R/K

(3) = 1.

Conversely, assume that HF
Ω3

R/K
(i)≤ 1 for all i ∈ Z and HF

Ω3
R/K

(3) = 1. Theorem 2.6 guar-

antees that X lies neither on a line nor on a double line. If X does not lie on any conic,
then the homogeneous vanishing ideal IX is generated in degrees greater than 2, and hence
HF∂ IX(1) = 0. By Lemma 3.1, we get HF

Ω3
R/K

(4) = 3 > 1, contradiction. Therefore X must

lie on a conic.

Due to the proof of Proposition 3.2, X lies on a line if and only if HF
Ω3

R/K
(i) = 0 for all i∈N.

Lemma 3.3. If the set X= {p1, ..., ps} ⊆ P2 lies on a non-singular conic C = Z +(C), then
HF

Ω3
R/K

(i) = 0 for i 6= 3 and HF
Ω3

R/K
(3) = 1.
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Proof. Let C be given in (2) and let A = (ai j)i, j=0,1,2 ∈Mat3(K) be the coefficient matrix
of C. It is well-known that C is a non-singular conic if and only if rank(A ) = 3. The last
condition yields 〈X0,X1,X2〉S = 〈 ∂C

∂Xi
| 0≤ i≤ 2〉S ⊆ ∂ IX. Hence 〈X0,X1,X2〉S = ∂ IX, and the

claim follows by Lemma 3.1.

Next we consider the case that the set X lies on two different lines.

Proposition 3.4. Let X ⊆ P2 be a set of s distinct K-rational points which lie on on two
different lines.

(a) If s = 5 and none of four points of X lie on a line, then

HF
Ω3

R/K
: 0 0 0 1 1 0 · · · .

(b) If s≥ 5 and there exist five points such that no four of them lie on a line, then

HF
Ω3

R/K
(3) = HF

Ω3
R/K

(4) = 1.

Proof. Suppose that X lies on two lines defined by `1 = ∑
2
j=0 a jX j and `2 = ∑

2
j=0 b jX j with

ai,b j ∈ K. Note that gcd(`1, `2) = 1 and w.l.o.g. assume that a0b1−a1b0 6= 0. We first treat
the case of five points.

(a) Assume that X1 = {p1, p2, p3} ⊆ Z +(`1) and X2 = {p4, p5} ⊆ Z +(`2). Then we
have IX1 = 〈`′1`′2`′3, `1〉S and IX2 = 〈`′4`′5, `2〉S for suitable linear forms `′i = ∑

2
j=0 ci jX j (i =

1, ...,5,ci j ∈ K). Clearly, the initial degree of the ideal IX is 2 and IX = IX1 ∩ IX2 . For a
non-zero element F ∈ (IX)2, we may write

F = F1`1 = F2`2 + c`′4`
′
5

for some c∈K and F1,F2 ∈ S1. Since `1(p4) 6= 0 and `1(p5) 6= 0, we have F1(p4) = F1(p5) =
0, and so F1 = c′`2 with c′ ∈ K \{0}. Hence F ∈ (IX)2 if and only if F = 〈`1`2〉K . Observe
that

∂`1`2
∂Xi

= `1
∂`2
∂Xi

+ `2
∂`1
∂Xi

= bi`1 +ai`2 ∈ ∂ IX (i = 0,1,2)

and 〈b0`1+a0`2,b1`1+a1`2〉K = 〈`1, `2〉K , as a0b1−a1b0 6= 0. Since b2`1+a2`2 ∈ 〈`1, `2〉K ,
we obtain 〈`1, `2〉K = (∂ IX)1. This implies

HF
Ω3

R/K
(4) = HFS/∂ IX(1) = 3−dimK(〈`1, `2〉K) = 1.

Furthermore, we have `1`
′
4`
′
5 ∈ IX, and hence, for ai 6= 0, we get

`′4`
′
5 =

1
ai
(

∂`1`
′
4`
′
5

∂Xi
− `1(

∂`′4`
′
5

∂Xi
)) ∈ ∂ IX.
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In particular, 〈`1, `2, `
′
4`
′
5〉S⊆ ∂ IX. If `′4`

′
5 =H1`1+H2`2 for some H1,H2 ∈ S1, then H1(p4)=

H1(p5) = 0 or H1 = c′′`2, and thus `2 | `′4`′5, this is impossible. Hence `′4`
′
5 /∈ 〈`1, `2〉S. It

follows that
dimK(〈`1, `2, `

′
4`
′
5〉S)2 = dimK(∂ IX)2 = dimK(S2) = 6,

and consequently 〈`1, `2, `
′
4`
′
5〉S = ∂ IX and HF∂ IX(i)=HFS(i) for all i≥ 2. Therefore HF

Ω3
R/K

(i)=

0 for all i > 4.

(b) Because the set X lies on two different lines, Proposition 3.2 implies that HF
Ω3

R/K
(3)= 1

and HF
Ω3

R/K
(4)≤ 1. Let Y be the set of five points of X such that no four points of Y lie on a

line. By (a) and Lemma 2.11, we have 1 = HF
Ω3

RY/K
(4)≤HF

Ω3
R/K

(4)≤ 1, and hence the last

inequality becomes an equality.

When there is a line passing through all but one point of X, we have the following property.

Lemma 3.5. Let X = Y∪ {ps} ⊆ P2, where Y = {p1, . . . , ps−1} is a set of s− 1 distinct
K-rational points on a line Z +(`) and ps /∈Z +(`). Then

HF
Ω3

R/K
(3) = 1 and HF

Ω3
R/K

(i) = 0, ∀i 6= 3.

Proof. Since IY =
⋂s−1

j=1 p j, if p j = 〈`,` j〉S with a linear form ` j ∈ S for j = 1, ...,s− 1,
then IY is generated by ` and F = ∏

s−1
j=1 ` j. Let us write ps = 〈L1,L2〉S with suitable L1 =

∑
2
j=0 aiXi,L2 = ∑

2
j=0 biXi ∈ S1 such that p1 ∈Z +(L1) and p2 ∈Z +(L2). Such L1,L2 ∈ S1

exist, since ps /∈Z +(`). Then we have IX =
⋂s

j=1 p j = 〈`,F〉S∩〈L1,L2〉S.

We claim that dimK(〈`,L1,L2〉K) = 3. If there are a,b,c ∈ K such that a`+ bL1 + cL2 =
0, then 0 = a`(p1)+ bL1(p1)+ cL2(p1) = cL2(p1) and 0 = a`(p2)+ bL1(p2)+ cL2(p2) =
bL1(p2), and so b = c = 0 and a`= 0. This means that a = b = c = 0 and the claim follows.

Consequently, we get 〈`,L1,L2〉K = 〈X0,X1,X2〉K . Let `= ∑
2
j=0 ciXi with ci ∈K and suppose

w.l.o.g. that a0c1−a1c0 6= 0 and b0c1−b1c0 6= 0 (as {`,L1,L2} is linearly independent over
K). Since `L1, `L2 ∈ IX, we have ai`+ ciL1,bi`+ ciL2 ∈ ∂ IX for every i = 0,1,2. We have

〈ai`+ ciL1,bi`+ ciL2 | i = 0,1,2〉K = 〈`,L1,L2〉K = 〈X0,X1,X2〉K,

and subsequently we get ∂ IX = 〈X0,X1,X2〉S. Therefore, Lemma 3.1 yields

HF
Ω3

R/K
(3) = HFS/∂ IX(0) = 1, HF

Ω3
R/K

(i) = HFS/∂ IX(i−3) = 0

for all i 6= 3.

Note that the Castelnuovo function of X is defined by

∆HFX(i) := HFX(i)−HFX(i−1)

for all i∈Z. In the proof of the lemma, we see that IX= 〈`,F〉S∩〈L1,L2〉S⊇〈`L1, `L2,FL1,FL2〉S.
It follows that ∆HFX(2) = 1, and therefore ∆HFX(i)≤ 1 for all i ≥ 2 by Kreuzer and Rob-
biano, 2005, Corollary 5.5.28. This proves the following corollary.

Corollary 3.6. In the setting of Lemma 3.5, we have ∆HFX(i)≤ 1 for all i≥ 2.
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Using Bézout’s Theorem (see e.g. Ueno, 1999, Theorem 1.32), we get the following conse-
quence for a set of points on a non-singular conic in P2.

Corollary 3.7. If X is a set of s ≥ 5 distinct K-rational points in P2 which are on a non-
singular conic C = Z +(C), then ∆HFX(2) = 2.

Proof. By Bézout’s Theorem and s≥ 5, IX has only one non-zero homogeneous polynomial
F of degree 2. In this case we must have F = aC with some a ∈ K \{0}. Let {C,F1, . . . ,Ft},
deg(Fi) > 2, be a homogeneous system of generators of IX. Then the Hilbert function of X
is given by

HFX : 1 3 5 ∗ ∗· · · .

In particular, we obtain ∆HFX(2) = 2.

Combining the above results we get the following classification of sets of points correspond-
ing to values of the Hilbert function of the module of Kähler differentials.

Theorem 3.8. Let X be a set of s≥ 5 distinct K-rational points in P2.

(a) X lies on two different lines and no s−1 points of X lie on a line, when HF
Ω3

R/K
(3) = 1

and HF
Ω3

R/K
(4) = 1.

(b) If HF
Ω3

R/K
(3) = 1 and HF

Ω3
R/K

(i) = 0 for i 6= 3, then X either contains s−1 points on

a line or lies on a non-singular conic depending on the value of ∆HFX(2) equals 1 or
not.

Proof. We see that X lies on a conic if and only if the Hilbert function of Ω3
R/K satisfies

HF
Ω3

R/K
(4) ≤ 1 and HF

Ω3
R/K

(3) = 1 by Theorem 2.6 and Proposition 3.2. We consider the

following three possibilities for the shapes of the points of X.

Case 1: If X lies on two different lines, such that no s− 1 points lie on a line, then Proposi-
tion 3.4 shows that HF

Ω3
R/K

(3) = HF
Ω3

R/K
(4) = 1.

Case 2: In the case that there is a line passing through all but one point of X, by Lemma 3.5
we have HF

Ω3
R/K

(3) = 1 and HF
Ω3

R/K
(4) = 0. Furthermore, Corollary 3.6 shows that

∆HFX(2) = 1.

Case 3: When X lies on a non-singular conic, Lemma 3.3 implies HF
Ω3

R/K
(3)= 1 and HF

Ω3
R/K

(4)=

0. In this case we have ∆HFX(2) = 2 by Corollary 3.7.

Altogether, the theorem is completely proved.
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The following example shows us how to distinguish two sets of K-rational points with the
same cardinality using the modules of Kähler differentials.

Example 3.9. Let X⊆P2 be a set of six K-rational points on the conic X2
0 +2X2

1 −X2
2 , and let

Y⊆ P2 be a set of six K-rational points on two lines defined by `1 = x1 and `2 = x2. Then the
Hilbert functions of X and Y are the same and given by HFX=HFY : 1 3 5 6 6 · · · . Also, their
homogeneous vanishing ideals have the same minimal graded free resolution (see Tohaneanu
and van Tuyl, 2013, Example 4.1). However, their modules of Kähler differential m-forms
have the following Hilbert functions:

HF
Ω1

R/K
: 0 3 8 11 10 7 6 6 · · · , HF

Ω1
RY/K

: 0 3 8 11 10 7 6 6 · · · ,

HF
Ω2

R/K
: 0 0 3 6 4 1 0 · · · , HF

Ω2
RY/K

: 0 0 3 6 5 1 0 0 · · · ,

HF
Ω3

R/K
: 0 0 0 1 0 0 · · · , HF

Ω3
RY/K

: 0 0 0 1 1 0 0 · · · .

Thus, by looking at the Hilbert functions of the modules of Kähler differential m-forms, one
can distinguish two sets X and Y.
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