Castelnuovo-Mumford regularity and Degree of nilpotency

By CAO HUY LINH
Department of Mathematics, College of Education, Hue University, 34 Le Loi, Hue City, Vietnam.

(Received 30 September 2005; revised 19 April 2006)

Abstract

In this paper we show that the Castelnuovo-Mumford regularity of the associated graded module with respect to an \mathfrak{m}-primary ideal I is effectively bounded by the degree of nilpotency of I. From this it follows that there are only a finite number of Hilbert-Samuel functions for ideals with fixed degree of nilpotency.

1. Introduction

Let $R=\oplus_{n \geqslant 0} R_{n}$ be a finitely generated standard graded ring over a noetherian commutative ring R_{0}. Let R_{+}be the ideal of R generated by the elements of positive degrees of R. If E is a finitely generated graded R-module, we set

$$
a_{i}(E)= \begin{cases}\max \left\{n \mid H_{R_{+}}^{i}(E)_{n} \neq 0\right\} & \text { if } H_{R_{+}}^{i}(E) \neq 0 \\ -\infty & \text { if } H_{R_{+}}^{i}(E)=0\end{cases}
$$

The Castelnuovo-Mumford regularity of E is the number

$$
\operatorname{reg}(E):=\max \left\{a_{i}(E)+i \mid i \geqslant 0\right\}
$$

Let (A, \mathfrak{m}) be a Noetherian local ring, I an \mathfrak{m}-primary ideal of A and M a finitely generated A-module. We denote by $G_{I}(M)$ the associated graded ring $\bigoplus_{n \geqslant 0} I^{n} M / I^{n+1} M$ of M with respect to I. It is known that the Castelnuovo-Mumford regularity reg $\left(G_{I}(M)\right)$ provides upper bounds for several invariants of M with respect to I such as the postulation number, the relation type and the reduction number [16]. It is of great interest to find upper bounds for reg $\left(G_{I}(M)\right)$ by means of simpler invariants.

Our first main result gives a bound for the Castelnuovo-Mumford regularity of $G_{I}(M)$ in terms of the degree of nilpotency $n(I)$ of I. Recall that the degree of nilpotency is the least integer n such that $\mathfrak{m}^{n} \subseteq I$.

THEOREM 2.4. Let (A, \mathfrak{m}) be a Noetherian local ring and I be an \mathfrak{m}-primary ideal of A. Let M be a finitely generated A-module with $d=\operatorname{dim} A \geqslant 1$. Then:
(i) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant n(I) \operatorname{hdeg}(M)-1 \quad$ if $d=1$;
(ii) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant 2^{(d-1)!} \operatorname{hdeg}(M)^{3(d-1)!-1} n(I)^{3 d!-d}-1 \quad$ if $d \geqslant 2$.

Here hdeg (M) denotes the homological degree of M, which was introduced by Vasconcelos [17] in order to control the complexity of M. If M is a Cohen-Macaulay module, hdeg (M) is the multiplicity (degree) of M. Theorem 2.4 implies effective bounds for the postulation number, the relation type and the reduction number of I in terms of the degree of nilpotency of I. It should be noted that bounds for the postulation number were already established by Schwartz [11] for $M=A$ in the characteristic zero case.
Our proof is based on a bound for reg $\left(G_{I}(M)\right)$ by means of an extended degree, a generalization of the degree, which was introduced by Doering, Gunston and Vasconcelos [3]. Using this bound we are also able to give bounds for the coefficients of the Hilbert-Samuel polynomials.
If we denote by $P_{M}(n)$ the Hilbert-Samuel polynomial associated with the HilbertSamuel function $\ell\left(M / I^{n+1} M\right)$ and if we write

$$
P_{M}(n)=\sum_{i=0}^{d}(-1)^{i} e_{i}(I, M)\binom{m+d-i}{d-i},
$$

then $e_{i}(I, M)$ are called the Hilbert coefficients of M with respect to I. We will set $e(I, M):=e_{0}(I, M)$, the multiplicity of M with respect to I, and $e(M):=e(\mathfrak{m}, M)$.
The Hilbert coefficients have become an interesting subject in recent years [4, 6, 20]. In particular, Srinivas and Trivedi [12-14] gave bounds for the Hilbert coefficients in terms of the dimension, multiplicity, and lengths of local cohomologies for Cohen-Macaulay rings and generalized Cohen-Macaulay modules. Recently, Rossi, Trung and Valla [8] gave bounds for the Hilbert coefficients of A with respect to \mathfrak{m} in terms of an extended degree. We will extend this result to the module case for an arbitrary \mathfrak{m}-primary ideal I. As an application we obtain bounds for the Hilbert coefficients of the Hilbert function in terms of the degree of nilpotency of I and the homological degree of M.

Theorem 3.3. Let (A, \mathfrak{m}) be a Noetherian local ring and I an \mathfrak{m}-primary ideal of A. Let M be a finitely generated A-module with $\operatorname{dim}(M) \geqslant 1$. Then:
(i) $e(I, M) \leqslant e(M) n(I)^{d}$;
(ii) $\left|e_{1}(I, M)\right| \leqslant \operatorname{hdeg}(M) n(I)^{d}\left[\operatorname{hdeg}(M) n(I)^{d}-1\right]$;
(iii) $\left|e_{i}(I, M)\right| \leqslant(i+1) 2^{2 i!+2} \operatorname{hdeg}(M)^{3 i!-i+1} n(I)^{3 d i!-d i+d}-1$ if $i \geqslant 2$.

It follows from Theorem 2.4 and Theorem 3.3 that there are only a finite number of Hilbert-Samuel functions of M for \mathfrak{m}-primary ideals with fixed degree of nilpotency. This extends another result of Schwartz in the characteristic zero case [11].

2. Bounds for the regularity of the associated graded module

Let $\mathcal{M}(A)$ denote the class of finitely generated A-modules. An extended degree on $\mathcal{M}(A)$ with respect to I (see [5]) is a numerical function $D(I, \cdot)$ on $\mathcal{M}(A)$ such that the following properties hold for every module $M \in \mathcal{M}(A)$.
(i) $D(I, M)=D(I, M / L)+\ell(L)$, where L is the maximal submodule of M having finite length,
(ii) $D(I, M) \geqslant D(I, M / x M)$ for a generic x on M with respect to I,
(iii) $D(I, M)=e(I, M)$ if M is a Cohen-Macaulay A-module, where $e(I, M)$ denotes the multiplicity of M with respect to I.

Remark. Any extended degree $D(I, M)$ will satisfy $D(I, M) \geqslant e(I, M)$, where equality holds if and only if M is a Cohen-Macaulay module.

The extended degree $D(I, M)$ is a generalization of the notion $D(M):=D(\mathfrak{m}, M)$ introduced in [3] and [18].

We have the following bound for $\operatorname{reg}\left(G_{I}(M)\right)$ in terms of an extended degree of M with respect to I.

THEOREM $2 \cdot 1$ ([5, theorem 4.4]). Let M be a finitely generated A-module with $d=$ $\operatorname{dim} M \geqslant 1$. Let $D(I, M)$ be an arbitrary extended degree of M with respect to I. Then:
(i) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant D(I, M)-1$ if $d=1$;
(ii) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant 2^{(d-1)!} D(I, M)^{3(d-1)!-1}-1$ if $d \geqslant 2$.

In this paper we are interested only in the following special case of extended degrees.
If A is a homomorphic image of a Gorenstein ring S with $\operatorname{dim} S=n$ and $M \in \mathcal{M}(A)$ with $\operatorname{dim} M=d$, we define the homological degree with respect to I as the number

$$
\operatorname{hdeg}(I, M):=e(I, M)+\sum_{i=0}^{d-1}\binom{d-1}{i} \operatorname{hdeg}^{-}\left(I, \operatorname{Ext}_{S}^{n-i}(M, S)\right)
$$

if $d>0$, and $\operatorname{hdeg}(I, M)=\ell(M)$ if $d=0$. This is a recursive definition on the dimension since $\operatorname{dim} \operatorname{Ext}_{S}^{n-i}(M, S) \leqslant i$ for $i=0, \ldots, d-1$. If A is not a homomorphic image of a Gorenstein ring, we define

$$
\operatorname{hdeg}(I, M):=\operatorname{hdeg}\left(I, M \otimes_{A} \hat{A}\right)
$$

where \hat{A} denotes the \mathfrak{m}-adic completion of A. We can easily verify that $\operatorname{hdeg}(I, M)$ is an extended degree of M with respect to I (see [17] for the case $I=\mathfrak{m}$).
Remark. If M is a generalized Cohen-Macaulay module, then

$$
\operatorname{hdeg}(I, M)=e(I, M)+\sum_{i=0}^{d-1}\binom{d-1}{i} \ell\left(H_{\mathfrak{m}}^{i}(M)\right)
$$

For simplicity we put

$$
\operatorname{hdeg}(M):=\operatorname{hdeg}(\mathfrak{m}, M)
$$

To study the relationship between $\operatorname{hdeg}(I, M)$ and hdeg (M) we shall need the following observation.

Lemma 2.2. Assume that $d=\operatorname{dim} M \geqslant 1$. Then

$$
e(M) \leqslant e(I, M) \leqslant n(I)^{d} e(M)
$$

Proof. Since

$$
\ell\left(M / \mathfrak{m}^{m+1} M\right) \leqslant \ell\left(M / I^{m+1} M\right) \leqslant \ell\left(M / \mathfrak{m}^{n(I)(m+1)} M\right)
$$

we have

$$
\begin{aligned}
\frac{e(M)}{d!} m^{d}+(\text { terms of lower degree }) & \leqslant \frac{e(I, M) n(I)^{d}}{d!} m^{d}+(\text { terms of lower degree }) \\
& \leqslant \frac{e(M) n(I)^{d}}{d!} m^{d}+(\text { terms of lower degree })
\end{aligned}
$$

for $m \gg 0$. Hence $e(M) \leqslant e(I, M) \leqslant n(I)^{d} e(M)$.

Similarly, the relationship between $\operatorname{hdeg}(M)$ and $\operatorname{hdeg}(I, M)$ is given by the following inequalities.

Lemma 2.3. Let (A, \mathfrak{m}) be a Noetherian local ring and I an \mathfrak{m}-primary ideal of A. Let M be a finite generated A-module with $\operatorname{dim} M=d$. Then

$$
\operatorname{hdeg}(M) \leqslant \operatorname{hdeg}(I, M) \leqslant n(I)^{d} \operatorname{hdeg}(M)
$$

Proof. It suffices to prove the case A is a homomorphic image of a Gorenstein ring S.
If $d=0$ then $\operatorname{hdeg}(M)=\operatorname{hdeg}(I, M)=\ell(M)$.
If $d \geqslant 1$, we put $M_{i}:=\operatorname{Ext}_{S}^{n-i}(M, S)$, where $n=\operatorname{dim} S$. It is well known that $\operatorname{dim} M_{i} \leqslant i$. By induction on d we may assume that

$$
\operatorname{hdeg}\left(M_{i}\right) \leqslant \operatorname{hdeg}\left(I, M_{i}\right) \leqslant n(I)^{i} \operatorname{hdeg}\left(M_{i}\right)
$$

for $i=0, \ldots, d-1$. Then

$$
\begin{aligned}
\operatorname{hdeg}(M) & =e(M)+\sum_{i=0}^{d-1}\binom{d-1}{i} \operatorname{hdeg}\left(M_{i}\right) \\
& \leqslant e(I, M)+\sum_{i=0}^{d-1}\binom{d-1}{i} \operatorname{hdeg}\left(I, M_{i}\right) \\
& =\operatorname{hdeg}(I, M)
\end{aligned}
$$

On the other hand, by Lemma $2 \cdot 2$ we have $e(I, M) \leqslant n(I)^{d} e(M)$. Therefore

$$
\begin{aligned}
\operatorname{hdeg}(I, M) & =e(I, M)+\sum_{i=0}^{d-1}\binom{d-1}{i} \operatorname{hdeg}\left(I, M_{i}\right) \\
& \leqslant n(I)^{d} e(M)+\sum_{i=0}^{d-1}\binom{d-1}{i} n(I)^{i} \operatorname{hdeg}\left(M_{i}\right) \\
& \leqslant n(I)^{d}\left[e(M)+\sum_{i=0}^{d-1}\binom{d-1}{i} \operatorname{hdeg}\left(M_{i}\right)\right] \\
& =n(I)^{d} \operatorname{hdeg}(M) .
\end{aligned}
$$

Now we are able to give an explicit bound for the Castelnuovo-Mumford regularity of $G_{I}(M)$ in terms of $n(I)$.

THEOREM 2.4. Let (A, \mathfrak{m}) be a Noetherian local ring, I an \mathfrak{m}-primary ideal of A and M a finitely generated A-module with $d=\operatorname{dim} M \geqslant 1$. Then:
(i) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant n(I) \operatorname{hdeg}(M)-1$,
if $d=1$;
(ii) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant 2^{(d-1)!} \operatorname{hdeg}(M)^{3(d-1)!-1} n(I)^{3 d!-d}-1, \quad$ if $d \geqslant 2$.

Proof. Applying Theorem $2 \cdot 1$ for $D(I, M)=\operatorname{hdeg}(I, M)$ we have
(i) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant \operatorname{hdeg}(I, M)-1, \quad$ if $d=1$,
(ii) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant 2^{(d-1)!} \operatorname{hdeg}(I, M)^{3(d-1)!-1}-1, \quad$ if $d \geqslant 2$.

By Lemma 2•3, this implies
(i) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant n(I) \operatorname{hdeg}(M)-1, \quad$ if $d=1$,
(ii) $\operatorname{reg}\left(G_{I}(M)\right) \leqslant 2^{(d-1)!} \operatorname{hdeg}(M)^{3(d-1)!-1} n(I)^{3 d!-d}-1, \quad$ if $d \geqslant 2$.

Remark. The bound is the best possible in the case $d=1$. For example, if $M=A$ is a regular local ring and $I=\mathfrak{m}$, then we always have $\operatorname{reg}\left(G_{I}(M)\right)=0(n(\mathfrak{m})=\operatorname{hdeg}(A)=1)$.

Recall that the postulation number $\rho_{M}(I)$ of M with respect to I is the least integer m such that $H_{M}(n)=P_{M}(n)$ for $n \geqslant m$. We denote by $h_{G_{I}(M)}(n)$ the Hilbert function and by $p_{G_{I}(M)}(n)$ the Hilbert polynomial of $G_{I}(M)$. Put $r:=\operatorname{reg}\left(G_{I}(M)\right)$. By [2, theorem 17•1.6]),

$$
h_{G_{l}(M)}(n)-p_{G_{l}(M)}(n)=\sum_{i=0}^{d} \ell\left(H_{G_{l}(A)_{+}}^{i}\left(G_{I}(M)\right)\right) .
$$

Hence $h_{G_{I}(M)}(n)=p_{G_{I}(M)}(n)$ for all $n \geqslant r+1$. We have

$$
H_{M}(n)=\ell\left(M / I^{n+1} M\right)=\sum_{i=0}^{r} h_{G_{l}(M)}(i)+\sum_{i=r+1}^{n} h_{G_{l}(M)}(i)
$$

for $n \geqslant r+1$. From this it follows that $H_{M}(n)=P_{M}(n)$ for all $n \geqslant r$. Thus $\rho_{M}(I) \leqslant$ $\operatorname{reg}\left(G_{I}(M)\right)$. Therefore, we obtain the following consequence.

COROLLARY 2.5. Let M be an arbitrary finitely generated A-module with $d=$ $\operatorname{dim}(M) \geqslant 1$. Then
(i) $\rho_{M}(I) \leqslant n(I) \operatorname{hdeg}(M)-1$,

$$
\text { if } d=1 \text {, }
$$

(ii) $\rho_{M}(I) \leqslant 2^{(d-1)!} \operatorname{hdeg}(M)^{3(d-1)!-1} n(I)^{3 d!-d}-1, \quad$ if $d \geqslant 2$.

Remark. In [11, corollary 3], Schwartz proved the existence of a bound for the postulation number of A with respect to I in terms of $n(I)$ under the assumption that the characteristic of the residue field is 0 . He used the method of GrRbner bases which can not be applied to study the general case. Let $R_{I}(A)$ be the Rees algebra of A with respect to Ooishi [7, lemma 4.8] proved that $\operatorname{reg}\left(G_{I}(A)\right)=\operatorname{reg}\left(R_{I}(A)\right)$. Represent $R_{I}(A)=A[T] / J$, where $A[T]$ is a polynomial ring and J is a homogeneous ideal of $A[T]$. The relation type retype (I) of I is defined as the largest degree of the minimal generators of J. It is known [15, corollary 1.3 and proposition 4.1] that retype $(I) \leqslant \operatorname{reg}\left(R_{I}(A)\right)+1$. Therefore, we obtain the following bounds for the relation type of I in terms of $n(I)$.
$\operatorname{CorollaRy} 2 \cdot 6$. Let (A, \mathfrak{m}) be a noetherian local ring with $d=\operatorname{dim}(A) \geqslant 1$ and I an \mathfrak{m}-primary ideal. Then
(i) $\operatorname{retype}(I) \leqslant n(I) \operatorname{hdeg}(A)$,
if $d=1$,
(ii) retype $(I) \leqslant 2^{(d-1)!} \operatorname{hdeg}(A)^{3(d-1)!-1} n(I)^{3 d!-d}$,
if $d \geqslant 2$.
Recall that an ideal $J \subseteq I$ is called a reduction of I if $I^{n+1}=J I^{n}$ for $n \gg 0$. If J is a reduction of I and no other reduction of I is contained in J, then J is said to be a minimal reduction of I. If J is a reduction of I, then the reduction number of I with respect to J, $r_{J}(I)$, is given by

$$
r_{J}(I):=\min \left\{n \mid I^{n+1}=J I^{n}\right\}
$$

The reduction number of I, denoted $r(I)$, is given by

$$
r(I):=\min \left\{r_{J}(I) \mid J \text { is a minimal reduction of } I\right\}
$$

By [15, proposition 3•2], $r(I) \leqslant \operatorname{reg}\left(G_{I}(A)\right)$. This gives the following consequence.
Corollary 2.7. Let (A, \mathfrak{m}) be a Noetherian local ring with $d=\operatorname{dim} A \geqslant 1$ and I an \mathfrak{m}-primary ideal of A. Then:
(i) $r(I) \leqslant n(I) \operatorname{hdeg}(A)-1$,
if $d=1$;
(ii) $r(I) \leqslant 2^{(d-1)!} \operatorname{hdeg}(A)^{3(d-1)!-1} n(I)^{3 d!-d}-1, \quad$ if $d \geqslant 2$.

Remark. In [11, corollary 4], Schwartz could establish the existence of a bound for the reduction number of I in terms of $n(I)$ only for a Cohen-Macaulay ring A in the characteristic zero case. Vasconcelos [19, theorem 2.45] also gave a bound for the reduction number of I in terms of $e(I, A)$ and $n(I)$ for a Cohen-Macaulay ring A.

3. Bounds for the Hilbert coefficients

Throughout this section let (A, \mathfrak{m}) be a Noetherian local ring and I an \mathfrak{m}-primary ideal of A. Let M be a finitely generated A-module. Once we have a bound for the postulation number of M with respect to I, we can derive a bound for the Hilbert coefficients of I following a method proposed by Vasconcelos [10] (see [8, 9] for the case $M=A$ and $I=\mathfrak{m}$).

THEOREM 3•1. Let (A, \mathfrak{m}) be a Noetherian local ring and I an \mathfrak{m}-primary ideal of A. Let M be a finite generated A-module with $\operatorname{dim}(M) \geqslant 1$ and $D(I, M)$ an arbitrary extended degree of M with respect to I. Then:
(i) $\left|e_{1}(I, M)\right| \leqslant D(I, M)[D(I, M)-1]$;
(ii) $\left|e_{i}(I, M)\right| \leqslant(i+1) 2^{i!+2} D(I, M)^{3 i!-i+1}-1 \quad$ if $i \geqslant 2$.

Proof.
If $d=1$ then $\operatorname{reg}\left(G_{I}(M)\right) \leqslant D(I, M)-1$, by Theorem $2 \cdot 1$. This implies

$$
\ell\left(M / I^{r+1} M\right)=(r+1) e(I, M)-e_{1}(I, M)
$$

where $r=\operatorname{reg}\left(G_{I}(M)\right)$. Therefore,

$$
\begin{aligned}
\left|e_{1}(I, M)\right| & =\left|(r+1) e(I, M)-\ell\left(M / I^{r+1} M\right)\right| \\
& \leqslant|(r+1) e(I, M)-(r+1)| \\
& \leqslant(r+1)[e(I, M)-1] \\
& \leqslant D(I, M)[D(I, M)-1] \\
& =D(I, M)[D(I, M)-1] .
\end{aligned}
$$

If $d \geqslant 2$, without loss of generality we may further assume that the residue field of A is infinite. Then we may choose $x \in I \backslash \mathfrak{m} I$ such that its initial form x^{*} is a $G_{I}(M)$-filter-regular element. We have $\operatorname{dim} M / x M=d-1$. By induction we may assume that
(i') $\left|e_{1}(I, M / x M)\right| \leqslant D(I, M / x M)[D(I, M / x M)-1]$,
(ii') $\left|e_{i}(I, M / x M)\right| \leqslant i 2^{(i-1)!+2} D(I, M / x M)^{3(i-1)!-i+2}-1$ if $i=2, \ldots, d-1$.
Since $e_{i}(I, M)=e_{i}(I, M / x M)$ for $i=0, \ldots, d-1$ and $D(I, M / x M) \leqslant D(I, M)$, this implies
$\left|e_{1}(I, M)\right| \leqslant D(I, M)[D(I, M)-1]$,
$\left|e_{i}(I, M)\right| \leqslant(i+1) 2^{i!+2} D(I, M)^{3 i!-i+1}-1, i=2, \ldots, d-1$.
It remains to prove the bound for $e_{d}(I, M)$. We have

$$
(-1)^{d} e_{d}(I, M)=P_{M}(m)-\sum_{i=0}^{d-1}(-1)^{i} e_{i}(I, M)\binom{m+d-i}{d-i}
$$

for all $m \geqslant 0$. Put

$$
m:=2^{(d-1)!} D(I, M)^{3(d-1)!-1}-1
$$

Then $m \geqslant \operatorname{reg} G_{I}(M)$, by Theorem $2 \cdot 1$. Thus $H_{M}(m)=P_{M}(m)$. By [8, theorem 2•1] or [5, theorem 3.6],

$$
\begin{aligned}
H_{M}(m)=\ell\left(M / I^{m+1} M\right) & \leqslant D(I, M)\left[\binom{m+d-1}{d}+\binom{m+d-1}{d-1}\right] \\
& =D(I, M)\binom{m+d}{d}
\end{aligned}
$$

Therefore

$$
P_{M}(m) \leqslant D(I, M)\binom{m+d}{d}
$$

Then

$$
\begin{aligned}
\left|e_{d}(I, M)\right| & =\left|P_{M}(m)-\sum_{i=0}^{d-1}(-1)^{i} e_{i}(I, M)\binom{m+d-i}{d-i}\right| \\
& \leqslant D(I, M)\binom{m+d}{d}+\sum_{i=0}^{d-1}\left|e_{i}(I, M)\right|\binom{m+d-i}{d-i} \\
& =[D(I, M)+e(I, M)]\binom{m+d}{d}+\sum_{i=1}^{d-1}\left|e_{i}(I, M)\right|\binom{m+d-i}{d-i} \\
& \leqslant 2 D(I, M)\binom{m+d}{d}+\sum_{i=1}^{d-1}\left|e_{i}(I, M)\right|\binom{m+d-i}{d-i}
\end{aligned}
$$

It is easily seen that

$$
\binom{m+d-i}{d-i} \leqslant(d-i+1) m^{d-i}-1
$$

for $m \geqslant 1$. Then we obtain

$$
\left|e_{d}(I, M)\right| \leqslant 2(d+1) D(I, M) m^{d}+d\left|e_{1}(I, M)\right| m^{d-1}+\sum_{i=2}^{d-1}(d-i+1)\left|e_{i}(I, M)\right| m^{d-i}
$$

Since $2 \leqslant i \leqslant d-1$, we have

$$
\begin{gathered}
e_{1}(I, M) \leqslant D(I, M)[D(I, M)-1] \leqslant m \\
e_{i}(I, M) \leqslant(i+1) 2^{i!+2} D(I, M)^{3 i!-i+1}-1 \leqslant 4(i+1) D(I, M) m
\end{gathered}
$$

We thus get

$$
\begin{aligned}
\left|e_{d}(I, M)\right| & \leqslant 4(d+1) D(I, M)\left[(m+1)^{d}-1\right] \\
& =4(d+1) D(I, M)\left[2^{d!} D(I, M)^{3 d!-d}-1\right] \\
& \leqslant(d+1) 2^{d!+2} D(I, M)^{3 d!-d+1}-1
\end{aligned}
$$

COROLLARY 3.2. Given two positive integers d and q. There exist only a finite number of Hilbert-Samuel functions for a A-module M with respect to an \mathfrak{m}-primary ideal I of the local ring A such that $\operatorname{dim} M=d$ and $D(I, M) \leqslant q$.

Proof. We have $P_{M}(n)=\ell\left(M / I^{n+1} M\right)$ for $n>\operatorname{reg}\left(G_{I}(M)\right)$. By Theorem 3•1, there are only a finite number of polynomials $P_{M}(n)$. On the other hand, by Theorem [8, theorem 2•1]
or [5, theorem 3.6], there are only a finite number of possibilities for $\ell\left(M / I^{n+1} M\right)$ for a fixed n. Hence finiteness of the number of the possibilities for the function $\ell\left(M / I^{n+1} M\right)$ follows from the finiteness of possibilities for $\operatorname{reg}\left(G_{I}(M)\right)$ which have been proved in Theorem $2 \cdot 1$.

Now we are able to give a bound for the Hilbert coefficients of M with respect to I in terms of the degree of nilpotency of I.

THEOREM 3.3. Let (A, \mathfrak{m}) be a Noetherian local ring and I an \mathfrak{m}-primary ideal of A. Let M be a finitely generated A-module with $\operatorname{dim}(M) \geqslant 1$. Then:
(i) $e(I, M) \leqslant e(M) n(I)^{d}$;
(ii) $\left|e_{1}(I, M)\right| \leqslant \operatorname{hdeg}(M) n(I)^{d}\left[\operatorname{hdeg}(M) n(I)^{d}-1\right]$;
(iii) $\left|e_{i}(I, M)\right| \leqslant(i+1) 2^{2 i!+2} \operatorname{hdeg}(M)^{3 i!-i+1} n(I)^{3 d i!-d i+d}-1$, if $i \geqslant 2$.

Proof. We only need to prove (ii) and (iii). Applying Theorem $3 \cdot 1$ we get

$$
\begin{aligned}
& \left|e_{1}(I, M)\right| \leqslant \operatorname{hdeg}(I, M)[\operatorname{hdeg}(I, M)-1] \\
& \left|e_{i}(I, M)\right| \leqslant(i+1) 2^{i!+2} \operatorname{hdeg}(I, M)^{3 i!-i+1}-1 \text { if } i \geqslant 2 .
\end{aligned}
$$

By Lemma 2•3, this implies

$$
\begin{aligned}
& \left|e_{1}(I, M)\right| \leqslant \operatorname{hdeg}(M) n(I)^{d}\left[\operatorname{hdeg}(M) n(I)^{d}-1\right], \\
& \left|e_{i}(I, M)\right| \leqslant(i+1) 2^{2 i!+2} \operatorname{hdeg}(M)^{3 i!-i+1} n(I)^{3 d i!-d i+d}-1 \text { if } i \geqslant 2,
\end{aligned}
$$

Corollary 3.4. Let M be a finitely generated A-module with $\operatorname{dim}(M)=d \geqslant 1$ and r a positive integer. There exist only a finite number of Hilbert-Samuel functions for a module M with respect to an \mathfrak{m}-primary ideal I such that $n(I) \leqslant r$.

Proof. By definition, the homological degree hdeg (M) of M is determinate. By an argument analogous to that for the proof of Corollary 3.2 we obtain the conclusion.

Remark. In [11, theorem 1], Schwartz proved that there are only a finite number of HilbertSamuel functions $\ell\left(A / I^{n}\right)$ with fixed degree of nilpotency $n(I)$ in the characteristic zero case.

Acknowledgements. The author is grateful to Prof. N. V. Trung for his advice and encouragement.

REFERENCES

[1] D. G. Andrews and M. E. McIntyre. On wave-action and its relatives. J. Fluid Mech. 89 (1978), 647-664.
[2] M. Brodmann and R. Y. Sharp. Local cohomology - An Algebraic Introduction with Geometric Applications (Cambridge University Press, 1998).
[3] L. R. Doering, T. Gunston and W. Vasconcelos. Cohomological degrees and Hilbert functions of graded modules. Amer. J. Math. 120 (1998), 493-504.
[4] S. Huckaba. A d-dimensional extension of a lemma of Huneke's and formulas for the Hilbert coefficients. Proc. Amer. Math. Soc. 124 (1996), 1393-1401.
[5] C. H. Linh. Upper bound for Castelnuovo-Mumford regularity of associated graded modules. Comm. Algebra 33(6) (2005), 1817-1831.
[6] T. Marley. The coefficients of the Hilbert polynomial and the reduction number of an ideal. J. London Math. Soc. (2) 40 (1989), 1-8.
[7] A. Ooishi. Genera and arithmetic genera of commutative rings. Hiroshima Math. J. 17 (1987), 47-66.
[8] M. E. Rossi, N. V. Trung and G. Valla. Castelnuovo-Mumford regularity and extended degree. Trans. Amer. Math. Soc. 355 (2003), no. 5, 1773-1786.
[9] M. E. Rossi, N. V. Trung and G. Valla. Castelnuovo-Mumford regularity and finiteness of Hilbert functions, In: A. Corso et al (eds), Commutative Algebra: Geometric, Homological, Combinatorial and Computational Aspects. Lecture Notes Pure Appl. Math. 244, (CRC Press, 2005).
[10] E. Rossi, G. Valla and W. Vasconcelos. Maximal Hilbert functions. Results in Math. 39 (2001) 99-114.
[11] N. SchWARTZ. Bounds for the postulation numbers of Hilbert functions. J. Algebra 193 (1997), 581615.
[12] V. Srinivas and V. Trivedi. On the Hilbert functions of a Cohen-Macaulay ring. J. Algebraic Geom. 6 (1997), 733-751.
[13] V. Trivedi. Hilbert functions, Castelnuovo-Mumford regularity and uniform Artin-Rees numbers. Manuscripta Math. 94 (1997), 543-558.
[14] V. Trivedi. Finiteness of Hilbert functions for generalized Cohen-Macaulay modules. Comm. Algebra. 29(2) (2001), 805-813.
[15] N. V. Trung. Reduction exponent and degree bound for the defining equations of graded rings. Proc. Amer. Math. Soc. 101 (1987), 229-234.
[16] N. V. Trung. The Castelnuovo-Mumford regularity of the Rees algebra and the associated graded ring. Trans. Amer. Math. Soc. 350 (1998), 2813-2832.
[17] W. VASCONCELOS. The homological degree of module. Trans. Amer. Math. Soc. 350 (1998), 11671179.
[18] W. VASCONCELOS. Cohomological degrees of graded modules. Six lectures on commutative algebra (Bellaterra, 1996). Progr. Math. 166 (1998) 345-392.
[19] W. VASCONCELOS. Integral Closure (Springer Press, 2005).
[20] H. J. WANG. Hilbert coeficients and the associated graded rings. Proc. Amer. Math. Soc. 128 (1999), 964-973.

