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In this brief report, we make a short review of progress in developing the microscopic

optical potential in recent years. In particular, we present our current studies and fu-

ture plans on building the microscopic optical potential based on the so-called nuclear
structure models at low-energies.

1. Introduction

In nuclear physics studies we still have two unsolvable problems: the many-body

problem and the nuclear interaction. To avoid these difficulties, the phenomenologi-

cal approaches are the most efficient ways to describe the nuclear systems, for exam-

ple, the great success of the using phenomenological effective interaction in nuclear

structure and phenomenological optical potential in nuclear reactions. However, the

limit of the phenomenological approaches is the unexpected separation between the

structure and reactions communities. Also, due to the fits with experimental data,

these approaches do not have the prediction powers, especially for the nuclear reac-

tions off targets outside the range of validity of the fits, e.g., in the case of the exotic

nuclei produced in r-process. Microscopic optical potential is expected to have the

prediction powers but also is the link between the nuclear structure and reactions

studies. This link allows us to learn the Physics meaning from the analysis of the

experimental data from the nuclear reactions studies.

In the last 5 years, huge efforts have been devoted to develop the microscopic

optical potential. This potential is identified with the nucleon self-energy Σ(r, r′, E)

which is a complex non-local energy-dependent function. When the incident energy

E > 0, Σ(r, r′, E) is the nuclear optical potential. For bound states with E < 0, the

real part of Σ(r, r′, E) represents the shell model or mean-field potential. We could

list the most efficient methods to calculate this self-energy:ab initio approaches [1,2],

nuclear matter approaches [3–8], nuclear structure approaches [9–13,15–19].

Recently, the combination the Green’s function approach with the couple-cluster
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method [2] has been used to generate the microscopic optical potential for neutron

elastic scattering of 40Ca and 48Ca. This success is based on the progress of the

ab initio nuclear reaction community in many aspects: mass number, precision and

accuracy. They can now have the reliable predictions for nuclei as heavy as 120Sn

by using the modern nucleon-nucleon (NN) and three-nucleon forces (3NFs) from

chiral effective field theory. In Ref. [2], the microscopic optical potential is defined

as

Σ′ ≡ Σ∗ + U, (1)

where Σ∗(γ, δ, E) is the self-energy which can be calculated by

Σ∗(E) = [G0)(E)]−1 −G−1(E), (2)

where U is the HF potential, and the Green’s function G fulfills the Dyson

equation

G(α, β,E) = G(0)(α, β,E) + Σ
(0)
γ,δ(α, γ,E)× Σ∗(γ, δ, E)G(δ, β,E) (3)

where G(0) is the first-order approximation to the Green’s function. To get the

optical potential, the Dyson equation has been obtained by inverting each elements

within the coupled-cluster method. The method has been applied to describe the

optical potential associated with the bound states in 41Ca and 49Ca and the neu-

tron scattering. Some encouraging results have been shown in comparing with the

phenomenological Koning-Delaroche potential. However, due to the complicated

structure of the equation (2), the imaginary part (the absorption from the non-

elastic channel) of the optical potential has been dropped.

Another way to calculate the nucleon self-energy is to use the nuclear matter

approach [3, 4]. Since this method is only valid for the infinite nuclear matter, the

local density approximation has been used. To get the local optical potential, the

solution of the self-consistent equation has been folded with the resulting density-

dependent mean-field with a realistic point-nucleus density distribution. In this

approach, the first order of Σ is the Hartree-Fock contribution

Σ
(1)
HF(q, ω; kf ) =

∑
l

〈qh1ss1tt1|Ṽ2N |qh1ss1tt1〉n1 (4)

which is real, energy-independent, and Ṽ2N is the anti-symmetrization of V2N .

The second order Σ
(1)
HF(q, ω; kf ) which is both a real and imaginary part. The

direct and exchange terms are calculated from the particle states above the Fermi

level
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Σ
(2a)
2N (q, ω; kf ) =

1

2

∑
123

|〈p1p3s1s3t1t3|Ṽ2N |qh2ss2tt2〉|2

ω + ε2 − ε1 − ε3 + iη
n̄1n2n̄3(2π)3δ(p1+p3−q−h2)

(5)

where n̄k = 1− nk.

Within the above formalism, the microscopic optical potential calculations have

been applied to study the real and imaginary part for incident energies lower than

100 MeV. However, no comparison with experimental data has been done. Also, as

well known, the local density approximation cannot capture the physics of the col-

lective surface modes, shell structure effects, and the spin-orbit interaction. Later,

several improvements have been proposed. The improved local density approxima-

tion has been used to take into account the nonzero range of the nuclear force.

The calculation of the neutron elastic scattering off 40Ca have been performed at

energies from 3.2 MeV up to 185 MeV. Good agreement with experimental data

have been obtained except in the resonances regions. However, the absorption of

the imaginary part is still too large and the spin-orbit interaction is still an intricate

difficulty of the nuclear matter model based.

Another way to calculate is to use the ab initio calculations based on the no-core

shell model using the saturating nuclear forces [1]. The Hamiltonian of the system

is

H(A) = T̂ − T̂c.m.(A+ 1) + V̂2 + V̂3 (6)

where T̂ is the kinetic energy operator, and V̂2, V̂3 are the two-body and three-

body interactions. The partial wave decomposition of the self-energy which is the

optical potential is

Σl,j(k, k′;E,Γ) =
∑
n,n′

Rn,l(k)Σ?,l,jn,n′(E,Γ)Rn′,l(k
′) (7)

which is energy-dependent, nonlocal and in a separable form, and the irreducible

self-energy Σ?(ω) is the solution of the Dyson equation

g(ω) = g0(ω) + g0(ω)Σ?(ω)g(ω) (8)

where g0(ω) is the free particle propagator.This model has been applied to de-

scribe the neutron elastic scattering off 16O (40Ca) at 3.286 (3.2) MeV respectively.

The obtained results are comparable with experimental data quantitatively. How-

ever, the main drawback of this model is that the important collective states of the

targets such as low-lying states and giant resonances can not be described.

Based on the same Green function method, the nuclear structure model explic-

itly includes the effects of collective states in which one uses two-body effective NN

interactions together with some nuclear structure models to calculate the MOPs. As
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the recent energy-density-functional structure approaches have proven their ability

to well describe the nuclear structure observables in the stable region, we can now

generate the microscopic optical potential directly from the effective phenomeno-

logical interactions.

According to Refs. [10, 18–20], the MOPs are given as

Vopt = VHF + ∆Σ(ω), (9)

where

∆Σ(ω) = Σ(ω)− 1

2
Σ(2)(ω). (10)

In Eqs. (9) and (10), VHF is the real, local, momentum-dependent, energy inde-

pendent Skyrme HF mean-field potential, and ω is the nucleon incident energy. The

polarization potential, ∆Σ(ω), is non-local, complex, and energy dependent. Σ(ω)

is the contribution from the particle-hole correlations generated from a fully self-

consistent particle-vibration coupling (PVC) calculations [10,18] applied on top of

the collective states at small amplitudes generated by the Random Phase Approx-

imation. The imaginary part of Σ(ω) is responsible for a loss of the incident flux

due to the existence of nonelastic channels. Σ(2)(ω) is the second-order potential

generated from uncorrelated particle-hole contributions.

Using the partial wave expansion, the partial wave decomposition of the self-

energy is

Σlj(r, r
′, ω) = ĵ

∑
εα,εβ

u
(εα)
lj (r)

r
Σ

(lj)
αβ (ω)

u
(εβ)
lj (r′)

r′
, (11)

where ĵ = (2j + 1)1/2. The self-energy is non-local, energy-dependent, complex

and in separable form. These models have been used to reproduce the experimen-

tal data without ad hoc adjusted parameters on nucleon elastic scattering [10] by
208Pb, neutron elastic scattering [13] by 16O, proton inelastic scattering [14] by
24O, nucleon elastic scattering by 40Ca and 48Ca [15–17], and nucleon elastic scat-

tering [18,19] by 16O, 40Ca, 48Ca, and 208Pb in the framework of the NSM (mostly

with the Gogny and Skyrme interaction). However, the intricate disagreement with

experimental data at backward angles is still exists.

Recently, we have used this model to analyze the effects of the spin-orbit and

velocity dependent terms on the nuclear reactions observables. The obtained re-

sults are quite interesting. We have shown that the velocity dependent terms have

strong effects on the surface while the spin-orbit term contributes in the interior

region [20]. We assume in the near future to evaluate the sensitivity of the angular

distributions and analyzing powers on each parameters of the Skyrme interactions.

For example, in Figure 1, the sensitivity of the angular distributions of the neu-

tron elastic scattering at low-energy on the choice of the interaction. The obtained

results show this sensitivity is very small between the SLy5 and SkM∗ effective
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interactions. More systematic calculations should be done in the near future. For

the next step, the role of each the multipolarities to the imaginary part will be

analyzed. These important information will be used to build up the new generation

of optical potential.

Fig. 1: Angular distributions of neutron elastic scattering by 16O, 40Ca, 48Ca, and
208Pb at different incident energies below 50 MeV. The solid (dashed) curve show

the results of the MOP calculations using the SLy5 (SkM∗) interaction. The results

for SLy5 interaction are extracted from Ref. [19]. The experimental data are the

tabulated cross sections taken from Ref. [21].

In conclusions, the microscopic optical potential is expected to be the vehicle

to study the nuclear reactions in the unstable regions. However, the main chal-

lenging of this kind of potential is the precision is not high compared with the

phenomenological one even in the stable region. As well known, this is due to the

too complicated many body problem underlying. Therefore, the combination be-

tween the phenomenological and microscopic optical potential could be a promising
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research direction.
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