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Abstract: In this paper, we study the weak Lefschetz property of an

artinian monomial algebra AG defined by the sum of the edge ideal of a

simple graph G and the square of the variables. We classify some class

of graphs G where AG has or fails the weak Lefschetz properties.
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1 INTRODUCTION

The Lefschetz property is an algebrization of the Hard Lefschetz theorem, one of

the important theorems in algebraic geometry. More precisely, we say that a graded

artinian algebra A has the weak Lefschetz property (WLP) if there exists a linear

form ` such that the multiplication map ×` : Ai −→ Ai+1 has maximal rank for all

degree i, while A has the strong Lefschetz property (SLP) if the multiplication map

×`j : Ai −→ Ai+j has maximal rank for all i and all j.

The Lefschetz properties of graded algebras have connections to several areas of

mathematics. Due to this ubiquity, many classes of algebras have been studied with

respect to the WLP and the SLP. At first glance, checking the WLP or the SLP

might seem to be a simple problem of linear algebra. However, determining which

graded algebras have the WLP or the SLP is notoriously difficult, and a number of

natural families of algebras still simply remain uncharacterized. We refer the reader

to the monography The Lefschetz Properties [4].

In this paper, we study the SLP and/or WLP of artinian monimial algebras as-

sociated the edge ideals of graphs. More precisely, let G be a simple graph, i.e.

G = (V,E) is a pair where V is a set of elements called vertices, and E is a set of

elements called edges which are unordered pairs of vertices from V . Suppose that

V = {1, 2, . . . , n} and let R = k[x1, . . . , xn] be a standard graded polynomial ring
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over a field k. The edge ideal of G is the ideal

IG = (xixj | {i, j} ∈ E) ⊂ R.

Then, we say that

AG = R/((x21, . . . , x
2
n) + IG)

is the artinian monomial algebra associated to G. We are interested in the following

problem.

Problem 1.1. Classify the simple graph G that AG has or fails the WLP or SLP.

Note that AG is an artinian algebra generated by quadratic monomials. The WLP of

these algebras is also studied by Micha lek and Miró-Roig [7] and Migliore, Nagel and

Schenck [9]. In this paper, we will study the WLP/SLP of the artinian monomial

algebras associated to some classes of graphs such as the empty graphs, the complete

graphs, the disjoint union of complete graphs, the star graphs, the Barbell graphs

and the cone of graphs.

2 PRELIMINARIES

We consider standard graded algebra A = ⊕i≥0[A]i = R/I, where R = k[x1, . . . , xn]

is a polynomial ring over a field k with all xi’s have degree 1 and I ⊂ R is an

artinian homogeneous ideal. Let us define the weak and strong Lefschetz properties

for artinian algebras.

Definition 2.1. We say that A has the weak Lefschetz property (WLP) if there is a

linear form ` ∈ [A]1 such that, for all integers j, the multiplication map

×` : [A]j −→ [A]j+1

has maximal rank, i.e. it is injective or surjective. In this case the linear form ` is

called a Lefschetz element of A. If for the general form ` ∈ [A]1 and for an integer

number j the map ×` : [A]j −→ [A]j+1 does not have the maximal rank we will say

that A fails the WLP in degree j.

We say that A has the strong Lefschetz property (SLP) if there is a linear form

` ∈ [A]1 such that, for all integers j and s, the multiplication map

×`s : [A]j −→ [A]j+s

has maximal rank.
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In the case of one variable, the WLP and SLP trivially hold since all ideals are

principal. In the case of two variables there is a nice result in characteristic zero by

Harima, Migliore, Nagel and Watanabe [5, Proposition 4.4].

Proposition 2.2. Every artinian algebra A = k[x, y]/I, where k has characteristic

zero, has the SLP (and consequently also the WLP).

In a polynomial ring with more than two variables it is not true in general that every

artinian monomial algebra has the SLP or WLP. The most general result in this case

proved by Stanley in [10].

Theorem 2.3. Let R = k[x1, . . . , xn], where k is of characteristic zero. Let I be an

artinian monomial complete intersection, i.e. I = (xd11 , . . . , x
dn
n ). Then A = R/I has

the SLP.

By using the action of a torus on monomial algebras, Migliore, Miró-Roig and Nagel

proved the existence of the canonical Lefschetz element.

Proposition 2.4. [8, Proposition 2.2] Let I ⊂ R = k[x1, . . . , xn] be an artinian

monomial ideal. Then A = R/I has the WLP if and only if ` = x1 + x2 + · · · + xn

is a Lefschetz element for A.

A necessary condition for the WLP and SLP of an artinian algebra A is the uni-

modality of the Hilbert series of A. To do it, we need some notations.

Definition 2.5. Let k be a field and A = ⊕j≥0[A]j be a standard graded k-algebra.

The Hilbert series of A is the power series
∑

dimk[A]it
i and is denoted by HS(A, t).

The Hilbert function of A is the function hA : N −→ N defined by hA(j) = dimk[A]j.

If A is an artinian graded algebra, then [A]i = 0 for i� 0. We denote

D = max{i | [A]i 6= 0}.

The integer D is called the socle degree of A. In this case, the Hilbert series of A is

a polynomial

HS(A, t) = 1 + h1t+ · · ·+ hDt
D,

where hi = HA(i) = dimk[A]i > 0. By definition, the degree of the Hilbert series for

an artinian graded algebra A is equal to its socle degree D := max{i | [A]i 6= 0}. Since

A is artinian and non-zero, this number also agrees with the Castelnuovo-Mumford

regularity of A, so

reg(A) = D = deg(HS(A, t)).
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Definition 2.6. A polynomial
∑n

k=0 akx
k with integer coefficients is called unimodal

if there is an m, such that

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an.

The mode of the unimodal polynomial
∑n

k=0 akx
k defined by

min{k | ak−1 < ak ≥ ak+1 ≥ · · · ≥ am}.

Proposition 2.7. [4, Proposition 3.2] If A has the WLP or SLP then the Hilbert

series of A is unimodal.

3 ARTINIAN MONOMIAL ALGEBRAS ASSOCIATED TO EDGE IDEALS OF GRAPHS

In this section, we study the WLP or SLP of an artinian monomial algebra AG

associated to the edge ideal of a simple graph G. In detail, let G = (V,E) is a simple

graph, with the set of vertices V = {1, 2, . . . , n} and the set of edges E. Denote

by R = k[x1, . . . , xn] the standard graded polynomial ring over a field k. Then we

consider the artinian monomial algebra

AG = R/((x21, . . . , x
2
n) + IG),

where IG = (xixj | {i, j} ∈ E) ⊂ R is the edge ideal of G. We are interested in

studying the following problem.

Problem 3.1. Classify the simple graphs G such that AG has or fails the WLP/SLP.

The algebra AG contains significant combinatorial information about G. In detail,

a subset X of vertices V is called independent if for any i, j ∈ X, {i, j} /∈ E, i.e.,

the vertices in X are pairwise non-adjacent. The independence number of a graph

G is the largest cardinality among all independent sets of G. We denote this value

by α(G). The independence polynomial of a graph G, denoted by I(G; t), is the

polynomial

I(G; t) =

α(G)∑
k=0

sk(G)tk,

where sk(G) is the number of independent sets of order k in G. The independence

polynomial of a graph was defined by I. Gutman and F. Harary in [3] as a general-

ization of the matching polynomial of a graph. Then we have the following.
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Proposition 3.2. The Hilbert series of AG is equal to the independence polynomial

of G, i.e.

HS(AG; t) = I(G; t) =

α(G)∑
k=0

sk(G)tk.

Therefore, the WLP/SLP of AG has strong consequences on the unimodality of the

independence polynomial of G (see Proposition 2.7). In particular, if I(G; t) is not

unimodal, then AG fails the WLP/SLP. Thus, to study the WLP/ SLP of AG, it

is enough to consider the graphs G such that their independence polynomial are

unimodal.

Example 3.3. [1] Given positive integers m and n > m, let G = (V,E) with V =

V1∪V2∪V3, where V1, V2, V3 are disjoint; |V1| = n−m and |V2| = |V3| = m; E consists

of a complete bipartite graph between V1 and V2 and a perfect matching between V2

and V3. Then G is a bipartite graph and for every i ≥ 0, si(G) = (2i − 1)
(
m
i

)
+
(
n
i

)
.

Therefore, for m ≥ 95 and n = bm log2(3)c. Then I(G; t) is not unimodal. As a

consequence, AG fails the WLP.

Let G = (V,E) be a simple graph. A graph G is said to be well-covered if every

maximal independent set of G has the same size and is equal to α(G). The result is

immediately implied from the above proposition.

Corollary 3.4. Let AG be the artinian monomial algebra associated to a simple

graph G. Then reg(AG) = α(G) and AG is level if and only if G is well-covered.

It is known that the Lefschetz properties depend strongly on the characteristic of

field. For simplicity, we always assume that k is a field of characteristic zero.

Example 3.5. An empty graph is simply a graph with no edges. We denote the

empty graph on n vertices by En. Then

AEn = R/(x21, . . . , x
2
n) and I(En; t) = (1 + t)n.

A result of Stanley says that AEn has the SLP (see Theorem 2.3).

If G has a small number of vertices, the we have the following result.

Proposition 3.6. Let G = (V,E) be a graph. If |V | ≤ 3, then AG has the SLP.
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Proof. Since all artinian algebras in the polynomial ring with one or two variables

have the SLP (see Proposition 2.2), it is enough to consider the case where |V | = 3.

In this case, G is a empty graph; or a complete graph; or a path and one isolated

vertex. A simple computation with Macaulay2 [2] shows that AG has the SLP.

A complete graph on n vertices, denoted by Kn, is the graph where every vertex is

adjacent to every other vertex. It follows that

AKn = R/(x1, . . . , xn)2 and I(Kn; t) = 1 + nt.

It is easy to see that AKn has the SLP. Now, we consider the joint union of complete

graphs G = ∪ni=1Kmi
. Recall that the disjoint union of the graphs G1, G2 is a graph

G = G1 ∪ G2 having as vertex set the disjoint union of V (G1), V (G2), and as edge

set the disjoint union of E(G1), E(G2).

Proposition 3.7. Let A be the artinian monomial algebra associated to G = ∪ni=1Kmi
.

Assume m1 ≥ m2 ≥ · · · ≥ mn ≥ 1. Then A has the WLP if and only if one of the

following holds:

(1) m2 = · · · = mn = 1, i.e. G is the disjoint union of a complete graph Km1 and

an empty graph of order n− 1.

(2) m3 = · · · = mn = 1 and n is odd.

In particular for n ≥ 2, the disjoint of n complete graphs at least two vertices does

not have the WLP.

Proof. First, I. Gutman and F. Harary in [3] was given a formula to calculate the

independence polynomial of disjoint graphs as follows

I(G1 ∪G2; t) = I(G1; t).I(G2; t).

By using this formula, it is easy to see that

A =
n⊗
i=1

k[xi,1, . . . , xi,mi
]/(x2i,1, . . . , x

2
i,mi

).

The proposition is implied from [9, Theorem 4.8].
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Recall that a star graph of order n is a graph on n+ 1 vertices. This graph is formed

by starting with a single vertex and adjoining n leaves. We denote this graph by Sn.

Let ASn be the artinian monomial algebra associated to a star Sn. Then ASn = R/I,

where R = k[x0, x1, . . . , xn] and

I = (x20, x
2
1, . . . , x

2
n) + (x0x1, . . . , x0xn).

It is easy to see that the independence polynomial of Sn is I(Sn; t) = (1 + t)n + t.

Proposition 3.8. The algebra ASn has the WLP if and only if n = 1, 2. Moreover,

if n ≥ 3, then ASn fails the WLP in only one degree, namely it fails the injectivity

from degree 1 to degree 2.

Proof. Write ASn = R/I as above. By Proposition 2.4, set ` = x0 + x1 + · · · + xn.

Then the following exact sequence

0 // R/(I : x0)(−1)
×x0 // R/I // R/(I, x0) // 0

deduces the following commutative diagram

0 // [R/(I : x0)]j−1
×x0 //

×`
��

[R/I]j //

×`
��

[R/(I, x0)]j //

×`
��

0

0 // [R/(I : x0)]j
×x0 // [R/I]j+1

// [R/(I, x0)]j+1
// 0

, (3.1)

with rows are exact, for all integer j ≥ 0. Note that

(I, x0) = (x21, . . . , x
2
n, x0)

I : x0 = (x0, x1, . . . , xn).

It follows that R/(I, x0) ∼= S/J := k[x1, . . . , xn]/(x21, . . . , x
2
n) an artinian mono-

mial complete intersection, and hence it has the WLP by Theorem 2.3. Clearly,

R/(I : x0) ∼= k. It follows from (3.1) that the multiplication map

×` : [R/I]j −→ [R : I]j+1

has maximal rank for all j, except j = 1. In the later case, ×` : [R/I]1 −→ [R : I]2

is not injective. Thus R/I fails the WLP in degree 1.

Definition 3.9. The Barbell graph of order n is a graph on 2n vertices which is

formed by joining two copies of Kn by a single edge, known as a bridge. We denote

this graph Barn.
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It is known that the independence polynomial of the Barbell graph of order n is

I(Barn; t) = (1 + nx)2 − x2 = 1 + 2nx+ (n2 − 1)x2.

Theorem 3.10. The artinian monomial algebra associated to Barn has the WLP if

and only if n = 1, 2. Furthermore, for any n ≥ 3, this algebra fails the injectivity

from degree 1 to degree 2.

Proof. The artinian monomial algebra associated to Barn is A = R/I, where

R = k[x1, . . . , xn, y1, . . . , yn] and I = (x1, . . . , xn)2 + (y1, . . . , yn)2 + (xnyn).

It is easy to see that Barn has the WLP for n = 1, 2. For n ≥ 3, one has

dimk[A]1 = 2n < n2 − 1 = dimk[A]2.

Let B be the artinian monomial algebra associated to disjoint union of two complete

graph Kn, so B = R/J , where J = (x1, . . . , xn)2 + (y1, . . . , yn)2. Then

J : xnyn = (x1, . . . , xn, y1, . . . , yn).

It follows that R/(J : xnyn) ∼= k. By Proposition 2.4, let ` = x1+· · ·+xn+y1+· · ·+yn.

Therefore, we have the following commutative diagram, with rows are exact

0 // 0
×xnyn //

×`
��

[B]1 //

×`
��

[A]1 //

×`
��

0

0 // k
×xnyn // [B]2 // [A]2 // 0

,

By [7, Proposition 2.8], the multiplication map ×` : [B]1 −→ [B]2 is not injective.

Thus ×` : [A]1 −→ [A]2 is not injective, as desired.

Finally, we consider the cone of graphs. Recall that the cone of a graph G is a graph

formed by taking a copy of G and adding a vertex which is adjacent to every vertex

in G, denoted this graph by Cone(G).

Theorem 3.11. Let G be a graph on n vertices. If s2(G) ≥ n + 1, then cone of G

has the unimodal independence polynomial and ACone(G) fails the WLP.

Proof. Assume that AG = k[x1,...,xn]

(x21,...,x
2
n)+IG

. A computation shows that the independence

polynomial of Cone(G) is

I(Cone(G); t) = I(G; t) + t.
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Since s2(G) ≥ n + 1, s2(Cone(G)) = s2(G) ≥ n + 1 = s1(Cone(G)). We will show

that the multiplication map

×` : [ACone(G)]1 −→ [ACone(G)]2

is not injective. To do it, we write ACone(G) = R/I, where R = k[x0, . . . , xn] and

I = (x20, . . . , x
2
n) + IG + (x0x1, . . . , x0xn).

Set ` = x0 +x1 + · · ·+xn (see Proposition 2.4). Consider the following commutative

diagram

0 // [R/(I : x0)]0
×x0 //

×`
��

[R/I]1 //

×`
��

[R/(I, x0)]1 //

×`
��

0

0 // [R/(I : x0)]1
×x0 // [R/I]2 // [R/(I, x0)]2 // 0

,

with rows are exact. Note that R/(I, x0) ∼= AG and R/(I : x0) ∼= k. It follows that the

kernel of the first vertices map is equal to k, and we conclude that the multiplication

map

` : [R/I]1 −→ [R/I]2

is not injective, as desired.

Denote by Pn the path on n vertices (n ≥ 1). In [6], G. Hopkins and W. Staton

showed that the independence polynomial of Pn

I(Pn; t) =

bn+1
2
c∑

i=0

(
n+ 1− i

i

)
ti.

Corollary 3.12. The artinian monomial algebra of Cone(Pn) has the WLP if and

only if n ≤ 4.

Proof. By using Macaulay2, it is easy to show that ACone(Pn) has the WLP for n ≤ 4.

Now if n ≥ 5 then s2(Pn) =
(
n−1
2

)
≥ n + 1. By Theorem 3.11, ACone(Pn) fails the

WLP.

Denote by Cn the cycle on n vertices (n ≥ 3). It is showed in [6] that the indepen-

dence polynomial of Cn is

I(Cn; t) = 1 +

bn
2
c∑

i=1

n

i

(
n− i− 1

i− 1

)
ti.
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Recall that the cone of Cn is called a wheel graph of order n, i.e., this graph is formed

by taking a copy of Cn and adding a central vertex which is adjacent to every vertex

in Cn. We denote the wheel graph of order n by Wn.

Corollary 3.13. The artinian monomial algebra of Wn has the WLP if and only if

n = 3, 4, 5.

Proof. By using Macaulay2, it is easy to show that AWn has the WLP for n = 3, 4, 5.

Now if n ≥ 6 then s2(Cn) = n(n−3)
2
≥ n + 1. By Theorem 3.11, AWn fails the

WLP.
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