SOME RESULTS ON SLICES AND ENTIRE GRAPHS IN CERTAIN WEIGHTED WARPED PRODUCTS

Nguyen Thi My Duyen

Department of Mathematics
College of Education, Hue University
32 Le Loi, Hue, Vietnam e-mail: ntmyduyen2909@gmail.com

Abstract

We study the area-minimizing property of slices in the weighted warped product manifold ($\mathbb{R}^{+} \times{ }_{f} \mathbb{R}^{n}, e^{-\varphi}$), assuming that the density function $e^{-\varphi}$ and the warping function f satisfy some additional conditions. Based on a calibration argument, a slice $\left\{t_{0}\right\} \times \mathbb{G}^{n}$ is proved weighted areaminimizing in the class of all entire graphs satisfying a volume balance condition and some Bernstein type theorems in $\mathbb{R}^{+} \times{ }_{f} \mathbb{G}^{n}$ and $\mathbb{G}^{+} \times f \mathbb{G}^{n}$, when f is constant, are obtained.

1 Introduction

Recently, the study of weighted minimal submanifolds, and in particular weighted minimal hypersurfaces had attracted many researchers (see, for instance, [2], [4], [5], [7]). A weighted manifold (also called a manifold with density) is a Riemannian manifold endowed with a positive function $e^{-\varphi}$, called the density, used to weight both volume and perimeter elements. The weighted area of a hypersurface Σ in an $(n+1)$-dimensional weighted manifold is $\operatorname{Area}_{\varphi}(\Sigma)=\int_{\Sigma} e^{-\varphi} d A$ and the weighted volume of a region Ω is $\operatorname{Vol}_{\varphi}(\Omega)=\int_{\Omega} e^{-\varphi} d V$, where $d A$ and $d V$ are the n-dimensional Riemannian area and $(n+1)$-dimensional Riemannian volume elements, respectively. A typical example of such manifolds is Gauss space $\mathbb{G}^{n+1}, \mathbb{R}^{n+1}$ with Gaussian
density $(2 \pi)^{-\frac{n+1}{2}} e^{-\frac{r^{2}}{2}}$, which is appeared in probability and statistics. The hypersurface Σ in \mathbb{R}^{n+1} is said to be weighted minimal or φ-minimal if

$$
H_{\varphi}(\Sigma):=H(\Sigma)+\frac{1}{n}\langle\nabla \varphi, N\rangle=0
$$

where $H(\Sigma)$ and N are the classical mean curvature and the unit normal vector field of Σ, respectively. $H_{\varphi}(\Sigma)$ is called the weighted mean curvature of Σ.

A theme widely approached in recent years is problems concerning to hypersurfaces in a warped product manifold of the type $\mathbb{R}^{+} \times_{f} M$, where $\mathbb{R}^{+}=$ $[0,+\infty),(M, g)$ is an n-dimensional Riemannian manifold and f is a positive smooth function defined on \mathbb{R}^{+}(see [8]). Note that with these ingredients, the product manifold $\mathbb{R}^{+} \times_{f} M$ is endowed with the Riemannian metric

$$
\bar{g}=\pi_{\mathbb{R}^{+}}^{*}\left(d t^{2}\right)+f\left(\pi_{\mathbb{R}^{+}}\right)^{2} \pi_{M}^{*}(g),
$$

where $\pi_{\mathbb{R}^{+}}$and π_{M} denote the projections onto \mathbb{R}^{+}and M, respectively.
In \mathbb{R}^{n}, let P be a part of a slice, viewed as a graph over a domain D and let Σ be a graph of a function u over D. It is clear that

$$
\operatorname{Area}(\Sigma)=\int_{D} \sqrt{1+|\nabla u|^{2}} d A \geq \int_{D} d A=\operatorname{Area}(P)
$$

However, in general, the above inequality doesn't always hold if the ambient space is a weighted manifold. For instance, consider \mathbb{R}^{2} with radial density $e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}$. Let R be a positive real number, $P=\left\{(x, 0) \in \mathbb{R}^{2}:-R \leq x \leq R\right\}$ and Σ be the half circle defined by $x^{2}+y^{2}=R^{2}, y \geq 0$. The weighted length of $P, L_{\varphi}(P)$, and the weighted length of $\Sigma, L_{\varphi}(\Sigma)$, are

$$
L_{\varphi}(P)=\int_{-R}^{R} e^{-\frac{1}{2} x^{2}} d x
$$

and

$$
L_{\varphi}(\Sigma)=\int_{0}^{\pi} e^{-\frac{1}{2} R^{2}} R d t=e^{-\frac{1}{2} R^{2}} R \pi
$$

A simple computation shows that $\sqrt{2 \pi\left(1-e^{-\frac{1}{2} R^{2}}\right)} \leq L_{\varphi}(P) \leq \sqrt{\pi\left(1-e^{-R^{2}}\right)}$. When $R=2$, we have $L_{\varphi}(P) \geq L_{\varphi}(\Sigma)$.

As another example, we consider \mathbb{R}^{2} with density e^{y}. Let

$$
P=\left\{\left(x,-\ln \cos \frac{\pi}{3}\right) \in \mathbb{R}^{2}:-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}\right\}
$$

and Σ be the graph of function $y=-\ln \cos x, x \in\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$. It's not hard to check that $L_{\varphi}(P) \geq L_{\varphi}(\Sigma)$.

Hence, the area-minimizing property of slices in weighted warped product manifolds is not a trivial matter. In this paper, using the same method as in [2] we prove that if $(\log f)^{\prime \prime}(t) \leq 0$, then the slice is weighted area-minimizing under a volume balance condition. In particular, when f is constant we get some Bernstein type theorems in $\mathbb{R}^{+} \times{ }_{f} \mathbb{G}^{n}$ and $\mathbb{G}^{+} \times{ }_{f} \mathbb{G}^{n}$.

2 Preliminaries

Consider the warped product $\mathbb{R}^{+} \times_{f} \mathbb{R}^{n}$ with density $e^{-\varphi}$, where $\varphi=\varphi(t, x)$. Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$, and $\Sigma=\left\{(u(x), x): x \in \mathbb{R}^{n}\right\}$ be the entire graph defined by u. A unit normal vector field of Σ is

$$
N=\left(\frac{f(u)}{\sqrt{f(u)^{2}+|D u|^{2}}},-\frac{1}{f(u) \sqrt{f(u)^{2}+|D u|^{2}}} D u\right)
$$

where $D u$ is the gradient of u in \mathbb{R}^{n}, and $|D u|^{2}=\langle D u, D u\rangle$. The curvature function (relative to N) is $H=\frac{1}{n} \operatorname{trace}(A)$, where A is the shape operator. A direct computation gives (see [8, Section 5])

$$
n H(u)=\operatorname{div}\left(\frac{D u}{f(u) \sqrt{f^{2}+|D u|^{2}}}\right)-\frac{f^{\prime}(u)}{\sqrt{f(u)^{2}+|D u|^{2}}}\left(n-\frac{|D u|^{2}}{f(u)^{2}}\right) .
$$

Thus,

$$
\begin{aligned}
n H_{\varphi}(u)=\frac{1}{f(u)} \operatorname{div}\left(\frac{D u}{\sqrt{f(u)^{2}+|D u|^{2}}}\right) & -\frac{n f^{\prime}(u)}{\sqrt{f(u)^{2}+|D u|^{2}}}+\frac{f(u)}{\sqrt{f(u)^{2}+|D u|^{2}}} \varphi_{t} \\
& -\frac{1}{f(u) \sqrt{f(u)^{2}+|D u|^{2}}}\langle D u, D \varphi\rangle
\end{aligned}
$$

It is easy to see that the mean curvature as well as the weighted mean curvature of slice are constants

$$
H\left(t_{0}\right):=H\left(t_{0}, x\right)=-(\log f)^{\prime}\left(t_{0}\right)
$$

and

$$
H_{\varphi}\left(t_{0}\right):=H_{\varphi}\left(t_{0}, x\right)=-(\log f)^{\prime}\left(t_{0}\right)+\varphi_{t}\left(t_{0}, x\right)
$$

Furthermore, if $\varphi=\varphi(x), x \in \mathbb{R}^{n}$ (i.e., the weighted function $e^{-\varphi}$ does not depend on the parameter $\left.t \in \mathbb{R}^{+}\right), H_{\varphi}\left(t_{0}\right)=-(\log f)^{\prime}\left(t_{0}\right)$.

Let Σ and N as above. Consider the smooth extension of N by the translation along t-axis, also denoted by N and the n-differential form defined by

$$
\phi(t, x)=f(t)^{n} \omega(x)
$$

where $\omega\left(X_{1}, \ldots, X_{n}\right)=\operatorname{det}\left(X_{1}, \ldots, X_{n}, N\right), X_{i}, i=1,2, \ldots, n$, are smooth vector fields on Σ. It is clear that $f(t)^{n}\left|\omega\left(X_{1}, \ldots, X_{n}\right)\right| \leq 1$, for all orthonormal vector fields $X_{i}, i=1,2, \ldots, n$ and $f(t)^{n}\left|\omega\left(X_{1}, \ldots, X_{n}\right)\right|=1$ if and only if X_{1}, \ldots, X_{n} are tangent to Σ. Therefore, $\phi(t, x)$ represents the weighted volume element of Σ in $\left(\mathbb{R}^{+} \times_{f} \mathbb{R}^{n}, e^{-\varphi}\right)$. We have

$$
\operatorname{div} N=-n H-\frac{f^{\prime}}{\sqrt{f^{2}+|D u|^{2}}}\left(n-\frac{|D u|^{2}}{f^{2}}\right)+\frac{f^{\prime}|D u|^{2}}{\left(f^{2}+|D u|^{2}\right)^{\frac{3}{2}}}
$$

Note that $d \omega=\operatorname{div}(N) d V_{\mathbb{R}^{+} \times \mathbb{R}^{n}}$, thus

$$
\begin{aligned}
d \phi & =d\left(f^{n} \omega\right)=\operatorname{div}\left(f^{n} N\right) d V_{\mathbb{R}^{+} \times \mathbb{R}^{n}}=f^{n} \operatorname{div} N d V_{\mathbb{R}^{+} \times \mathbb{R}^{n}}+n f^{n-1} f^{\prime}\left\langle\partial_{t}, N\right\rangle d V_{\mathbb{R}^{+} \times \mathbb{R}^{n}} \\
& =\operatorname{div} N d V_{\mathbb{R}^{+} \times_{f} \mathbb{R}^{n}}+n \frac{f^{\prime}}{f}\left\langle\partial_{t}, N\right\rangle d V_{\mathbb{R}^{+} \times x_{f} \mathbb{R}^{n}} \\
& =\left(-n H+\frac{f^{\prime}|D u|^{2}}{f^{2} \sqrt{f^{2}+|D u|^{2}}}+\frac{f^{\prime}|D u|^{2}}{\left(f^{2}+|D u|^{2}\right)^{\frac{3}{2}}}\right) d V_{\mathbb{R}^{+} \times_{f} \mathbb{R}^{n}} .
\end{aligned}
$$

Since

$$
\begin{aligned}
d\left(e^{-\varphi} \phi\right) & =d\left(e^{-\varphi} f^{n} \omega\right)=e^{-\varphi} f^{n} \operatorname{div} N d V_{\mathbb{R}^{+} \times \mathbb{R}^{n}}+\left\langle\nabla\left(e^{-\varphi} f^{n}\right), N\right\rangle d V_{\mathbb{R}^{+} \times \mathbb{R}^{n}} \\
& =e^{-\varphi} d \phi-e^{-\varphi} f^{n}\langle\nabla \varphi, N\rangle d V_{\mathbb{R}^{+} \times \mathbb{R}^{n}} \\
& =e^{-\varphi}\left[-n H+\frac{f^{\prime}|D u|^{2}}{f^{2} \sqrt{f^{2}+|D u|^{2}}}+\frac{f^{\prime}|D u|^{2}}{\left(f^{2}+|D u|^{2}\right)^{\frac{3}{2}}}-\langle\nabla \varphi, N\rangle\right] d V_{\mathbb{R}^{+} \times{ }_{f} \mathbb{R}^{n}} \\
& =e^{-\varphi}\left[-n H_{\varphi}+\frac{f^{\prime}|D u|^{2}}{f^{2} \sqrt{f^{2}+|D u|^{2}}}+\frac{f^{\prime}|D u|^{2}}{\left(f^{2}+|D u|^{2}\right)^{\frac{3}{2}}}\right] d V_{\mathbb{R}^{+} \times{ }_{f} \mathbb{R}^{n}},
\end{aligned}
$$

we have

$$
d_{\varphi} \phi=e^{\varphi} d\left(e^{-\varphi} \phi\right)=\left(-n H_{\varphi}+\frac{f^{\prime}|D u|^{2}}{f^{2} \sqrt{f^{2}+|D u|^{2}}}+\frac{f^{\prime}|D u|^{2}}{\left(f^{2}+|D u|^{2}\right)^{\frac{3}{2}}}\right) d V_{\mathbb{R}^{+} \times_{f} \mathbb{R}^{n}}
$$

When Σ is a slice, $d_{\varphi} \phi=-n H_{\varphi} d V_{\mathbb{R}^{+} \times_{f} \mathbb{R}^{n}}$.

3 The results

3.1 The results on slices

Consider $\mathbb{R}^{+} \times{ }_{f} \underline{\mathbb{R}^{n}}$ with density $e^{-\varphi}, \varphi=\varphi(t, x)$. Suppose that D is a domain in \mathbb{R}^{n} such that \bar{D}, the closure of D, is compact. Let $P_{D}=\left\{t_{0}\right\} \times D$ and Σ_{D} be the graph of a function $t=u(x), x \in D$, such that P_{D} and Σ_{D} have the same boundary, i.e., $\partial P_{D}=\partial \Sigma_{D}$. Let $E_{1}=\left\{(t, x) \in \mathbb{R}^{+} \times D: t \leq u(x)\right\}$ and $E_{2}=\left\{(t, x) \in \mathbb{R}^{+} \times D: t \leq t_{0}\right\}$. The following theorem shows that P_{D} has least weighted area in the class of hypersurfaces with the same boundary.

Theorem 3.1. If $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=\operatorname{Vol}_{\varphi}\left(E_{2}\right)$ and $(\log f)^{\prime \prime}(t) \leq 0$, then $\operatorname{Area}_{\varphi}\left(P_{D}\right) \leq$ $\operatorname{Area}_{\varphi}\left(\Sigma_{D}\right)$.

Proof. Denote by ϕ the volume form of \mathbb{R}^{n}. By Stokes' Theorem and the suitable orientations for objects (see Figure 1), we get

$$
\begin{aligned}
\operatorname{Area}_{\varphi}(D)-\operatorname{Area}_{\varphi}\left(\Sigma_{D}\right) & \leq \int_{D} e^{-\varphi} \phi-\int_{\Sigma_{D}} e^{-\varphi} \phi=\int_{D-\Sigma_{D}} e^{-\varphi} \phi \\
& =\int_{E_{1}} e^{-\varphi} d_{\varphi} \phi=\int_{E_{1} \backslash E_{2}} e^{-\varphi} d_{\varphi} \phi+\int_{E_{1} \cap E_{2}} e^{-\varphi} d_{\varphi} \phi \\
\operatorname{Area}_{\varphi}\left(P_{D}\right)-\operatorname{Area}_{\varphi}(D) & \leq \int_{P_{D}} e^{-\varphi} \phi-\int_{D} e^{-\varphi} \phi=\int_{P_{D}-D} e^{-\varphi} \phi \\
& =-\int_{E_{2}} e^{-\varphi} d_{\varphi} \phi=-\int_{E_{2} \backslash E_{2}} e^{-\varphi} d_{\varphi} \phi-\int_{E_{1} \cap E_{2}} e^{-\varphi} d_{\varphi} \phi
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Area}_{\varphi}\left(P_{D}\right)-\operatorname{Area}_{\varphi}\left(\Sigma_{D}\right) & \leq \int_{E_{1} \backslash E_{2}} e^{-\varphi} d_{\varphi} \phi-\int_{E_{2} \backslash E_{2}} e^{-\varphi} d_{\varphi} \phi \\
& =-\int_{E_{1} \backslash E_{2}} e^{-\varphi} n H_{\varphi}(t) d V+\int_{E_{2} \backslash E_{2}} e^{-\varphi} n H_{\varphi}(t) d V .
\end{aligned}
$$

The condition $(\log f)^{\prime \prime}(t) \leq 0$ means that H_{φ} is non-decreasing along t-axis.

Figure 1: A part of slice and graph have the same boundary
Therefore,

$$
H_{\varphi}\left(t_{0}\right) \leq H_{\varphi}(t), \forall(t, x) \in E_{1} \backslash E_{2} ; \quad H_{\varphi}(t) \leq H_{\varphi}\left(t_{0}\right), \forall(t, x) \in E_{2} \backslash E_{1}
$$

Hence

$$
\begin{aligned}
\operatorname{Area}_{\varphi}\left(P_{D}\right)-\operatorname{Area}_{\varphi}\left(\Sigma_{D}\right) & \leq-n H_{\varphi}\left(t_{0}\right)\left(\int_{E_{1} \backslash E_{2}} e^{-\varphi} d V-\int_{E_{2} \backslash E_{1}} e^{-\varphi} d V\right) \\
& =-n H_{\varphi}\left(t_{0}\right)\left(\operatorname{Vol}_{\varphi}\left(E_{1} \backslash E_{2}\right)-\operatorname{Vol}_{\varphi}\left(E_{2} \backslash E_{1}\right)\right)=0
\end{aligned}
$$

because $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=\operatorname{Vol}_{\varphi}\left(E_{2}\right)$. Thus, $\operatorname{Area}_{\varphi}\left(P_{D}\right) \leq \operatorname{Area}_{\varphi}\left(\Sigma_{D}\right)$.
In the case of \mathbb{R}^{n} is the Gauss space G^{n}, consider $\mathbb{R}^{+} \times_{f} \mathbb{G}^{n}$, i.e., $\mathbb{R}^{+} \times_{f} \mathbb{R}^{n}$ with density $e^{-\varphi}=(2 \pi)^{-n / 2} e^{-\frac{|x|^{2}}{2}}$. In this space, slices are proved to be global weighted area-minimizing.

Theorem 3.2. If $(\log f)^{\prime \prime}(t) \leq 0$, then a slice is weighted area-minimizing in the class of all entire graphs satisfying $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=\operatorname{Vol}_{\varphi}\left(E_{2}\right)$.

Proof. Let P be the slice $\left\{t_{0}\right\} \times \mathbb{G}^{n}$ and Σ be the graph of a function $t=u(x)$ over \mathbb{G}^{n}. Let S_{R}^{n-1} be the $(n-1)$-sphere with center O and radius R in \mathbb{G}^{n} and $C_{R}=\mathbb{R} \times S_{R}^{n-1}$ be the n-dimensional cylinder. Let $E_{1}=\left\{(t, x) \in \mathbb{R}^{+} \times \mathbb{G}^{n}\right.$: $t \leq u(x)\}$ and $E_{2}=\left\{(t, x) \in \mathbb{R}^{+} \times \mathbb{G}^{n}: t \leq t_{0}\right\}$. Let $A=E_{1} \backslash E_{2} \cup E_{2} \backslash E_{1}$. The parts of P, Σ, E_{1}, and E_{2}, bounded by C_{R}, are denoted by $P_{R}, \Sigma_{R}, E_{1_{R}}$, and $E_{2_{R}}$, respectively.

Denote by ϕ the volume form of \mathbb{G}^{n}. Let R be large enough such that C_{R} meets both $E_{1} \backslash E_{2}$ and $E_{2} \backslash E_{1}$ (see Figure 2). In a similar way to the proof of Theorem 3.1, we have

$$
\begin{aligned}
\operatorname{Area}_{\varphi}\left(\mathbb{G}_{R}^{n}\right)-\operatorname{Area}_{\varphi}\left(\Sigma_{R}\right) & +\int_{C_{R} \cap E_{1}} e^{-\varphi} \phi \leq \int_{\mathbb{G}_{R}^{n}} e^{-\varphi} \phi-\int_{\Sigma_{R}} e^{-\varphi} \phi+\int_{C_{R} \cap E_{1}} e^{-\varphi} \phi \\
& =\int_{E_{1_{R}}} e^{-\varphi} d_{\varphi} \phi=\int_{E_{1_{R}} \backslash E_{2_{R}}} e_{\varphi}^{-\varphi} d_{\varphi} \phi+\int_{E_{1_{R}} \cap E_{2_{R}}} e_{\varphi}^{-\varphi} d \\
\operatorname{Area}_{\varphi}\left(P_{R}\right)-\operatorname{Area}_{\varphi}\left(\mathbb{G}_{R}^{n}\right) & +\int_{C_{R} \cap E_{2}} e^{-\varphi} \phi \leq \int_{P_{R}} e^{-\varphi} \phi-\int_{\mathbb{G}_{R}^{n}} e^{-\varphi} \phi+\int_{C_{R} \cap E_{2}} e^{-\varphi} \phi \\
& =-\int_{E_{2_{R}}} e_{\varphi}^{-\varphi} d_{\varphi} \phi=-\int_{E_{2_{R}} \backslash E_{1_{R}}} e^{-\varphi} d_{\varphi} \phi-\int_{E_{2_{R}} \cap E_{1_{R}}} e^{-\varphi} d_{\varphi} \phi .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\operatorname{Area}_{\varphi}\left(P_{R}\right)-\operatorname{Area}_{\varphi}\left(\Sigma_{R}\right) & +\int_{C_{R} \cap A} e^{-\varphi} \phi \leq \int_{E_{1_{R}} \backslash E_{2_{R}}} e^{-\varphi} d \varphi \phi-\int_{E_{2_{R}} \backslash E_{2_{R}}} e^{-\varphi} d_{\varphi} \phi \\
& =\int_{E_{2_{R}} \backslash E_{1_{R}}} e^{-\varphi} n H_{\varphi}(t) d V-\int_{E_{1_{R}} \backslash E_{2_{R}}} e^{-\varphi} n H_{\varphi}(t) d V . \tag{3.1}
\end{align*}
$$

Figure 2: The slice P, entire graph Σ and \mathbb{G}^{n} in $\mathbb{R}^{+} \times{ }_{f} \mathbb{G}^{n}$

Since $(\log f)^{\prime \prime}(t) \leq 0$,
$H_{\varphi}\left(t_{0}\right) \leq H_{\varphi}(t), \forall(t, x) \in E_{1_{R}} \backslash E_{2_{R}} \quad$ and $\quad H_{\varphi}(t) \leq H_{\varphi}\left(t_{0}\right), \forall(t, x) \in E_{2_{R}} \backslash E_{1_{R}}$.
Thus,

$$
\begin{equation*}
\operatorname{Area}_{\varphi}\left(P_{R}\right)-\operatorname{Area}_{\varphi}\left(\Sigma_{R}\right)+\int_{C_{R} \cap A} e^{-\varphi} \phi \leq n H_{\varphi}\left(t_{0}\right)\left(\operatorname{Vol}_{\varphi}\left(E_{2_{R}} \backslash E_{1_{R}}\right)-\operatorname{Vol}_{\varphi}\left(E_{1_{R}} \backslash E_{2_{R}}\right)\right) \tag{3.2}
\end{equation*}
$$

Moreover, it is easy to see that $\lim _{R \rightarrow \infty} \int_{C_{R} \cap A} e^{-\varphi} \phi=\lim _{R \rightarrow \infty} e^{-c R^{2}} \int_{C_{R} \cap A} \phi=$ 0.

By the assumption $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=\operatorname{Vol}_{\varphi}\left(E_{2}\right)$, we have

$$
\lim _{R \rightarrow \infty} \operatorname{Vol}_{\varphi}\left(E_{1_{R}} \backslash E_{2_{R}}\right)=\lim _{R \rightarrow \infty} \operatorname{Vol}_{\varphi}\left(E_{2_{R}} \backslash E_{1_{R}}\right)
$$

Hence, taking the limit of both sides of (3.2) as R goes to infinity, we obtain $\operatorname{Area}_{\varphi}(P) \leq \operatorname{Area}_{\varphi}(\Sigma)$.

3.2 Some Bernstein type results

3.2.1 A Bernstein type result in $\mathbb{R}^{+} \times{ }_{a} \mathbb{G}^{n}$

Consider the weighted warped product manifold $\mathbb{R}^{+} \times_{a} \mathbb{G}^{n}$ with density $e^{-\varphi}=$ $(2 \pi)^{-n / 2} e^{-\frac{|x|^{2}}{2}}$, where a is a positive constant. Let $P, \Sigma, E_{1}, E_{2}, A, C_{R}, P_{R}$, $\Sigma_{R}, E_{1_{R}}, E_{2_{R}}$ be defined as in the proof of Theorem 3.2. If u is bounded, then $\operatorname{Vol}_{\varphi}\left(E_{1}\right), \operatorname{Vol}_{\varphi}\left(E_{2}\right)$ and $\operatorname{Vol}_{\varphi}(A)$ are finite. Since the weighted mean curvature of Σ on the region A, H_{φ}, does not change along any vertical line, we get the following results:
Theorem 3.3. If $H_{\varphi}(\Sigma)$ and u are bounded and $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=\operatorname{Vol}_{\varphi}\left(E_{2}\right)$, then

$$
\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}(P)+\frac{1}{2} n(M-m) \operatorname{Vol}_{\varphi}(A)
$$

where $m=\inf H_{\varphi}(\Sigma)$ and $M=\sup H_{\varphi}(\Sigma)$.

Proof. Denote by ϕ the volume form of Σ. In this case, $d_{\varphi} \phi=-n H_{\varphi} d V$. Let R be large enough such that C_{R} meets both $E_{1} \backslash E_{2}$ and $E_{2} \backslash E_{1}$ (see Figure 2). By changing Σ_{R} and P_{R} together in (3.1), we have

$$
\begin{align*}
\operatorname{Area}_{\varphi}\left(\Sigma_{R}\right)-\operatorname{Area}_{\varphi}\left(P_{R}\right)+\int_{C_{R} \cap A} e^{-\varphi} \phi & \leq \int_{E_{1_{R}} \backslash E_{2_{R}}} e^{-\varphi} n H_{\varphi}(\Sigma) d V-\int_{E_{2_{R}} \backslash E_{1_{R}}} e^{-\varphi} n H_{\varphi}(\Sigma) d V \\
& \leq n M \operatorname{Vol}_{\varphi}\left(E_{1_{R}} \backslash E_{2_{R}}\right)-n m \operatorname{Vol}_{\varphi}\left(E_{2_{R}} \backslash E_{1_{R}}\right) . \tag{3.3}
\end{align*}
$$

By the assumption $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=\operatorname{Vol}_{\varphi}\left(E_{2}\right)$, taking the limit of both sides of (3.3) as R goes to infinity, we get $\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}(P)+\frac{1}{2} n(M-m) \operatorname{Vol}_{\varphi}(A)$.
Corollary 3.4 (Bernstein type theorem in $\mathbb{R}^{+} \times_{a} \mathbb{G}^{n}$). A bounded entire constant mean curvature graph must be a slice and therefore, is minimal.

Proof. Assume that Σ is an entire constant mean curvature graph of a bounded function u. Since $\operatorname{Vol}_{\varphi}\left(E_{1}\right)$ is finite, there exists a slice P such that $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=$ $\operatorname{Vol}_{\varphi}\left(E_{2}\right)$. Because $m=M$, by Theorem 3.3, it follows that $\operatorname{Area}_{\varphi}(\Sigma) \leq$ $\operatorname{Area}_{\varphi}(P)$. Moreover,

$$
\operatorname{Area}_{\varphi}(\Sigma)=\int_{\mathbb{G}^{n}} e^{-\varphi} \sqrt{a^{4}+a^{2}|D u|^{2}} d A \geq \int_{\mathbb{G}^{n}} e^{-\varphi} \sqrt{a^{4}} d A=\operatorname{Area}_{\varphi}(P)
$$

Therefore, $\operatorname{Area}_{\varphi}(\Sigma)=\operatorname{Area}_{\varphi}(P)$ and $D u=0$, i.e., u is constant. It is not hard to see that $\Sigma=P$ and therefore, is minimal.

3.2.2 A Bernstein type result in $\mathbb{G}^{+} \times{ }_{a} \mathbb{G}^{n}$

Now, consider the weighted warped product manifold $\mathbb{G}^{+} \times{ }_{a} \mathbb{G}^{n}$ with density $e^{-\varphi}=(2 \pi)^{-(n+1) / 2} e^{-\frac{r^{2}}{2}}$, and let Σ be an entire graph of a function $u(x)$ over \mathbb{G}^{n}, since

$$
\begin{aligned}
& \langle\nabla \varphi(u(x)+\Delta t, x), N(u(x)+\Delta t, x)\rangle-\langle\nabla \varphi(u(x), x), N(u(x), x)\rangle \\
& =\langle(u(x)+\Delta t, x)-(u(x), x), N\rangle=\langle(\Delta t, 0), N\rangle \geq 0, \text { for } \Delta t \geq 0
\end{aligned}
$$

the weighted mean curvature of Σ is increasing along any vertical line. We have

Lemma 3.5.

$$
\operatorname{Area}_{\varphi}\left(\mathbb{G}^{n}\right) \leq \operatorname{Area}_{\varphi}(\Sigma)
$$

Proof. Denote by ϕ the volume form of \mathbb{G}^{n}. Replacing C_{R} by S_{R}, the n-sphere with center O and radius R, in Subsection 3.2.1. Let R be large enough such that S_{R} meets Σ (see Figure 3), we get

$$
\operatorname{Area}_{\varphi}\left(\mathbb{G}_{R}^{n}\right)-\operatorname{Area}_{\varphi}\left(\Sigma_{R}\right)+\int_{S_{R} \cap E_{1}} e^{-\varphi} \phi \leq-\int_{E_{1_{R}}} e^{-\varphi} n H_{\varphi}\left(\mathbb{G}^{n}\right) d V=0
$$

Therefore, $\operatorname{Area}_{\varphi}\left(\mathbb{G}^{n}\right) \leq \operatorname{Area}_{\varphi}(\Sigma)$.

Figure 3: An entire graph Σ and \mathbb{G}^{n} in $\mathbb{G}^{+} \times_{a} \mathbb{G}^{n}$

Theorem 3.6 (Bernstein type theorem in $\mathbb{G}^{+} \times{ }_{a} \mathbb{G}^{n}$). The only entire weighted minimal graph in $\mathbb{G}^{+} \times{ }_{a} \mathbb{G}^{n}$ is \mathbb{G}^{n}.

Proof. Denote by ϕ the volume form of Σ (see Figure 3), we have

$$
\begin{equation*}
\operatorname{Area}_{\varphi}\left(\Sigma_{R}\right)-\operatorname{Area}_{\varphi}\left(\mathbb{G}_{R}^{n}\right)+\int_{S_{R} \cap E_{1}} e^{-\varphi} \phi \leq \int_{E_{1_{R}}} e^{-\varphi} n H_{\varphi}(\Sigma) d V=0 \tag{3.4}
\end{equation*}
$$

Taking the limit of both sides of (3.4) as R goes to infinity, we get

$$
\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}\left(\mathbb{G}^{n}\right)
$$

Hence, it follows from Lemma 3.5 that

$$
\begin{equation*}
\operatorname{Area}_{\varphi}(\Sigma)=\operatorname{Area}_{\varphi}\left(\mathbb{G}^{n}\right) \tag{3.5}
\end{equation*}
$$

Since $\operatorname{Vol}_{\varphi}\left(\mathbb{G}^{+} \times{ }_{a} \mathbb{G}^{n}\right)$ is finite, there exists a slice P such that $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=$ $\operatorname{Vol}_{\varphi}\left(E_{2}\right)$. Using the similar arguments as in the proof of Theorem 3.3 (see Figure 4), we get

Figure 4: The slice P and entire graph Σ in $\mathbb{G}^{+} \times_{a} \mathbb{G}^{n}$

$$
\operatorname{Area}_{\varphi}\left(\Sigma_{R}\right)-\operatorname{Area}_{\varphi}\left(P_{R}\right)+\int_{S_{R} \cap A} e^{-\varphi} \phi \leq \int_{E_{1_{R}} \backslash E_{2_{R}}} e^{-\varphi_{n}} H_{\varphi}(\Sigma) d V-\int_{E_{2_{R}} \backslash E_{1_{R}}} e^{-\varphi_{n}} n H_{\varphi}(\Sigma) d V=0
$$

because Σ is a weighted minimal graph. Therefore, $\operatorname{Area}_{\varphi}(\Sigma) \leq \operatorname{Area}_{\varphi}(P)$. By Theorem 3.2, it follows that

$$
\begin{equation*}
\operatorname{Area}_{\varphi}(\Sigma)=\operatorname{Area}_{\varphi}(P) \tag{3.6}
\end{equation*}
$$

Thus, it follows from (3.5) and (3.6) that

$$
\operatorname{Area}_{\varphi}(P)=\operatorname{Area}_{\varphi}\left(\mathbb{G}^{n}\right)
$$

Hence, $P=\mathbb{G}^{n}$ and $\operatorname{Vol}_{\varphi}\left(E_{1}\right)=\operatorname{Vol}_{\varphi}\left(E_{2}\right)=0$, i.e., $\Sigma=\mathbb{G}^{n}$.

References

[1] F. Fang, X. D. Li, Z. Zhang, Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-mery Ricci curvature, Ann. Inst. Fourier. 59 (2009) 563-573.
[2] D. T. Hieu, A weighted volume estimate and its application to Bernstein type theorems in Gauss space, Colloquium Mathematicum, to appear.
[3] D. T. Hieu, Some calibrated surfaces in manifolds with density, J. Geom. Phys. 61 (2011) 1625-1629.
[4] D. T. Hieu, T. L. Nam, Bernstein type theorem for entire weighted minimal graphs in $\mathbb{G}^{n} \times \mathbb{R}$ for Gaussian densities, J. Geom. Phys. 81 (2014) 87-91.
[5] F. Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005) 853-858.
[6] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London (1983).
[7] C. Rosales, A. Caete, V. Bayle, F. Morgan, On the isoperimetric problem in Euclidean space with density, Calc. Var. Partial Differential Equations. 31 (2008) 27-46.
[8] J. J. Salamanca, I. M. C. Salavessa, Uniqueness of ϕ-minimal hypersurfaces in warped product manifolds, J. Math. Anal. Appl. 422 (2015) 1376-1389.

