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Abstract

In this paper we show that the Castelnuovo—-Mumford regularity of the associated graded
module with respect to an m-primary ideal [ is effectively bounded by the degree of nil-
potency of /. From this it follows that there are only a finite number of Hilbert-Samuel
functions for ideals with fixed degree of nilpotency.

————— St

1. Introduction

Let R = @,>0R, be a finitely generated standard graded ring over a noetherian commut-
ative ring Ry. Let R, be the ideal of R generated by the elements of positive degrees of R.
If E is a finitely generated graded R-module, we set

) max{n| H (E), #0} if Hj (E) #0,
a; = .
00 if Hy (E)=0.

The Castelnuovo—-Mumford regularity of E is the number
reg (E) := max{q;(E) +i|i > 0}.

Let (A, m) be a Noetherian local ring, I an m-primary ideal of A and M a finitely gen-
erated A-module. We denote by G;(M) the associated graded ring @@0 I"M /1" M of
M with respect to I. It is known that the Castelnuovo—-Mumford regularity reg (G;(M))
provides upper bounds for several invariants of M with respect to I such as the postulation
number, the relation type and the reduction number [16]. It is of great interest to find upper
bounds for reg (G;(M)) by means of simpler invariants.

Our first main result gives a bound for the Castelnuovo—-Mumford regularity of G, (M) in
terms of the degree of nilpotency n (/) of 1. Recall that the degree of nilpotency is the least
integer n such that m" C [.

THEOREM 2.4. Let (A, m) be a Noetherian local ring and I be an m-primary ideal of A.
Let M be a finitely generated A-module withd = dim A > 1. Then:
(1) reg(G;(M)) < n(I)hdeg(M) — 1 ifd =1;
(i) reg(G;(M)) < 2U¥=D'hdeg(M)3@-Di=lp(r)3d=d — 1 ifd > 2.
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Here hdeg (M) denotes the homological degree of M, which was introduced by Vasconcelos
[17] in order to control the complexity of M. If M is a Cohen—Macaulay module, hdeg (M)
is the multiplicity (degree) of M. Theorem 2-4 implies effective bounds for the postulation
number, the relation type and the reduction number of [ in terms of the degree of nilpotency
of I. It should be noted that bounds for the postulation number were already established by
Schwartz [11] for M = A in the characteristic zero case.

Our proof is based on a bound for reg (G;(M)) by means of an extended degree, a gen-
eralization of the degree, which was introduced by Doering, Gunston and Vasconcelos [3].
Using this bound we are also able to give bounds for the coefficients of the Hilbert—Samuel
polynomials.

If we denote by Py (n) the Hilbert—Samuel polynomial associated with the Hilbert-
Samuel function £(M /1" M) and if we write

N - el an[™ +d—i

M(n>—§( Ve, )( Iy )

then e;(I, M) are called the Hilbert coefficients of M with respect to 1. We will set
e(I, M) := eo(I, M), the multiplicity of M with respect to I, and e(M) := e(m, M).

The Hilbert coefficients have become an interesting subject in recent years [4, 6, 20]. In
particular, Srinivas and Trivedi [12—14] gave bounds for the Hilbert coefficients in terms
of the dimension, multiplicity, and lengths of local cohomologies for Cohen—Macaulay
rings and generalized Cohen—Macaulay modules. Recently, Rossi, Trung and Valla [8] gave
bounds for the Hilbert coefficients of A with respect to m in terms of an extended degree.
We will extend this result to the module case for an arbitrary m-primary ideal /. As an ap-
plication we obtain bounds for the Hilbert coefficients of the Hilbert function in terms of the
degree of nilpotency of I and the homological degree of M.

THEOREM 3.3. Let (A, m) be a Noetherian local ring and 1 an m-primary ideal of A.
Let M be a finitely generated A-module with dim(M) > 1. Then:
(i) eI, M) < e(M)n(1)?;
(i) lei(I, M)| < hdeg (M)n(I)[hdeg (M)n(1)! — 1];
(iii) |e;(I, M)| < (i + 1)2%* 2 hdeg (M )3~ i+ 1p(1)3di=ditd 1 if | > 2.

It follows from Theorem 2-4 and Theorem 3-3 that there are only a finite number of
Hilbert-Samuel functions of M for m-primary ideals with fixed degree of nilpotency. This
extends another result of Schwartz in the characteristic zero case [11].

2. Bounds for the regularity of the associated graded module

Let M(A) denote the class of finitely generated A-modules. An extended degree on
M(A) with respect to I (see [5]) is a numerical function D(/, -) on M(A) such that the
following properties hold for every module M € M(A).

(i) D(U,M) = D(I,M/L) + £(L), where L is the maximal submodule of M having
finite length,

(i) DU, M) = D(I, M/xM) for a generic x on M with respect to I,
(iii) DI, M) = e(I, M) if M is a Cohen—Macaulay A-module, where e(I, M) denotes
the multiplicity of M with respect to I.
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Remark. Any extended degree D (I, M) will satisfy D(I, M) > e(I, M), where equality
holds if and only if M is a Cohen—Macaulay module.

The extended degree D(I, M) is a generalization of the notion D(M) := D(m, M) intro-
duced in [3] and [18].

We have the following bound for reg (G;(M)) in terms of an extended degree of M with
respect to [.

THEOREM 2-1 ([5, theorem 4-4]). Let M be a finitely generated A-module with d =
dimM > 1. Let D(I, M) be an arbitrary extended degree of M with respect to I. Then:
(i) reg(G,;(M)) < DU, M) —1ifd =1;
(i) reg(G;(M)) <29 =V'D(, M)3@=D=1 —1ifd > 2.
In this paper we are interested only in the following special case of extended degrees.
If A is a homomorphic image of a Gorenstein ring S with dimS = n and M € M(A)
with dim M = d, we define the homological degree with respect to I as the number

a1 g y
hdeg (I, M) :=e(I, M)+ > |~ . )hdeg(I, Exts™ (M, 5)),
i
i=0
if d > 0, and hdeg (I, M) = ¢(M) if d = 0. This is a recursive definition on the dimension
since dimExt's™" (M, S) < ifori =0,...,d — 1. If A is not a homomorphic image of a
Gorenstein ring, we define

hdeg (I, M) := hdeg (I, M ®, A),

where A denotes the m-adic completion of A. We can easily verify that hdeg (I, M) is an
extended degree of M with respect to I (see [17] for the case I = m).

Remark. If M is a generalized Cohen—Macaulay module, then

d—1
d—1 A
hdeg (1, M) = e(I, M) + Y ( i )E(H{n(M)).
i=0
For simplicity we put
hdeg (M) := hdeg (m, M).

To study the relationship between hdeg (I, M) and hdeg (M) we shall need the following
observation.

LEMMA 2-2. Assume thatd = dim M > 1. Then
e(M) < eI, M) < n(I)?e(M).
Proof. Since

LM /"™ M) < M /T M) < 6(M DD ppy

we have
e(M) , e(1, Myn(I)? i
Tm + (terms of lower degree) < Tm + (terms of lower degree)
e(M)n(1)? 4
< ——————m" + (terms of lower degree)

d!
for m > 0. Hence e(M) < e(I, M) < n(I)4e(M).
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Similarly, the relationship between hdeg (M) and hdeg (I, M) is given by the following in-
equalities.

LEMMA 2-3. Let (A, m) be a Noetherian local ring and I an m-primary ideal of A. Let
M be a finite generated A-module with dim M = d. Then

hdeg (M) < hdeg (I, M) < n(1)? hdeg (M).
Proof. 1t suffices to prove the case A is a homomorphic image of a Gorenstein ring S.
If d = 0 then hdeg (M) = hdeg (I, M) = ¢(M).
Ifd > 1,weput M; := Ext’g_i(M, S), where n = dim S. It is well known that dim M; < i.
By induction on d we may assume that
hdeg (M;) < hdeg (1, M;) < n(I) hdeg (M;)
fori =0,...,d — 1. Then

d—1

hdeg (M) = e(M) + (d l_ 1) hdeg (M)

i=

0
d—1

<e(,M)+ ) (d l_ 1) hdeg (1, M;)

= hdeg (I, M).
On the other hand, by Lemma 2.2 we have e(I, M) < n(I)?e(M). Therefore

d—1

hdeg (1, M) = e(I, M) + Y (d 1) hdeg (I, M;)

. i
i=0

By

-1
<n(D%e(M) +

g

d—1 .
( . )n(l)’ hdeg (M;)
3 l

1

O
)

. — (d—1
< n() [e(M) + ( ; )hdeg(Mi)]

= n(I)? hdeg (M).

Il
=}

Now we are able to give an explicit bound for the Castelnuovo—-Mumford regularity of
G;(M) in terms of n(I).

THEOREM 2-4. Let (A, m) be a Noetherian local ring, I an m-primary ideal of A and M
a finitely generated A-module withd = dim M > 1. Then:
(1) reg(G;(M)) < n(I)hdeg(M) — 1, ifd =1,
(i) reg(G;(M)) < 2@D'hdeg (M)3¢=D=1p(1)3—4 — 1, ifd > 2.

Proof. Applying Theorem 2-1 for D(I, M) = hdeg (I, M) we have
(1) reg(G;(M)) < hdeg(I, M) — 1, ifd =1,
(i) reg(G;(M)) < 29@D'hdeg (I, M)*“=D"=1 — 1, ifd > 2.
By Lemma 2.3, this implies
(1) reg(G;(M)) < n({)hdeg(M) — 1, ifd=1,
(i) reg(G;(M)) < 2@=D'hdeg (M)3¢=D=1p(1)3—4 — 1, ifd > 2.
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Remark. The bound is the best possible in the case d = 1. For example, if M = A is aregular
local ring and I = m, then we always have reg (G;(M)) = 0 (n(m) = hdeg (A) = 1).
Recall that the postulation number py, (1) of M with respect to I is the least integer m
such that Hy (n) = Py (n) for n > m. We denote by h¢, ) (n) the Hilbert function and by
D, m)(n) the Hilbert polynomial of G;(M). Putr := reg(G,(M)). By [2, theorem 17-1-6]),

d
ha,on(n) = pe,an(m) = Y L(HE, 4 (G1(M))).
i=0
Hence hg, o (n) = pg,n(n) forall n > r + 1. We have

Hy(n) = €M/I""'M) =Y " he,an@) + Y he,an()
i=0 i=r+1
for n > r 4+ 1. From this it follows that Hy(n) = Py (n) for all n > r. Thus py (1) <
reg (G;(M)). Therefore, we obtain the following consequence.

COROLLARY 2:5. Let M be an arbitrary finitely generated A-module with d =
dim(M) > 1. Then

(@) pw(I) < n(I)hdeg (M) — 1, ifd =1,

(i) py(I) < 2@-D'hdeg (M)>¢=D=p()3—4 — 1, ifd > 2.

Remark. In [11, corollary 3], Schwartz proved the existence of a bound for the postulation
number of A with respect to / in terms of 7 (/) under the assumption that the characteristic of
the residue field is 0. He used the method of GrRbner bases which can not be applied to study
the general case. Let R;(A) be the Rees algebra of A with respect to Ooishi [7, lemma 4-8]
proved that reg (G;(A)) = reg(R;(A)). Represent R;(A) = A[T]/J, where A[T] is a
polynomial ring and J is a homogeneous ideal of A[T]. The relation type retype (/) of I is
defined as the largest degree of the minimal generators of J. It is known [15, corollary 1-3
and proposition 4-1] that retype (/) < reg(R;(A)) + 1. Therefore, we obtain the following
bounds for the relation type of [ in terms of n([).

COROLLARY 2-6. Let (A, m) be a noetherian local ring with d = dim(A) > 1 and I an
m-primary ideal. Then
(i) retype (1) < n(I) hdeg (A), ifd=1,
(i) retype (1) < 2@~D'hdeg (A)3@=D=lp(1)3d—4, ifd > 2.
Recall that an ideal J < T is called a reduction of I if I"*! = JI" forn > 0.If J is a
reduction of / and no other reduction of / is contained in J, then J is said to be a minimal

reduction of . If J is a reduction of I, then the reduction number of I with respect to J,
ry(I), is given by

ry(I) :==min{n | I"™' = JI"}.
The reduction number of 7, denoted r (1), is given by
r(I) := min{r;(I)| J is a minimal reduction of 7}.
By [15, proposition 3-2], r(I) < reg(G;(A)). This gives the following consequence.

COROLLARY 2-7. Let (A, m) be a Noetherian local ring withd = dim A > 1 and I an
m-primary ideal of A. Then:
() r(1) < n(I)hdeg (A) — 1, ifd=1;
(i) r(I) <29V hdeg(A)*U-D'=1p(r)¥= — 1, if d > 2.
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Remark. In [11, corollary 4], Schwartz could establish the existence of a bound for the re-
duction number of / in terms of n(/) only for a Cohen—Macaulay ring A in the characteristic
zero case. Vasconcelos [19, theorem 2-45] also gave a bound for the reduction number of /
in terms of e(I, A) and n(I) for a Cohen—Macaulay ring A.

3. Bounds for the Hilbert coefficients

Throughout this section let (A, m) be a Noetherian local ring and / an m-primary ideal
of A. Let M be a finitely generated A-module. Once we have a bound for the postulation
number of M with respect to I, we can derive a bound for the Hilbert coefficients of /
following a method proposed by Vasconcelos [10] (see [8, 9] for the case M = A and
I =m).

THEOREM 3-1. Let (A, m) be a Noetherian local ring and I an m-primary ideal of A.
Let M be a finite generated A-module with dim(M) > 1 and D(I, M) an arbitrary extended
degree of M with respect to I. Then:

@) le(I, M)| < DU, M)ID(I, M) — 1];
(i) |e;(I, M)| < (i + D2"2DU, M) = — 1 if i > 2.

Proof.
Ifd = 1thenreg (G;(M)) < D(I, M) — 1, by Theorem 2-1. This implies

M/ M) = (r + De(I, M) — ey (I, M),
where r = reg (G;(M)). Therefore,

ler(1, M)| = |(r + De(I, M) — £(M /1" M)
< |+ De(I, M) — (r + 1)
< (r+ DleI, M) —1]
< DU, M)[D(I, M) — 1]
=D, M)[D(, M) —1].

If d > 2, without loss of generality we may further assume that the residue field of A is
infinite. Then we may choose x € I\m/ such that its initial form x* is a G ; (M )-filter-regular
element. We have dim M /xM = d — 1. By induction we may assume that

(i) lex(1, M/xM)| < DU, M/xM)[D(I, M/xM) — 1],

() le;(I, M/xM)| < i20=D*2DI, M/xM)*C=D'=1+2 1 ifi =2,...,d — 1.

Since ¢;(I, M) = ¢,;(I, M/xM) fori = 0,...,d — 1 and D(I, M/xM) < D(I, M), this
implies

ler(I, M)| < DU, M)[D(I, M) — 1],

le;(I, M)| < (i + D2"2D(, M)¥' =+ —1,i=2,...,d — 1.

It remains to prove the bound for e, (I, M). We have

- m+d—i
d _ i -
(—=1)eq(I, M) = Py (m) — ;(—n ei(l, M)( Iy )
for all m > 0. Put

m = Z(d_l)!D(I, M)S(d—l)!—l —1.
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Then m > reg G;(M), by Theorem 2-1. Thus Hy,(m) = Py (m). By [8, theorem 2-1] or [5,
theorem 3-6],

Hy(m) = L(M/1"*'M) < DI, M)[(m +5 ) 1) * (’" :l_ii 1_ lﬂ

— D(I, M) (m;d)

Therefore

m+d
Py(m) < D, M)( ) )

Then
d-1

. d—1i
Pu(m) = Y (= De;(1, M) <’" o ’)‘
i=0

d d—1 d—i
<D(1,M)(’”; >+Z|ei<1,M)|<mZ_i l)
i=0

m+d\ m+d—i
— [D([,M)—i—e(l,M)]( d )-I—;M(LMN( d—i )

d—-1
m+d m+d—i

<2D(1,M)( d >+E |€i(1,M)|( d—i )
i=1

lea (1, M)| =

It is easily seen that
d—i ;
(m; . l) <@—i+Dmi =1
—i

for m > 1. Then we obtain
d—1
lea(I, M)| < 2(d + )DL, M)m +dle (I, M)Im*™" + 7 "(d — i + Dlei(1, M)m*~".
i=2

Since 2 <i <d — 1, we have

eI, M) < DI, M)[D(I, M) — 1] < m,

e;(I, M) < (i + 122D, M) — 1 < 4G + DU, M)m.
We thus get
lea(1, M)| < 4(d +1)DU, M)[(m + 1)! — 1]
=4(d + 1)DU, M)[2" DU, M)**~* — 1]
< (d+ D22 D1, MyX—d+l _ 1,
COROLLARY 3-2. Given two positive integers d and q. There exist only a finite number

of Hilbert-Samuel functions for a A-module M with respect to an m-primary ideal I of the
local ring A such thatdim M = d and D(I, M) < q.

Proof. We have Py (n) = £(M/I"*'M) for n > reg(G;(M)). By Theorem 3-1, there are
only a finite number of polynomials Py, (7). On the other hand, by Theorem [8, theorem 2-1]
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or [5, theorem 3-6], there are only a finite number of possibilities for £(M /1" M) for a fixed
n. Hence finiteness of the number of the possibilities for the function £(M /1" M) follows
from the finiteness of possibilities for reg (G;(M)) which have been proved in Theorem 2-1.

Now we are able to give a bound for the Hilbert coefficients of M with respect to I in
terms of the degree of nilpotency of /.

THEOREM 3-3. Let (A, m) be a Noetherian local ring and I an m-primary ideal of A.
Let M be a finitely generated A-module with dim(M) > 1. Then:
(i) e(I, M) < e(M)n(I)*;
(i) le;(I, M)| < hdeg (M)n(I)‘[hdeg (M)n(1)* — 1];
(i) |e;(I, M)| < (i + 1)2¥*2hdeg (M)3* I+ p(1)3i—di+d _ 1 if | > 2.

Proof. We only need to prove (ii) and (iii). Applying Theorem 3-1 we get
ler(1, M)| < hdeg (1, M)[hdeg (I, M) — 1],
le:(I, M)| < (i + 12" 2 hdeg (I, M)*" =T — 1 if i > 2.
By Lemma 2.3, this implies
ler(1, M)| < hdeg (M)n(1)![hdeg (M)n(1)* — 1],
lei (1, M)| < (i + 1222 hdeg (M)¥'" =1 (1)Mi=di+d _ 1 if j > 2,

COROLLARY 3-4. Let M be a finitely generated A-module with dim(M) =d > 1 and r
a positive integer. There exist only a finite number of Hilbert—Samuel functions for a module
M with respect to an m-primary ideal I such thatn(I) < r.

Proof. By definition, the homological degree hdeg (M) of M is determinate. By an argu-
ment analogous to that for the proof of Corollary 3-2 we obtain the conclusion.

Remark. In [11, theorem 1], Schwartz proved that there are only a finite number of Hilbert-
Samuel functions £(A/I") with fixed degree of nilpotency n(/) in the characteristic zero
case.
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