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Abstract

In this paper we show that the Castelnuovo–Mumford regularity of the associated graded
module with respect to an m-primary ideal I is effectively bounded by the degree of nil-
potency of I . From this it follows that there are only a finite number of Hilbert-Samuel
functions for ideals with fixed degree of nilpotency.

1. Introduction

Let R = ⊕n�0 Rn be a finitely generated standard graded ring over a noetherian commut-
ative ring R0. Let R+ be the ideal of R generated by the elements of positive degrees of R.
If E is a finitely generated graded R-module, we set

ai(E) =
{

max{n| H i
R+(E)n � 0} if H i

R+(E)� 0,

−∞ if H i
R+(E) = 0.

The Castelnuovo–Mumford regularity of E is the number

reg (E) := max{ai (E) + i | i � 0}.
Let (A, m) be a Noetherian local ring, I an m-primary ideal of A and M a finitely gen-

erated A-module. We denote by G I (M) the associated graded ring
⊕

n�0 I n M/I n+1 M of
M with respect to I . It is known that the Castelnuovo–Mumford regularity reg (G I (M))

provides upper bounds for several invariants of M with respect to I such as the postulation
number, the relation type and the reduction number [16]. It is of great interest to find upper
bounds for reg (G I (M)) by means of simpler invariants.

Our first main result gives a bound for the Castelnuovo–Mumford regularity of G I (M) in
terms of the degree of nilpotency n(I ) of I . Recall that the degree of nilpotency is the least
integer n such that mn ⊆ I .

THEOREM 2.4. Let (A, m) be a Noetherian local ring and I be an m-primary ideal of A.
Let M be a finitely generated A-module with d = dim A � 1. Then:

(i) reg (G I (M)) � n(I ) hdeg (M) − 1 if d = 1;
(ii) reg (G I (M)) � 2(d−1)! hdeg (M)3(d−1)!−1n(I )3d!−d − 1 if d � 2.
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Here hdeg (M) denotes the homological degree of M , which was introduced by Vasconcelos
[17] in order to control the complexity of M . If M is a Cohen–Macaulay module, hdeg (M)

is the multiplicity (degree) of M . Theorem 2·4 implies effective bounds for the postulation
number, the relation type and the reduction number of I in terms of the degree of nilpotency
of I . It should be noted that bounds for the postulation number were already established by
Schwartz [11] for M = A in the characteristic zero case.

Our proof is based on a bound for reg (G I (M)) by means of an extended degree, a gen-
eralization of the degree, which was introduced by Doering, Gunston and Vasconcelos [3].
Using this bound we are also able to give bounds for the coefficients of the Hilbert–Samuel
polynomials.

If we denote by PM(n) the Hilbert–Samuel polynomial associated with the Hilbert-
Samuel function �(M/I n+1 M) and if we write

PM(n) =
d∑

i=0

(−1)i ei (I, M)

(
m + d − i

d − i

)
,

then ei(I, M) are called the Hilbert coefficients of M with respect to I . We will set
e(I, M) := e0(I, M), the multiplicity of M with respect to I , and e(M) := e(m, M).

The Hilbert coefficients have become an interesting subject in recent years [4, 6, 20]. In
particular, Srinivas and Trivedi [12–14] gave bounds for the Hilbert coefficients in terms
of the dimension, multiplicity, and lengths of local cohomologies for Cohen–Macaulay
rings and generalized Cohen–Macaulay modules. Recently, Rossi, Trung and Valla [8] gave
bounds for the Hilbert coefficients of A with respect to m in terms of an extended degree.
We will extend this result to the module case for an arbitrary m-primary ideal I . As an ap-
plication we obtain bounds for the Hilbert coefficients of the Hilbert function in terms of the
degree of nilpotency of I and the homological degree of M .

THEOREM 3.3. Let (A, m) be a Noetherian local ring and I an m-primary ideal of A.
Let M be a finitely generated A-module with dim(M) � 1. Then:

(i) e(I, M) � e(M)n(I )d;
(ii) |e1(I, M)| � hdeg (M)n(I )d[hdeg (M)n(I )d − 1];

(iii) |ei (I, M)| � (i + 1)22i !+2 hdeg (M)3i !−i+1n(I )3di !−di+d − 1 if i � 2.

It follows from Theorem 2·4 and Theorem 3·3 that there are only a finite number of
Hilbert-Samuel functions of M for m-primary ideals with fixed degree of nilpotency. This
extends another result of Schwartz in the characteristic zero case [11].

2. Bounds for the regularity of the associated graded module

Let M(A) denote the class of finitely generated A-modules. An extended degree on
M(A) with respect to I (see [5]) is a numerical function D(I, ·) on M(A) such that the
following properties hold for every module M ∈ M(A).

(i) D(I, M) = D(I, M/L) + �(L), where L is the maximal submodule of M having
finite length,

(ii) D(I, M) � D(I, M/x M) for a generic x on M with respect to I ,

(iii) D(I, M) = e(I, M) if M is a Cohen–Macaulay A-module, where e(I, M) denotes
the multiplicity of M with respect to I.
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Remark. Any extended degree D(I, M) will satisfy D(I, M) � e(I, M), where equality
holds if and only if M is a Cohen–Macaulay module.

The extended degree D(I, M) is a generalization of the notion D(M) := D(m, M) intro-
duced in [3] and [18].

We have the following bound for reg (G I (M)) in terms of an extended degree of M with
respect to I .

THEOREM 2·1 ([5, theorem 4·4]). Let M be a finitely generated A-module with d =
dim M � 1. Let D(I, M) be an arbitrary extended degree of M with respect to I . Then:

(i) reg (G I (M)) � D(I, M) − 1 if d = 1;
(ii) reg (G I (M)) � 2(d−1)! D(I, M)3(d−1)!−1 − 1 if d � 2.

In this paper we are interested only in the following special case of extended degrees.
If A is a homomorphic image of a Gorenstein ring S with dim S = n and M ∈ M(A)

with dim M = d, we define the homological degree with respect to I as the number

hdeg (I, M) := e(I, M) +
d−1∑
i=0

(
d − 1

i

)
hdeg (I, Ext n−i

S (M, S)),

if d > 0, and hdeg (I, M) = �(M) if d = 0. This is a recursive definition on the dimension
since dim Ext n−i

S (M, S) � i for i = 0, . . . , d − 1. If A is not a homomorphic image of a
Gorenstein ring, we define

hdeg (I, M) := hdeg (I, M ⊗A Â),

where Â denotes the m-adic completion of A. We can easily verify that hdeg (I, M) is an
extended degree of M with respect to I (see [17] for the case I = m).

Remark. If M is a generalized Cohen–Macaulay module, then

hdeg (I, M) = e(I, M) +
d−1∑
i=0

(
d − 1

i

)
�
(
H i

m(M)
)
.

For simplicity we put

hdeg (M) := hdeg (m, M).

To study the relationship between hdeg (I, M) and hdeg (M) we shall need the following
observation.

LEMMA 2·2. Assume that d = dim M � 1. Then

e(M) � e(I, M) � n(I )de(M).

Proof. Since

�(M/mm+1 M) � �(M/I m+1 M) � �(M/mn(I )(m+1)M),

we have

e(M)

d! md + (terms of lower degree) � e(I, M)n(I )d

d! md + (terms of lower degree)

� e(M)n(I )d

d! md + (terms of lower degree)

for m � 0. Hence e(M) � e(I, M) � n(I )de(M).
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Similarly, the relationship between hdeg (M) and hdeg (I, M) is given by the following in-
equalities.

LEMMA 2·3. Let (A, m) be a Noetherian local ring and I an m-primary ideal of A. Let
M be a finite generated A-module with dim M = d. Then

hdeg (M) � hdeg (I, M) � n(I )d hdeg (M).

Proof. It suffices to prove the case A is a homomorphic image of a Gorenstein ring S.
If d = 0 then hdeg (M) = hdeg (I, M) = �(M).
If d � 1, we put Mi := Ext n−i

S (M, S), where n = dim S. It is well known that dim Mi � i .
By induction on d we may assume that

hdeg (Mi) � hdeg (I, Mi) � n(I )i hdeg (Mi)

for i = 0, ..., d − 1. Then

hdeg (M) = e(M) +
d−1∑
i=0

(
d − 1

i

)
hdeg (Mi)

� e(I, M) +
d−1∑
i=0

(
d − 1

i

)
hdeg (I, Mi)

= hdeg (I, M).

On the other hand, by Lemma 2·2 we have e(I, M) � n(I )de(M). Therefore

hdeg (I, M) = e(I, M) +
d−1∑
i=0

(
d − 1

i

)
hdeg (I, Mi)

� n(I )de(M) +
d−1∑
i=0

(
d − 1

i

)
n(I )i hdeg (Mi)

� n(I )d[e(M) +
d−1∑
i=0

(
d − 1

i

)
hdeg (Mi)]

= n(I )d hdeg (M).

Now we are able to give an explicit bound for the Castelnuovo–Mumford regularity of
G I (M) in terms of n(I ).

THEOREM 2·4. Let (A, m) be a Noetherian local ring, I an m-primary ideal of A and M
a finitely generated A-module with d = dim M � 1. Then:

(i) reg (G I (M)) � n(I ) hdeg (M) − 1, if d = 1;
(ii) reg (G I (M)) � 2(d−1)! hdeg (M)3(d−1)!−1n(I )3d!−d − 1, if d � 2.

Proof. Applying Theorem 2·1 for D(I, M) = hdeg (I, M) we have
(i) reg (G I (M)) � hdeg (I, M) − 1, if d = 1,

(ii) reg (G I (M)) � 2(d−1)! hdeg (I, M)3(d−1)!−1 − 1, if d � 2.
By Lemma 2·3, this implies

(i) reg (G I (M)) � n(I ) hdeg (M) − 1, if d = 1,
(ii) reg (G I (M)) � 2(d−1)! hdeg (M)3(d−1)!−1n(I )3d!−d − 1, if d � 2.
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Remark. The bound is the best possible in the case d = 1. For example, if M = A is a regular
local ring and I = m, then we always have reg (G I (M)) = 0 (n(m) = hdeg (A) = 1).

Recall that the postulation number ρM(I ) of M with respect to I is the least integer m
such that HM(n) = PM(n) for n � m. We denote by hG I (M)(n) the Hilbert function and by
pG I (M)(n) the Hilbert polynomial of G I (M). Put r := reg (G I (M)). By [2, theorem 17·1·6]),

hG I (M)(n) − pG I (M)(n) =
d∑

i=0

�(H i
G I (A)+(G I (M))).

Hence hG I (M)(n) = pG I (M)(n) for all n � r + 1. We have

HM(n) = �(M/I n+1 M) =
r∑

i=0

hG I (M)(i) +
n∑

i=r+1

hG I (M)(i)

for n � r + 1. From this it follows that HM(n) = PM(n) for all n � r . Thus ρM(I ) �
reg (G I (M)). Therefore, we obtain the following consequence.

COROLLARY 2·5. Let M be an arbitrary finitely generated A-module with d =
dim(M) � 1. Then

(i) ρM(I ) � n(I ) hdeg (M) − 1, if d = 1,
(ii) ρM(I ) � 2(d−1)! hdeg (M)3(d−1)!−1n(I )3d!−d − 1, if d � 2.

Remark. In [11, corollary 3], Schwartz proved the existence of a bound for the postulation
number of A with respect to I in terms of n(I ) under the assumption that the characteristic of
the residue field is 0. He used the method of GrRobner bases which can not be applied to study
the general case. Let RI (A) be the Rees algebra of A with respect to Ooishi [7, lemma 4·8]
proved that reg (G I (A)) = reg (RI (A)). Represent RI (A) = A[T ]/J , where A[T ] is a
polynomial ring and J is a homogeneous ideal of A[T ]. The relation type retype (I ) of I is
defined as the largest degree of the minimal generators of J . It is known [15, corollary 1·3
and proposition 4·1] that retype (I ) � reg (RI (A)) + 1. Therefore, we obtain the following
bounds for the relation type of I in terms of n(I ).

COROLLARY 2·6. Let (A, m) be a noetherian local ring with d = dim(A) � 1 and I an
m-primary ideal. Then

(i) retype (I ) � n(I ) hdeg (A), if d = 1,
(ii) retype (I ) � 2(d−1)! hdeg (A)3(d−1)!−1n(I )3d!−d, if d � 2.

Recall that an ideal J ⊆ I is called a reduction of I if I n+1 = J I n for n � 0. If J is a
reduction of I and no other reduction of I is contained in J , then J is said to be a minimal
reduction of I . If J is a reduction of I , then the reduction number of I with respect to J ,
rJ (I ), is given by

rJ (I ) := min{ n | I n+1 = J I n}.
The reduction number of I , denoted r(I ), is given by

r(I ) := min{rJ (I )| J is a minimal reduction of I }.
By [15, proposition 3·2], r(I ) � reg (G I (A)). This gives the following consequence.

COROLLARY 2·7. Let (A, m) be a Noetherian local ring with d = dim A � 1 and I an
m-primary ideal of A. Then:

(i) r(I ) � n(I ) hdeg (A) − 1, if d = 1;
(ii) r(I ) � 2(d−1)! hdeg (A)3(d−1)!−1n(I )3d!−d − 1, if d � 2.
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Remark. In [11, corollary 4], Schwartz could establish the existence of a bound for the re-
duction number of I in terms of n(I ) only for a Cohen–Macaulay ring A in the characteristic
zero case. Vasconcelos [19, theorem 2·45] also gave a bound for the reduction number of I
in terms of e(I, A) and n(I ) for a Cohen–Macaulay ring A.

3. Bounds for the Hilbert coefficients

Throughout this section let (A, m) be a Noetherian local ring and I an m-primary ideal
of A. Let M be a finitely generated A-module. Once we have a bound for the postulation
number of M with respect to I , we can derive a bound for the Hilbert coefficients of I
following a method proposed by Vasconcelos [10] (see [8, 9] for the case M = A and
I = m).

THEOREM 3·1. Let (A, m) be a Noetherian local ring and I an m-primary ideal of A.
Let M be a finite generated A-module with dim(M) � 1 and D(I, M) an arbitrary extended
degree of M with respect to I . Then:

(i) |e1(I, M)| � D(I, M)[D(I, M) − 1];
(ii) |ei (I, M)| � (i + 1)2i !+2 D(I, M)3i !−i+1 − 1 if i � 2.

Proof.
If d = 1 then reg (G I (M)) � D(I, M) − 1, by Theorem 2·1. This implies

�(M/I r+1 M) = (r + 1)e(I, M) − e1(I, M),

where r = reg (G I (M)). Therefore,

|e1(I, M)| = |(r + 1)e(I, M) − �(M/I r+1 M)|
� |(r + 1)e(I, M) − (r + 1)|
� (r + 1)[e(I, M) − 1]
� D(I, M)[D(I, M) − 1]
= D(I, M)[D(I, M) − 1].

If d � 2, without loss of generality we may further assume that the residue field of A is
infinite. Then we may choose x ∈ I\mI such that its initial form x∗ is a G I (M)-filter-regular
element. We have dim M/x M = d − 1. By induction we may assume that

(i′) |e1(I, M/x M)| � D(I, M/x M)[D(I, M/x M) − 1],
(ii′) |ei (I, M/x M)| � i2(i−1)!+2 D(I, M/x M)3(i−1)!−i+2 − 1 if i = 2, ..., d − 1.

Since ei(I, M) = ei(I, M/x M) for i = 0, ..., d − 1 and D(I, M/x M) � D(I, M), this
implies

|e1(I, M)| � D(I, M)[D(I, M) − 1],
|ei (I, M)| � (i + 1)2i !+2 D(I, M)3i !−i+1 − 1, i = 2, ..., d − 1.
It remains to prove the bound for ed(I, M). We have

(−1)ded(I, M) = PM(m) −
d−1∑
i=0

(−1)i ei(I, M)

(
m + d − i

d − i

)

for all m � 0. Put

m := 2(d−1)! D(I, M)3(d−1)!−1 − 1.
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Then m � reg G I (M), by Theorem 2·1. Thus HM(m) = PM(m). By [8, theorem 2·1] or [5,
theorem 3·6],

HM(m) = �(M/I m+1 M) � D(I, M)

[(
m + d − 1

d

)
+

(
m + d − 1

d − 1

)]

= D(I, M)

(
m + d

d

)
.

Therefore

PM(m) � D(I, M)

(
m + d

d

)
.

Then

|ed(I, M)| =
∣∣∣∣PM(m) −

d−1∑
i=0

(−1)i ei(I, M)

(
m + d − i

d − i

)∣∣∣∣
� D(I, M)

(
m + d

d

)
+

d−1∑
i=0

|ei (I, M)|
(

m + d − i

d − i

)

= [D(I, M) + e(I, M)]
(

m + d

d

)
+

d−1∑
i=1

|ei (I, M)|
(

m + d − i

d − i

)

� 2D(I, M)

(
m + d

d

)
+

d−1∑
i=1

|ei (I, M)|
(

m + d − i

d − i

)
.

It is easily seen that (
m + d − i

d − i

)
� (d − i + 1)md−i − 1

for m � 1. Then we obtain

|ed(I, M)| � 2(d + 1)D(I, M)md + d|e1(I, M)|md−1 +
d−1∑
i=2

(d − i + 1)|ei(I, M)|md−i .

Since 2 � i � d − 1, we have

e1(I, M) � D(I, M)[D(I, M) − 1] � m,

ei(I, M) � (i + 1)2i !+2 D(I, M)3i !−i+1 − 1 � 4(i + 1)D(I, M)m.

We thus get

|ed(I, M)| � 4(d + 1)D(I, M)[(m + 1)d − 1]
= 4(d + 1)D(I, M)[2d! D(I, M)3d!−d − 1]
� (d + 1)2d!+2 D(I, M)3d!−d+1 − 1.

COROLLARY 3·2. Given two positive integers d and q. There exist only a finite number
of Hilbert-Samuel functions for a A-module M with respect to an m-primary ideal I of the
local ring A such that dim M = d and D(I, M) � q.

Proof. We have PM(n) = �(M/I n+1 M) for n > reg (G I (M)). By Theorem 3·1, there are
only a finite number of polynomials PM(n). On the other hand, by Theorem [8, theorem 2·1]
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or [5, theorem 3·6], there are only a finite number of possibilities for �(M/I n+1 M) for a fixed
n. Hence finiteness of the number of the possibilities for the function �(M/I n+1 M) follows
from the finiteness of possibilities for reg (G I (M)) which have been proved in Theorem 2·1.

Now we are able to give a bound for the Hilbert coefficients of M with respect to I in
terms of the degree of nilpotency of I .

THEOREM 3·3. Let (A, m) be a Noetherian local ring and I an m-primary ideal of A.
Let M be a finitely generated A-module with dim(M) � 1. Then:

(i) e(I, M) � e(M)n(I )d;
(ii) |e1(I, M)| � hdeg (M)n(I )d[hdeg (M)n(I )d − 1];

(iii) |ei (I, M)| � (i + 1)22i !+2 hdeg (M)3i !−i+1n(I )3di !−di+d − 1, if i � 2.

Proof. We only need to prove (ii) and (iii). Applying Theorem 3·1 we get

|e1(I, M)| � hdeg (I, M)[hdeg (I, M) − 1],
|ei (I, M)| � (i + 1)2i !+2 hdeg (I, M)3i !−i+1 − 1 if i � 2.

By Lemma 2·3, this implies

|e1(I, M)| � hdeg (M)n(I )d[hdeg (M)n(I )d − 1],
|ei (I, M)| � (i + 1)22i !+2 hdeg (M)3i !−i+1n(I )3di !−di+d − 1 if i � 2,

COROLLARY 3·4. Let M be a finitely generated A-module with dim(M) = d � 1 and r
a positive integer. There exist only a finite number of Hilbert–Samuel functions for a module
M with respect to an m-primary ideal I such that n(I ) � r .

Proof. By definition, the homological degree hdeg (M) of M is determinate. By an argu-
ment analogous to that for the proof of Corollary 3·2 we obtain the conclusion.

Remark. In [11, theorem 1], Schwartz proved that there are only a finite number of Hilbert-
Samuel functions �(A/I n) with fixed degree of nilpotency n(I ) in the characteristic zero
case.
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