SOME RESULTS ON SLICES AND ENTIRE GRAPHS IN CERTAIN WEIGHTED WARPED PRODUCTS

Nguyen Thi My Duyen

Department of Mathematics College of Education, Hue University 32 Le Loi, Hue, Vietnam e-mail: ntmyduyen2909@gmail.com

Abstract

We study the area-minimizing property of slices in the weighted warped product manifold $(\mathbb{R}^+ \times_f \mathbb{R}^n, e^{-\varphi})$, assuming that the density function $e^{-\varphi}$ and the warping function f satisfy some additional conditions. Based on a calibration argument, a slice $\{t_0\} \times \mathbb{G}^n$ is proved weighted areaminimizing in the class of all entire graphs satisfying a volume balance condition and some Bernstein type theorems in $\mathbb{R}^+ \times_f \mathbb{G}^n$ and $\mathbb{G}^+ \times_f \mathbb{G}^n$, when f is constant, are obtained.

1 Introduction

Recently, the study of weighted minimal submanifolds, and in particular weighted minimal hypersurfaces had attracted many researchers (see, for instance, [2], [4], [5], [7]). A weighted manifold (also called a manifold with density) is a Riemannian manifold endowed with a positive function $e^{-\varphi}$, called the density, used to weight both volume and perimeter elements. The weighted area of a hypersurface Σ in an (n + 1)-dimensional weighted manifold is $\operatorname{Area}_{\varphi}(\Sigma) = \int_{\Sigma} e^{-\varphi} dA$ and the weighted volume of a region Ω is $\operatorname{Vol}_{\varphi}(\Omega) = \int_{\Omega} e^{-\varphi} dV$, where dA and dV are the *n*-dimensional Riemannian area and (n + 1)-dimensional Riemannian volume elements, respectively. A typical example of such manifolds is Gauss space \mathbb{G}^{n+1} , \mathbb{R}^{n+1} with Gaussian

Key words: Manifold with density, weighted warped product manifold, calibration. 2010 AMS Mathematics Classification: 53C25, 53C38; Secondary: 53A10, 53A07.

density $(2\pi)^{-\frac{n+1}{2}}e^{-\frac{r^2}{2}}$, which is appeared in probability and statistics. The hypersurface Σ in \mathbb{R}^{n+1} is said to be weighted minimal or φ -minimal if

$$H_{\varphi}(\Sigma) := H(\Sigma) + \frac{1}{n} \langle \nabla \varphi, N \rangle = 0,$$

where $H(\Sigma)$ and N are the classical mean curvature and the unit normal vector field of Σ , respectively. $H_{\varphi}(\Sigma)$ is called the weighted mean curvature of Σ .

A theme widely approached in recent years is problems concerning to hypersurfaces in a warped product manifold of the type $\mathbb{R}^+ \times_f M$, where $\mathbb{R}^+ = [0, +\infty)$, (M, g) is an *n*-dimensional Riemannian manifold and f is a positive smooth function defined on \mathbb{R}^+ (see [8]). Note that with these ingredients, the product manifold $\mathbb{R}^+ \times_f M$ is endowed with the Riemannian metric

$$ar{g} = \pi^*_{\mathbb{R}^+}(dt^2) + f(\pi_{\mathbb{R}^+})^2 \pi^*_M(g)_{g}$$

where $\pi_{\mathbb{R}^+}$ and π_M denote the projections onto \mathbb{R}^+ and M, respectively.

In \mathbb{R}^n , let P be a part of a slice, viewed as a graph over a domain D and let Σ be a graph of a function u over D. It is clear that

Area
$$(\Sigma) = \int_D \sqrt{1 + |\nabla u|^2} dA \ge \int_D dA = \operatorname{Area}(P).$$

However, in general, the above inequality doesn't always hold if the ambient space is a weighted manifold. For instance, consider \mathbb{R}^2 with radial density $e^{-\frac{1}{2}(x^2+y^2)}$. Let R be a positive real number, $P = \{(x,0) \in \mathbb{R}^2 : -R \leq x \leq R\}$ and Σ be the half circle defined by $x^2 + y^2 = R^2$, $y \geq 0$. The weighted length of P, $L_{\varphi}(P)$, and the weighted length of Σ , $L_{\varphi}(\Sigma)$, are

$$L_{\varphi}(P) = \int_{-R}^{R} e^{-\frac{1}{2}x^2} \, dx$$

and

$$L_{\varphi}(\Sigma) = \int_0^{\pi} e^{-\frac{1}{2}R^2} R \, dt = e^{-\frac{1}{2}R^2} R \pi$$

A simple computation shows that $\sqrt{2\pi(1-e^{-\frac{1}{2}R^2})} \leq L_{\varphi}(P) \leq \sqrt{\pi(1-e^{-R^2})}$. When R = 2, we have $L_{\varphi}(P) \geq L_{\varphi}(\Sigma)$.

As another example, we consider \mathbb{R}^2 with density e^y . Let

$$P = \left\{ \left(x, -\ln\cos\frac{\pi}{3}\right) \in \mathbb{R}^2 : -\frac{\pi}{3} \le x \le \frac{\pi}{3} \right\}$$

and Σ be the graph of function $y = -\ln \cos x, x \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$. It's not hard to check that $L_{\varphi}(P) \ge L_{\varphi}(\Sigma)$.

Hence, the area-minimizing property of slices in weighted warped product manifolds is not a trivial matter. In this paper, using the same method as in [2] we prove that if $(\log f)''(t) \leq 0$, then the slice is weighted area-minimizing under a volume balance condition. In particular, when f is constant we get some Bernstein type theorems in $\mathbb{R}^+ \times_f \mathbb{G}^n$ and $\mathbb{G}^+ \times_f \mathbb{G}^n$.

2 Preliminaries

Consider the warped product $\mathbb{R}^+ \times_f \mathbb{R}^n$ with density $e^{-\varphi}$, where $\varphi = \varphi(t, x)$. Let $u \in C^2(\mathbb{R}^n)$, and $\Sigma = \{(u(x), x) : x \in \mathbb{R}^n\}$ be the entire graph defined by u. A unit normal vector field of Σ is

$$N = \left(\frac{f(u)}{\sqrt{f(u)^2 + |Du|^2}}, -\frac{1}{f(u)\sqrt{f(u)^2 + |Du|^2}}Du\right),$$

where Du is the gradient of u in \mathbb{R}^n , and $|Du|^2 = \langle Du, Du \rangle$. The curvature function (relative to N) is $H = \frac{1}{n} \operatorname{trace}(A)$, where A is the shape operator. A direct computation gives (see [8, Section 5])

$$nH(u) = \operatorname{div}\left(\frac{Du}{f(u)\sqrt{f^2 + |Du|^2}}\right) - \frac{f'(u)}{\sqrt{f(u)^2 + |Du|^2}}\left(n - \frac{|Du|^2}{f(u)^2}\right).$$

Thus,

$$nH_{\varphi}(u) = \frac{1}{f(u)} \operatorname{div}\left(\frac{Du}{\sqrt{f(u)^2 + |Du|^2}}\right) - \frac{nf'(u)}{\sqrt{f(u)^2 + |Du|^2}} + \frac{f(u)}{\sqrt{f(u)^2 + |Du|^2}}\varphi_u - \frac{1}{f(u)\sqrt{f(u)^2 + |Du|^2}}\langle Du, D\varphi \rangle.$$

It is easy to see that the mean curvature as well as the weighted mean curvature of slice are constants

$$H(t_0) := H(t_0, x) = -(\log f)'(t_0),$$

and

$$H_{\varphi}(t_0) := H_{\varphi}(t_0, x) = -(\log f)'(t_0) + \varphi_t(t_0, x).$$

Furthermore, if $\varphi = \varphi(x), x \in \mathbb{R}^n$ (i.e., the weighted function $e^{-\varphi}$ does not depend on the parameter $t \in \mathbb{R}^+$), $H_{\varphi}(t_0) = -(\log f)'(t_0)$.

Let Σ and N as above. Consider the smooth extension of N by the translation along t-axis, also denoted by N and the n-differential form defined by

$$\phi(t, x) = f(t)^n \omega(x),$$

where $\omega(X_1, ..., X_n) = \det(X_1, ..., X_n, N), X_i, i = 1, 2, ..., n$, are smooth vector fields on Σ . It is clear that $f(t)^n |\omega(X_1, ..., X_n)| \leq 1$, for all orthonormal vector fields $X_i, i = 1, 2, ..., n$ and $f(t)^n |\omega(X_1, ..., X_n)| = 1$ if and only if $X_1, ..., X_n$ are tangent to Σ . Therefore, $\phi(t, x)$ represents the weighted volume element of Σ in $(\mathbb{R}^+ \times_f \mathbb{R}^n, e^{-\varphi})$. We have

$$\operatorname{div} N = -nH - \frac{f'}{\sqrt{f^2 + |Du|^2}} \left(n - \frac{|Du|^2}{f^2}\right) + \frac{f'|Du|^2}{(f^2 + |Du|^2)^{\frac{3}{2}}}$$

Note that $d\omega = \operatorname{div}(N) dV_{\mathbb{R}^+ \times \mathbb{R}^n}$, thus

$$\begin{aligned} d\phi &= d(f^n \omega) = \operatorname{div}(f^n N) \, dV_{\mathbb{R}^+ \times \mathbb{R}^n} = f^n \operatorname{div} N \, dV_{\mathbb{R}^+ \times \mathbb{R}^n} + n f^{n-1} f' \langle \partial_t, N \rangle \, dV_{\mathbb{R}^+ \times \mathbb{R}^n} \\ &= \operatorname{div} N \, dV_{\mathbb{R}^+ \times f^{\mathbb{R}^n}} + n \frac{f'}{f} \langle \partial_t, N \rangle \, dV_{\mathbb{R}^+ \times f^{\mathbb{R}^n}} \\ &= \left(-nH + \frac{f' |Du|^2}{f^2 \sqrt{f^2 + |Du|^2}} + \frac{f' |Du|^2}{(f^2 + |Du|^2)^{\frac{3}{2}}} \right) \, dV_{\mathbb{R}^+ \times f^{\mathbb{R}^n}}. \end{aligned}$$
 Since

Since

$$\begin{split} d(e^{-\varphi}\phi) &= d(e^{-\varphi}f^n\omega) = e^{-\varphi}f^n \operatorname{div} N \, dV_{\mathbb{R}^+ \times \mathbb{R}^n} + \langle \nabla(e^{-\varphi}f^n), N \rangle \, dV_{\mathbb{R}^+ \times \mathbb{R}^n} \\ &= e^{-\varphi}d\phi - e^{-\varphi}f^n \langle \nabla\varphi, N \rangle \, dV_{\mathbb{R}^+ \times \mathbb{R}^n} \\ &= e^{-\varphi} \left[-nH + \frac{f'|Du|^2}{f^2 \sqrt{f^2 + |Du|^2}} + \frac{f'|Du|^2}{(f^2 + |Du|^2)^{\frac{3}{2}}} - \langle \nabla\varphi, N \rangle \right] \, dV_{\mathbb{R}^+ \times f^{\mathbb{R}^n}} \\ &= e^{-\varphi} \left[-nH_{\varphi} + \frac{f'|Du|^2}{f^2 \sqrt{f^2 + |Du|^2}} + \frac{f'|Du|^2}{(f^2 + |Du|^2)^{\frac{3}{2}}} \right] \, dV_{\mathbb{R}^+ \times f^{\mathbb{R}^n}}, \end{split}$$

we have

$$d_{\varphi}\phi = e^{\varphi}d(e^{-\varphi}\phi) = \left(-nH_{\varphi} + \frac{f'|Du|^2}{f^2\sqrt{f^2 + |Du|^2}} + \frac{f'|Du|^2}{(f^2 + |Du|^2)^{\frac{3}{2}}}\right) \, dV_{\mathbb{R}^+ \times_f \mathbb{R}^n}.$$

When Σ is a slice, $d_{\varphi}\phi = -nH_{\varphi} \, dV_{\mathbb{R}^+ \times f\mathbb{R}^n}$.

3 The results

3.1The results on slices

Consider $\mathbb{R}^+ \times_f \mathbb{R}^n$ with density $e^{-\varphi}$, $\varphi = \varphi(t, x)$. Suppose that D is a domain in \mathbb{R}^n such that \overline{D} , the closure of D, is compact. Let $P_D = \{t_0\} \times D$ and Σ_D be the graph of a function $t = u(x), x \in D$, such that P_D and Σ_D have the same boundary, i.e., $\partial P_D = \partial \Sigma_D$. Let $E_1 = \{(t, x) \in \mathbb{R}^+ \times D : t \leq u(x)\}$ and $E_2 = \{(t,x) \in \mathbb{R}^+ \times D : t \leq t_0\}$. The following theorem shows that P_D has least weighted area in the class of hypersurfaces with the same boundary.

Theorem 3.1. If $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2)$ and $(\log f)''(t) \leq 0$, then $\operatorname{Area}_{\varphi}(P_D) \leq \operatorname{Area}_{\varphi}(\Sigma_D)$.

Proof. Denote by ϕ the volume form of \mathbb{R}^n . By Stokes' Theorem and the suitable orientations for objects (see Figure 1), we get

$$\begin{aligned} \operatorname{Area}_{\varphi}(D) - \operatorname{Area}_{\varphi}(\Sigma_D) &\leq \int_D e^{-\varphi} \phi - \int_{\Sigma_D} e^{-\varphi} \phi = \int_{D-\Sigma_D} e^{-\varphi} \phi \\ &= \int_{E_1} e^{-\varphi} d_{\varphi} \phi = \int_{E_1 \setminus E_2} e^{-\varphi} d_{\varphi} \phi + \int_{E_1 \cap E_2} e^{-\varphi} d_{\varphi} \phi, \end{aligned}$$

$$\operatorname{Area}_{\varphi}(P_D) - \operatorname{Area}_{\varphi}(D) \leq \int_{P_D} e^{-\varphi} \phi - \int_D e^{-\varphi} \phi = \int_{P_D - D} e^{-\varphi} \phi$$
$$= -\int_{E_2} e^{-\varphi} d_{\varphi} \phi = -\int_{E_2 \setminus E_2} e^{-\varphi} d_{\varphi} \phi - \int_{E_1 \cap E_2} e^{-\varphi} d_{\varphi} \phi.$$

Therefore,

$$\operatorname{Area}_{\varphi}(P_D) - \operatorname{Area}_{\varphi}(\Sigma_D) \leq \int_{E_1 \setminus E_2} e^{-\varphi} d_{\varphi} \phi - \int_{E_2 \setminus E_2} e^{-\varphi} d_{\varphi} \phi$$
$$= -\int_{E_1 \setminus E_2} e^{-\varphi} n H_{\varphi}(t) \, dV + \int_{E_2 \setminus E_2} e^{-\varphi} n H_{\varphi}(t) \, dV$$

The condition $(\log f)''(t) \leq 0$ means that H_{φ} is non-decreasing along t-axis.

Figure 1: A part of slice and graph have the same boundary

Therefore,

$$H_{\varphi}(t_0) \le H_{\varphi}(t), \, \forall (t,x) \in E_1 \setminus E_2; \quad H_{\varphi}(t) \le H_{\varphi}(t_0), \, \forall (t,x) \in E_2 \setminus E_1.$$

80

Hence

$$\operatorname{Area}_{\varphi}(P_D) - \operatorname{Area}_{\varphi}(\Sigma_D) \leq -nH_{\varphi}(t_0) \left(\int_{E_1 \setminus E_2} e^{-\varphi} \, dV - \int_{E_2 \setminus E_1} e^{-\varphi} \, dV \right)$$
$$= -nH_{\varphi}(t_0) (\operatorname{Vol}_{\varphi}(E_1 \setminus E_2) - \operatorname{Vol}_{\varphi}(E_2 \setminus E_1)) = 0$$

because $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2)$. Thus, $\operatorname{Area}_{\varphi}(P_D) \leq \operatorname{Area}_{\varphi}(\Sigma_D)$. \Box In the case of \mathbb{R}^n is the Gauss space G^n , consider $\mathbb{R}^+ \times_f \mathbb{G}^n$, i.e., $\mathbb{R}^+ \times_f \mathbb{R}^n$ with density $e^{-\varphi} = (2\pi)^{-n/2} e^{-\frac{|x|^2}{2}}$. In this space, slices are proved to be global weighted area-minimizing.

Theorem 3.2. If $(\log f)''(t) \leq 0$, then a slice is weighted area-minimizing in the class of all entire graphs satisfying $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2)$.

Proof. Let P be the slice $\{t_0\} \times \mathbb{G}^n$ and Σ be the graph of a function t = u(x)over \mathbb{G}^n . Let S_R^{n-1} be the (n-1)-sphere with center O and radius R in \mathbb{G}^n and $C_R = \mathbb{R} \times S_R^{n-1}$ be the *n*-dimensional cylinder. Let $E_1 = \{(t,x) \in \mathbb{R}^+ \times \mathbb{G}^n : t \leq u(x)\}$ and $E_2 = \{(t,x) \in \mathbb{R}^+ \times \mathbb{G}^n : t \leq t_0\}$. Let $A = E_1 \setminus E_2 \cup E_2 \setminus E_1$. The parts of P, Σ , E_1 , and E_2 , bounded by C_R , are denoted by P_R , Σ_R , E_{1_R} , and E_{2_R} , respectively.

Denote by ϕ the volume form of \mathbb{G}^n . Let R be large enough such that C_R meets both $E_1 \setminus E_2$ and $E_2 \setminus E_1$ (see Figure 2). In a similar way to the proof of Theorem 3.1, we have

$$\begin{aligned} \operatorname{Area}_{\varphi}(\mathbb{G}_{R}^{n}) - \operatorname{Area}_{\varphi}(\Sigma_{R}) + \int_{C_{R} \cap E_{1}} e^{-\varphi} \phi &\leq \int_{\mathbb{G}_{R}^{n}} e^{-\varphi} \phi - \int_{\Sigma_{R}} e^{-\varphi} \phi + \int_{C_{R} \cap E_{1}} e^{-\varphi} \phi \\ &= \int_{E_{1_{R}}} e^{-\varphi} d_{\varphi} \phi = \int_{E_{1_{R}} \setminus E_{2_{R}}} e^{-\varphi} d_{\varphi} \phi + \int_{E_{1_{R}} \cap E_{2_{R}}} e^{-\varphi} d_{\varphi} \phi, \end{aligned}$$

$$\begin{aligned} \operatorname{Area}_{\varphi}(P_R) - \operatorname{Area}_{\varphi}(\mathbb{G}_R^n) + \int_{C_R \cap E_2} e^{-\varphi} \phi &\leq \int_{P_R} e^{-\varphi} \phi - \int_{\mathbb{G}_R^n} e^{-\varphi} \phi + \int_{C_R \cap E_2} e^{-\varphi} \phi \\ &= -\int_{E_{2_R}} e^{-\varphi} d_{\varphi} \phi = -\int_{E_{2_R} \setminus E_{1_R}} e^{-\varphi} d_{\varphi} \phi - \int_{E_{2_R} \cap E_{1_R}} e^{-\varphi} d_{\varphi} \phi. \end{aligned}$$

Therefore,

$$\operatorname{Area}_{\varphi}(P_{R}) - \operatorname{Area}_{\varphi}(\Sigma_{R}) + \int_{C_{R} \cap A} e^{-\varphi} \phi \leq \int_{E_{1_{R}} \setminus E_{2_{R}}} e^{-\varphi} d_{\varphi} \phi - \int_{E_{2_{R}} \setminus E_{2_{R}}} e^{-\varphi} d_{\varphi} \phi$$
$$= \int_{E_{2_{R}} \setminus E_{1_{R}}} e^{-\varphi} n H_{\varphi}(t) \, dV - \int_{E_{1_{R}} \setminus E_{2_{R}}} e^{-\varphi} n H_{\varphi}(t) \, dV. \quad (3.1)$$

Figure 2: The slice P, entire graph Σ and \mathbb{G}^n in $\mathbb{R}^+ \times_f \mathbb{G}^n$

Since $(\log f)''(t) \le 0$,

 $H_{\varphi}(t_0) \leq H_{\varphi}(t), \, \forall (t,x) \in E_{1_R} \setminus E_{2_R} \quad \text{and} \quad H_{\varphi}(t) \leq H_{\varphi}(t_0), \, \forall (t,x) \in E_{2_R} \setminus E_{1_R}.$ Thus,

$$\operatorname{Area}_{\varphi}(P_{R}) - \operatorname{Area}_{\varphi}(\Sigma_{R}) + \int_{C_{R} \cap A} e^{-\varphi} \phi \leq nH_{\varphi}(t_{0}) \left(\operatorname{Vol}_{\varphi}(E_{2_{R}} \setminus E_{1_{R}}) - \operatorname{Vol}_{\varphi}(E_{1_{R}} \setminus E_{2_{R}}) \right).$$

$$(3.2)$$

Moreover, it is easy to see that $\lim_{R\to\infty} \int_{C_R\cap A} e^{-\varphi} \phi = \lim_{R\to\infty} e^{-cR^2} \int_{C_R\cap A} \phi = 0.$

By the assumption $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2)$, we have

$$\lim_{R \to \infty} \operatorname{Vol}_{\varphi}(E_{1_R} \setminus E_{2_R}) = \lim_{R \to \infty} \operatorname{Vol}_{\varphi}(E_{2_R} \setminus E_{1_R}).$$

Hence, taking the limit of both sides of (3.2) as R goes to infinity, we obtain $\operatorname{Area}_{\varphi}(P) \leq \operatorname{Area}_{\varphi}(\Sigma)$. \Box

3.2 Some Bernstein type results

3.2.1 A Bernstein type result in $\mathbb{R}^+ \times_a \mathbb{G}^n$

Consider the weighted warped product manifold $\mathbb{R}^+ \times_a \mathbb{G}^n$ with density $e^{-\varphi} = (2\pi)^{-n/2}e^{-\frac{|x|^2}{2}}$, where *a* is a positive constant. Let *P*, Σ , *E*₁, *E*₂, *A*, *C*_{*R*}, *P*_{*R*}, Σ_R , *E*_{1_R}, *E*_{2_R} be defined as in the proof of Theorem 3.2. If *u* is bounded, then $\operatorname{Vol}_{\varphi}(E_1)$, $\operatorname{Vol}_{\varphi}(E_2)$ and $\operatorname{Vol}_{\varphi}(A)$ are finite. Since the weighted mean curvature of Σ on the region *A*, H_{φ} , does not change along any vertical line, we get the following results:

Theorem 3.3. If $H_{\varphi}(\Sigma)$ and u are bounded and $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2)$, then

$$\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}(P) + \frac{1}{2}n(M-m)\operatorname{Vol}_{\varphi}(A),$$

where $m = \inf H_{\varphi}(\Sigma)$ and $M = \sup H_{\varphi}(\Sigma)$.

Proof. Denote by ϕ the volume form of Σ . In this case, $d_{\varphi}\phi = -nH_{\varphi} dV$. Let R be large enough such that C_R meets both $E_1 \setminus E_2$ and $E_2 \setminus E_1$ (see Figure 2). By changing Σ_R and P_R together in (3.1), we have

$$\operatorname{Area}_{\varphi}(\Sigma_{R}) - \operatorname{Area}_{\varphi}(P_{R}) + \int_{C_{R} \cap A} e^{-\varphi} \phi \leq \int_{E_{1_{R}} \setminus E_{2_{R}}} e^{-\varphi} n H_{\varphi}(\Sigma) \, dV - \int_{E_{2_{R}} \setminus E_{1_{R}}} e^{-\varphi} n H_{\varphi}(\Sigma) \, dV$$
$$\leq n M \operatorname{Vol}_{\varphi}(E_{1_{R}} \setminus E_{2_{R}}) - n m \operatorname{Vol}_{\varphi}(E_{2_{R}} \setminus E_{1_{R}}).$$
(3.3)

By the assumption $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2)$, taking the limit of both sides of (3.3) as R goes to infinity, we get $\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}(P) + \frac{1}{2}n(M-m)\operatorname{Vol}_{\varphi}(A)$. \Box

Corollary 3.4 (Bernstein type theorem in $\mathbb{R}^+ \times_a \mathbb{G}^n$). A bounded entire constant mean curvature graph must be a slice and therefore, is minimal.

Proof. Assume that Σ is an entire constant mean curvature graph of a bounded function u. Since $\operatorname{Vol}_{\varphi}(E_1)$ is finite, there exists a slice P such that $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2)$. Because m = M, by Theorem 3.3, it follows that $\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}(P)$. Moreover,

$$\operatorname{Area}_{\varphi}(\Sigma) = \int_{\mathbb{G}^n} e^{-\varphi} \sqrt{a^4 + a^2 |Du|^2} \, dA \ge \int_{\mathbb{G}^n} e^{-\varphi} \sqrt{a^4} \, dA = \operatorname{Area}_{\varphi}(P).$$

Therefore, $\operatorname{Area}_{\varphi}(\Sigma) = \operatorname{Area}_{\varphi}(P)$ and Du = 0, i.e., u is constant. It is not hard to see that $\Sigma = P$ and therefore, is minimal.

3.2.2 A Bernstein type result in $\mathbb{G}^+ \times_a \mathbb{G}^n$

Now, consider the weighted warped product manifold $\mathbb{G}^+ \times_a \mathbb{G}^n$ with density $e^{-\varphi} = (2\pi)^{-(n+1)/2} e^{-\frac{r^2}{2}}$, and let Σ be an entire graph of a function u(x) over \mathbb{G}^n , since

$$\begin{split} \langle \nabla \varphi(u(x) + \Delta t, x), N(u(x) + \Delta t, x) \rangle &- \langle \nabla \varphi(u(x), x), N(u(x), x) \rangle \\ &= \langle (u(x) + \Delta t, x) - (u(x), x), N \rangle = \langle (\Delta t, 0), N \rangle \ge 0, \text{ for } \Delta t \ge 0, \end{split}$$

the weighted mean curvature of Σ is increasing along any vertical line. We have

Lemma 3.5.

$$\operatorname{Area}_{\varphi}(\mathbb{G}^n) \leq \operatorname{Area}_{\varphi}(\Sigma).$$

Proof. Denote by ϕ the volume form of \mathbb{G}^n . Replacing C_R by S_R , the *n*-sphere with center O and radius R, in Subsection 3.2.1. Let R be large enough such that S_R meets Σ (see Figure 3), we get

$$\operatorname{Area}_{\varphi}(\mathbb{G}_{R}^{n}) - \operatorname{Area}_{\varphi}(\Sigma_{R}) + \int_{S_{R} \cap E_{1}} e^{-\varphi} \phi \leq - \int_{E_{1_{R}}} e^{-\varphi} n H_{\varphi}(\mathbb{G}^{n}) \, dV = 0.$$

Therefore, $\operatorname{Area}_{\varphi}(\mathbb{G}^n) \leq \operatorname{Area}_{\varphi}(\Sigma)$.

Figure 3: An entire graph Σ and \mathbb{G}^n in $\mathbb{G}^+ \times_a \mathbb{G}^n$

Theorem 3.6 (Bernstein type theorem in $\mathbb{G}^+ \times_a \mathbb{G}^n$). The only entire weighted minimal graph in $\mathbb{G}^+ \times_a \mathbb{G}^n$ is \mathbb{G}^n .

Proof. Denote by ϕ the volume form of Σ (see Figure 3), we have

$$\operatorname{Area}_{\varphi}(\Sigma_R) - \operatorname{Area}_{\varphi}(\mathbb{G}_R^n) + \int_{S_R \cap E_1} e^{-\varphi} \phi \leq \int_{E_{1_R}} e^{-\varphi} n H_{\varphi}(\Sigma) \, dV = 0. \quad (3.4)$$

Taking the limit of both sides of (3.4) as R goes to infinity, we get

 $\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}(\mathbb{G}^n).$

Hence, it follows from Lemma 3.5 that

$$\operatorname{Area}_{\varphi}(\Sigma) = \operatorname{Area}_{\varphi}(\mathbb{G}^n). \tag{3.5}$$

Since $\operatorname{Vol}_{\varphi}(\mathbb{G}^+ \times_a \mathbb{G}^n)$ is finite, there exists a slice P such that $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2)$. Using the similar arguments as in the proof of Theorem 3.3 (see Figure 4), we get

Figure 4: The slice P and entire graph Σ in $\mathbb{G}^+ \times_a \mathbb{G}^n$

$$\operatorname{Area}_{\varphi}(\Sigma_{R}) - \operatorname{Area}_{\varphi}(P_{R}) + \int_{S_{R} \cap A} e^{-\varphi} \phi \leq \int_{E_{1_{R}} \setminus E_{2_{R}}} e^{-\varphi} n H_{\varphi}(\Sigma) \, dV - \int_{E_{2_{R}} \setminus E_{1_{R}}} e^{-\varphi} n H_{\varphi}(\Sigma) \, dV = 0,$$

because Σ is a weighted minimal graph. Therefore, $\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}(P)$. By Theorem 3.2, it follows that

$$\operatorname{Area}_{\varphi}(\Sigma) = \operatorname{Area}_{\varphi}(P). \tag{3.6}$$

Thus, it follows from (3.5) and (3.6) that

$$\operatorname{Area}_{\varphi}(P) = \operatorname{Area}_{\varphi}(\mathbb{G}^n).$$

Hence, $P = \mathbb{G}^n$ and $\operatorname{Vol}_{\varphi}(E_1) = \operatorname{Vol}_{\varphi}(E_2) = 0$, i.e., $\Sigma = \mathbb{G}^n$.

References

- F. Fang, X. D. Li, Z. Zhang, Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-mery Ricci curvature, Ann. Inst. Fourier. 59 (2009) 563–573.
- [2] D. T. Hieu, A weighted volume estimate and its application to Bernstein type theorems in Gauss space, Colloquium Mathematicum, to appear.
- [3] D. T. Hieu, Some calibrated surfaces in manifolds with density, J. Geom. Phys. 61 (2011) 1625-1629.
- [4] D. T. Hieu, T. L. Nam, Bernstein type theorem for entire weighted minimal graphs in $\mathbb{G}^n \times \mathbb{R}$ for Gaussian densities, J. Geom. Phys. 81 (2014) 87–91.
- [5] F. Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005) 853-858.
- [6] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London (1983).
- [7] C. Rosales, A. Caete, V. Bayle, F. Morgan, On the isoperimetric problem in Euclidean space with density, Calc. Var. Partial Differential Equations. 31 (2008) 27–46.
- [8] J. J. Salamanca, I. M. C. Salavessa, Uniqueness of φ-minimal hypersurfaces in warped product manifolds, J. Math. Anal. Appl. 422 (2015) 1376–1389.