MODULES COINVARIANT UNDER THE IDEMPOTENT ENDOMORPHISMS OF THEIR COVERS

A. N. Abyzov, V. T. Le, C. Q. Truong, and A. A. Tuganbaev

UDC 512.553

Abstract

We study the modules that are coinvariant under the idempotent endomorphisms of their covers. Some generalizations of discrete and continuous modules are introduced and inspected on using the theory of covers and envelopes of modules. By way of application, we consider the cases of flat covers, injective envelopes, and pure injective envelopes.

DOI: 10.1134/S0037446619060016
Keywords: quasi-injective module, quasiprojective module, discrete module, continuous module, auto-morphism-coinvariant module, envelope, cover

1. Introduction

Many important classes of the modules close to the injective (projective) may be defined by injective envelopes (projective covers). The quasi-injective modules were introduced in [1] as those invariant under the endomorphisms of their injective envelopes. In the same paper, it was shown that a module M is quasiinjective if and only if each homomorphism from a submodule of M to M is extended to an endomorphism of M. A module is automorphism-invariant provided that it is invariant under the automorphisms of its injective envelope. The automorphism-invariant modules over finite-dimensional algebras were first studied by Dickson and Fuller in [2]. The notion of pseudoinjective module was introduced in [3]; i.e., such a module in which every monomorphism from a submodule of M to M is extended to an endomorphism of M. In [4], it was shown that M is pseudoinjective if and only if M is an automorphism-invariant module. The dual notion to an automorphism-invariant module is that of an automorphism-coinvariant (or dual automorphism-invariant) module. This notion was recently studied in [5-7].

The continuous modules and their extensions, the so-called quasicontinuous modules, were introduced and studied in [8-11] as the module analogs of continuous and quasicontinuous rings which were considered by Utumi in [12]. It was shown in [13] that a module M is quasicontinuous if and only if M is invariant under the idempotent endomorphisms of the injective envelope of M. Many important properties of continuous and quasicontinuous modules and their duals are reflected in [14-19].

The general theory of modules invariant or coinvariant under the automorphisms of their envelopes or covers, respectively, was recently developed in [20-22]. The theory of modules invariant under the idempotent endomorphisms of their envelopes was studied in [23].

In Section 2, we consider the modules coinvariant under the idempotent endomorphisms of their covers. Given an arbitrary class \mathscr{X} of right R-modules closed under the isomorphic images, we introduce and study the notion of lifting \mathscr{X}-module. In the case when R is a perfect right ring and \mathscr{X} is the class of projective right R-modules, the class of lifting \mathscr{X}-modules coincides with the class of right lifting R-modules. In Section 3, we show that the continuous (discrete) modules may be defined by the injective (projective) envelopes (covers). This fact allows us to give the definitions of \mathscr{X}-continuous module and

[^0]Original article submitted November 6, 2018; revised November 6, 2018; accepted March 12, 2019.
\mathscr{X}-discrete module which are the natural and wide generalizations of the notions of continuous module and discrete module. We study the general properties of the endomorphism rings of \mathscr{X}-continuous and \mathscr{X}-discrete modules. We show that every \mathscr{X}-continuous (\mathscr{X}-discrete) module has the finite exchange property. By way of application, we address the cases of projective covers, injective envelopes, and pure injective envelopes.

The Jacobson radical of a ring R is denoted by $J(R)$. The fact that N is a submodule of M (a small submodule and an essential submodule) is denoted by $N \leq M$ (respectively, by $N \ll M$ and $N \leq_{e} M$). The Jacobson radical of a right R-module M is denoted by $J(M)$.

We use the standard notions and facts of ring and module theories (for example, see $[18,24-26]$).

2. \mathscr{X}-Idempotent Coinvariant Modules

We assume that \mathscr{X} is a class of right R-modules which is closed under the isomorphic images and direct summands. A homomorphism $g: X \rightarrow M$ of right R-modules is an \mathscr{X}-cover of a module M provided that
(1) $X \in \mathscr{X}$; and, for every homomorphism $g^{\prime}: X^{\prime} \rightarrow M$ with $X^{\prime} \in \mathscr{X}$, there exists a homomorphism $h: X^{\prime} \rightarrow X$ such that $g^{\prime}=g h$;
(2) $g=g h$ implies that h is an automorphism for every endomorphism $h: X \rightarrow X$.

A module M is a lifting module provided that for every submodule N of M there are submodules M_{1} and M_{2} of M satisfying $M=M_{1} \oplus M_{2}, M_{1} \leq N$, and $M_{2} \cap N \ll M_{2}$.

A module M is a $D 3$-module if $X \cap Y$ is a direct summand of M for all direct summands X and Y of M such that $X+Y=M$. A module M is quasidiscrete provided that M is a lifting module and a $D 3$-module simultaneously.

Proposition 1 [16, Proposition 4.45]. Let $u: P \rightarrow M$ be a projective cover of a module M. The following are equivalent:
(1) M is a quasidiscrete module;
(2) M is an idempotent coinvariant module; i.e., $\alpha(\operatorname{Ker}(u)) \subseteq \operatorname{Ker}(u)$ for every idempotent endomorphism α of P.

Let M be a right R-module. A module M is \mathscr{X}-idempotent coinvariant provided that there exists an \mathscr{X}-cover $u: X \rightarrow M$ such that for every idempotent $g \in \operatorname{End}(X)$ there is an endomorphism $f: M \rightarrow M$ such that the diagram commutes:

Lemma 2. Let $p: X \rightarrow M$ be an epimorphic \mathscr{X}-cover of a right R-module M. If M is an \mathscr{X}-idempotent coinvariant module then for every idempotent $g^{2}=g \in \operatorname{End}(X)$ there is a unique homomorphism $f \in \operatorname{End}(M)$ such that $f p=p g$ and $f^{2}=f$.

Proof. There are $f, f^{\prime} \in \operatorname{End}(M)$ satisfying $f p=p g$ and $f^{\prime} p=p(1-g)$. Then $f^{\prime} f p=f^{\prime} p g=0$. Since p is an epimorphism, $f^{\prime} f=0$. As $p=p g+p(1-g)=f^{\prime} p+f p=\left(f^{\prime}+f\right) p$, we have id $=f^{\prime}+f$. Thus, $f=f^{2} \in \operatorname{End}(M)$. Since p is an epimorphism, f is unique.

Lemma 3. Let $p: X \rightarrow M$ be an epimorphic \mathscr{X}-cover of M. The following are equivalent:
(1) M is an \mathscr{X}-idempotent coinvariant module;
(2) $g(\operatorname{Ker}(p)) \leq \operatorname{Ker}(p)$ for every idempotent endomorphism of X.

PROOF. (1) $\Rightarrow(2)$ is obvious.
$(2) \Rightarrow(1)$: Assume that $g=g^{2} \in \operatorname{End}(X)$. Then $g(\operatorname{Ker}(p)) \leq \operatorname{Ker}(p)$. Consider the homomorphism $\psi: X / g(\operatorname{Ker}(p)) \rightarrow M$ defined as $\psi(x+g(\operatorname{Ker}(p))=p(x)$ for all $x \in X$. Since p is an epimorphism, for
every $m \in M$ there is $x \in X$ such that $m=p(x)$. Consider the mapping

$$
\phi: M \rightarrow X / g(\operatorname{Ker}(p)), \quad m \mapsto g(x)+g(\operatorname{Ker}(p)) .
$$

It is easy to see that ϕ is a homomorphism. Put $f=\psi \phi: M \rightarrow M$. Then

$$
f p(x)=\psi \phi(p(x))=\psi(g(x)+g(\operatorname{Ker}(p))=p g(x)
$$

for every $x \in X$. Hence, $f p=p g$.
Corollary 4. Let $p: X \rightarrow M$ be an epimorphic \mathscr{X}-cover of M. The following are equivalent:
(1) M is an \mathscr{X}-idempotent coinvariant module;
(2) if $X=\bigoplus_{I} X_{i}$ then $\operatorname{Ker}(p)=\bigoplus_{I}\left(X_{i} \cap \operatorname{Ker}(p)\right)$;
(3) if $X=X_{1} \oplus X_{2}$ then $\operatorname{Ker}(p)=\left(X_{1} \cap \operatorname{Ker}(p)\right) \oplus\left(X_{2} \cap \operatorname{Ker}(p)\right)$;
(4) if $e \in \operatorname{End}(X)$ is an idempotent then $\operatorname{Ker}(p)=e(\operatorname{Ker}(p)) \oplus(1-e)(\operatorname{Ker}(p))$.

Lemma 5. Let M be a module, and let N be a direct summand of M. If M is an \mathscr{X}-idempotent coinvariant module and N possesses an \mathscr{X}-cover then N is an \mathscr{X}-idempotent coinvariant module.

Proof. Let $p: X \rightarrow M$ and $p_{1}: X_{1} \rightarrow N$ be some \mathscr{X}-covers, let $\pi: M \rightarrow N$ be a projection, and let $\iota: N \rightarrow M$ be an embedding. Consider an arbitrary idempotent endomorphism g_{1} of X_{1}. There are homomorphisms $h_{1}: X_{1} \rightarrow X$ and $h_{2}: X \rightarrow X_{1}$ satisfying $p h_{1}=\iota p_{1}$ and $p_{1} h_{2}=\pi p$. Hence, $p_{1} h_{2} h_{1}=p_{1}$, and $h_{2} h_{1}$ is an isomorphism. Then $h\left(h_{2} h_{1}\right)=\operatorname{id}_{X_{1}}$ for some homomorphism $h: X_{1} \rightarrow X_{1}$. Let $g=h_{1}\left(g_{1} h\right) h_{2}: X \rightarrow X$. Then g is an idempotent endomorphism of X. Since M is an \mathscr{X}-idempotent coinvariant module, there is a homomorphism $f: M \rightarrow M$ such that $f p=p g$. Let $f_{1}=\pi f \iota$. Then

$$
f_{1} p_{1}=\pi f \iota p_{1}=\pi f p h_{1}=\pi p g h_{1}=\pi p h_{1}\left(g_{1} h\right) h_{2} h_{1}=\pi p h_{1} g_{1}=p_{1} h_{2} h_{1} g_{1}=p_{1} g_{1} .
$$

Thus, N is an \mathscr{X}-idempotent coinvariant module.
Let M_{1} and M_{2} be some right R-modules. A module M_{1} is $\mathscr{X}-M_{2}$-projective provided that there exist \mathscr{X}-covers $p_{1}: X_{1} \rightarrow M_{1}$ and $p_{2}: X_{2} \rightarrow M_{2}$ such that for every homomorphism $g: X_{1} \rightarrow X_{2}$ there is a homomorphism $f: M_{1} \rightarrow M_{2}$ such that the diagram commutes:

If M is \mathscr{X} - M-projective then M is \mathscr{X}-endomorphism coinvariant. The two right R-modules M_{1} and M_{2} are mutually \mathscr{X}-projective provided that M_{1} is $\mathscr{X}-M_{2}$-projective and M_{2} is $\mathscr{X}-M_{1}$-projective.

Lemma 6. Let M_{1} and M_{2} be mutually \mathscr{X}-projective right R-modules, and let $p_{1}: X_{1} \rightarrow M_{1}$ and $p_{2}: X_{2} \rightarrow M_{2}$ be epimorphic \mathscr{X}-covers. If $X_{1} \simeq X_{2}$ then $M_{1} \simeq M_{2}$.

Proof. Let $g: X_{1} \rightarrow X_{2}$ be an isomorphism. By hypothesis, there are homomorphisms $f_{1}: M_{1} \rightarrow$ M_{2} and $f_{2}: M_{2} \rightarrow M_{1}$ such that $f_{1} p_{1}=p_{2} g$ and $f_{2} p_{2}=p_{1} g^{-1}$. Then $f_{1} f_{2} p_{2}=p_{2}$ and $f_{2} f_{1} p_{1}=p_{1}$. Hence, $f_{1} f_{2}=\operatorname{id}_{M_{2}}$ and $f_{2} f_{1}=\operatorname{id}_{M_{1}}$.

Proposition 7. Assume that a module M_{2} possesses an epimorphic \mathscr{X}-cover $p_{2}: X_{2} \rightarrow M_{2}$ and each quotient module M_{1} / A of M_{1} possesses an \mathscr{X}-cover $p_{A}: X_{A} \rightarrow M_{1} / A$ such that for every natural homomorphism $f: M_{1} \rightarrow M_{1} / A$ there exists a split epimorphism $\psi: X_{1} \rightarrow X_{A}$ satisfying $p_{A} \psi=f p_{1}$, where $p_{1}: X_{1} \rightarrow M_{1}$ is an \mathscr{X}-cover. Then if M_{2} is $M_{1}-\mathscr{X}$-projective then M_{2} is M_{1}-projective.

Proof. Let A be a submodule of $M=M_{1} \oplus M_{2}$ such that $M=A+M_{1}$. It is easy to notice that there is a homomorphism $g: M_{2} \rightarrow M_{1} /\left(A \cap M_{1}\right)$ such that $g\left(m_{2}\right)=m_{1}+A \cap M_{1}$ if $a=m_{1}+m_{2}$, where
$m_{1} \in M_{1}, m_{2} \in M_{1}$, and $a \in A$. By hypothesis, we have the commutative diagram

for an epimorphism $\psi: X_{1} \rightarrow X_{1}^{\prime}$, where $p_{1}^{\prime}: X_{1}^{\prime} \rightarrow M_{1} /\left(A \cap M_{1}\right)$ is an \mathscr{X}-envelope, π is the natural homomorphism, and $\psi \iota=1_{X_{1}^{\prime}}$ for some homomorphism $\iota: X_{1}^{\prime} \rightarrow X_{1}$.

By the definition of \mathscr{X}-cover, there exists a homomorphism $f: X_{2} \rightarrow X_{1}^{\prime}$ such that the diagram commutes:

Since M_{2} is $\mathscr{C}-M_{1}$-projective, there is a homomorphism $\phi: M_{2} \rightarrow M_{1}$ such that the diagram commutes:

Given $b \in M_{2}$, there is $x \in X_{2}$ such that $b=p_{2}(x)$. Then

$$
\begin{gathered}
\phi(b)=\phi p_{2}(x)=p_{1} \iota f(x) \\
g(b)=g p_{2}(x)=p_{1}^{\prime} f(x)=p_{1}^{\prime} \psi \iota f(x)=\pi p_{1} \iota f(x)=\pi \phi(b) .
\end{gathered}
$$

Put $C=\left\{\phi\left(m_{2}\right)+m_{2} \mid m_{2} \in M_{2}\right\} \leq M$. Then $M=M_{1} \oplus C$, and $C \leq A$. Hence, M_{2} is M_{1}-projective by [15, 4.12].

Proposition 8. Let $p_{1}: X_{1} \rightarrow M_{1}$ and $p_{2}: X_{2} \rightarrow M_{2}$ be some epimorphic \mathscr{X}-covers, and $\operatorname{Ker}\left(p_{1}\right)$ $\ll X_{1}$. If M_{1} is M_{2}-projective then M_{1} is M_{2} - \mathscr{X}-projective.

Proof. Let $f: X_{1} \rightarrow X_{2}$ be a module homomorphism. Without loss of generality, we may assume that $M_{2}=X_{2} / \operatorname{Ker}\left(p_{2}\right)$, and $p_{2}: X_{2} \rightarrow X_{2} / \operatorname{Ker}\left(p_{2}\right)$ is the natural homomorphism. Put $N=\operatorname{Ker}\left(p_{2}\right)+f\left(\operatorname{Ker}\left(p_{1}\right)\right)$. Since $f\left(\operatorname{Ker}\left(p_{1}\right)\right) \subseteq N$; therefore, $\pi p_{2} f=f_{1} p_{1}$ for some homomorphism $f_{1}: M_{1} \rightarrow X_{2} / N$, where $\pi: X_{2} / \operatorname{Ker}\left(p_{2}\right) \rightarrow X_{2} / N$ is the natural homomorphism. By hypothesis, $\pi f_{2}=f_{1}$ for a homomorphism $f_{2}: M_{1} \rightarrow M_{2}$. By the definition of \mathscr{X}-cover, there is a homomorphism $g: X_{1} \rightarrow X_{2}$ satisfying $p_{2} g=f_{2} p_{1}$. Then, for an arbitrary $x \in X_{1}$ there are $x_{1} \in \operatorname{Ker}\left(p_{1}\right)$ and $x_{2} \in \operatorname{Ker}\left(p_{2}\right)$ such that $(f-g)(x)=x_{2}+f\left(x_{1}\right)$. Since $p_{2}(f-g)\left(x-x_{1}\right)=p_{2}\left(x_{2}+f\left(x_{1}\right)\right)-p_{2} f\left(x_{1}\right)=0$; therefore, $x \in \operatorname{Ker}\left(p_{1}\right)+\operatorname{Ker}\left(p_{2}(f-g)\right)$. Thus, $X_{1}=\operatorname{Ker}\left(p_{1}\right)+\operatorname{Ker}\left(p_{2}(f-g)\right)=\operatorname{Ker}\left(p_{2}(f-g)\right)$. Hence, $(f-g)\left(X_{1}\right) \subseteq \operatorname{Ker}\left(p_{2}\right)$. Since $g\left(\operatorname{Ker}\left(p_{1}\right)\right) \leq \operatorname{Ker}\left(p_{2}\right)$; therefore, $f\left(\operatorname{Ker}\left(p_{1}\right)\right) \leq \operatorname{Ker}\left(p_{2}\right)$. Then $p_{2} f=f^{\prime} p_{1}$ for a homomorphism $f^{\prime}: M_{1} \rightarrow M_{2}$.

The following corollary of Propositions 7 and 8 is important:
Corollary 9 [27]. Let M and N be some right R-modules, and let $\pi_{1}: P \rightarrow M$ and $\pi_{2}: P^{\prime} \rightarrow N$ be some projective covers of M and N, respectively. Then the following are equivalent:
(1) M is N-projective;
(2) for every homomorphism $f: P \rightarrow P^{\prime}$ there is a homomorphism $g: M \rightarrow N$ such that the diagram commutes:

In particular, if $\pi: P \rightarrow M$ is a projective cover of M then M is quasiprojective if and only if $\operatorname{Ker}(\phi)$ is a completely invariant submodule of P.

Theorem 10. Let $M=M_{1} \oplus M_{2}$ be a module, and let $p_{1}: X_{1} \rightarrow M_{1}, p_{2}: X_{2} \rightarrow M_{2}$, and $p_{1} \oplus p_{2}: X_{1} \oplus X_{2} \rightarrow M$ be some \mathscr{X}-covers of right R-modules. If M is \mathscr{X}-idempotent coinvariant then M_{i} is $\mathscr{X}-M_{j}$-projective for every $i \neq j$.

Proof. Let $g: X_{1} \rightarrow X_{2}$ be a homomorphism. Define the homomorphism $g^{\prime}: X_{1} \oplus X_{2} \rightarrow X_{1} \oplus X_{2}$ by the matrix $g^{\prime}=\left(\begin{array}{cc}\operatorname{id}_{X_{1}} & 0 \\ g & 0\end{array}\right)$. Then $g^{\prime 2}=g^{\prime}$. Since M is an \mathscr{X}-idempotent coinvariant module, $f^{\prime} p=p g^{\prime}$ for some $f^{\prime} \in \operatorname{End}(M)$. Let $f=\pi_{2} f^{\prime} \iota_{1}$, where $\iota_{1}: M_{1} \rightarrow M$ is the natural embedding, and $\pi_{2}: M \rightarrow M_{2}$ is the canonical projection. Then $f p_{1}=p_{2} g$. Thus, M_{1} is $\mathscr{X}-M_{2}$-projective.

Theorem 11. Let $M=\bigoplus_{i=1}^{n} M_{i}$ be a module, and let $p_{i}: X_{i} \rightarrow M_{i}$ be some \mathscr{X}-covers. Then the following are equivalent:
(1) $M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ is an \mathscr{X}-endomorphism coinvariant module;
(2) M_{i} and M_{j} are mutually \mathscr{X}-projective for all $i, j \in\{1,2, \ldots, n\}$.

Proof. It suffices to consider the case $n=2$.
$(1) \Rightarrow(2):$ Since every \mathscr{X}-endomorphism coinvariant module is \mathscr{X}-idempotent coinvariant, item (2) follows from Lemma 5 and Theorem 10.
$(2) \Rightarrow(1)$: Assume that M_{i} is an $\mathscr{X}-M_{j}$-projective module for all $i, j \in\{1,2\}$. By [24, Proposition 5.5.4], $p_{1} \oplus p_{2}: X_{1} \oplus X_{2} \rightarrow M_{1} \oplus M_{2}$ is an \mathscr{X}-cover. Let g be an endomorphism of $X_{1} \oplus X_{2}$, let $\iota_{1}: X_{1} \rightarrow X_{1} \oplus X_{2}$ and $\iota_{2}: X_{2} \rightarrow X_{1} \oplus X_{2}$ be some embeddings, and let $\pi_{1}: X_{1} \oplus X_{2} \rightarrow X_{1}$ and $\pi_{2}: X_{1} \oplus X_{2} \rightarrow X_{2}$ be the canonical projections. Since M_{i} and M_{j} are mutually \mathscr{X}-projective for all $i, j \in\{1,2\}$; there is a homomorphism $f_{j i}: M_{i} \rightarrow M_{j}$ such that $p_{j}\left(\pi_{j} g \iota_{i}\right)=f_{j i} p_{i}$. Let $f: M_{1} \oplus M_{2} \rightarrow M_{1} \oplus M_{2}$ be an endomorphism whose matrix is $\left(\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right)$. Then $\left(p_{1} \oplus p_{2}\right) g=f\left(p_{1} \oplus p_{2}\right)$. Thus, $M=M_{1} \oplus M_{2}$ is an \mathscr{X}-endomorphism coinvariant module.

Corollary 12. A module M is an \mathscr{X}-endomorphism coinvariant if and only if $M \oplus M$ is an \mathscr{X} endomorphism coinvariant module.

Corollary 13. Let $M=\bigoplus_{i=1}^{n} M_{i}$ be a right module over a perfect right ring. The following are equivalent:
(1) $M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ is a quasiprojective module;
(2) M_{i} and M_{j} are mutually projective for all $i, j \in\{1,2, \ldots, n\}$.

Corollary 14. If M is a right module over a perfect right ring then M is a quasiprojective module if and only if $M \oplus M$ is a quasiprojective module.

A module M is pure infinite provided that $M=M \oplus M$. If M is not isomorphic to a proper direct summand then M is directly finite.

Theorem 15. Let M be an \mathscr{X}-idempotent coinvariant module, and let $p: X \rightarrow M$ be an epimorphic \mathscr{X}-cover of M. The following are equivalent:
(1) M is pure infinite if and only if X is pure infinite module;
(2) if X is a directly finite module then M is directly finite;
(3) if \mathscr{X} is the class of projective modules and M is not directly finite then $M=M_{1} \oplus M_{2} \oplus M_{3}$, where $M_{1} \cong M_{2} \neq 0$.

Proof. (1): (\Rightarrow) Assume that M is infinite. Then $M=M_{1} \oplus M_{2}$, where $M_{1} \simeq M_{2} \simeq M$. Let $p_{1}: X_{1} \rightarrow M_{1}$ and $p_{2}: X_{2} \rightarrow M_{2}$ be \mathscr{X}-envelopes. Clearly, $X \simeq X_{1} \oplus X_{2}$ and $X \simeq X_{1} \simeq X_{2}$. Thus, X is pure infinite.
(\Leftarrow) Assume that $X=X_{1} \oplus X_{2}$ and $X_{1} \simeq X_{2} \simeq X$. Then $X_{1}=e(X)$ and $X_{2}=(1-e)(X)$ for some $e^{2}=e \in \operatorname{End}(X)$. By Corollary $4 \operatorname{Ker}(p)=e(\operatorname{Ker}(p)) \oplus(1-e)(\operatorname{Ker}(p))$. Then

$$
X / \operatorname{Ker}(p) \simeq X_{1} / e(\operatorname{Ker}(p)) \oplus X_{2} /(1-e)(\operatorname{Ker}(p))
$$

Denote $M_{1}=X_{1} / e(\operatorname{Ker}(p))$ and $M_{2}=X_{2} /(1-e)(\operatorname{Ker}(p))$. Show that the natural homomorphisms $p_{1}: X_{1} \rightarrow M_{1}$ and $p_{2}: X_{2} \rightarrow M_{2}$ are \mathscr{X}-envelopes. Let $\iota: M_{1} \rightarrow M_{1} \oplus M_{2}$ and $\iota^{\prime}: X_{1} \rightarrow X_{1} \oplus X_{2}$ be the natural embeddings, and let $\pi: M_{1} \oplus M_{2} \rightarrow M_{1}$ and $\pi^{\prime}: X_{1} \oplus X_{2} \rightarrow X_{1}$ be the projections. Consider an arbitrary homomorphism $f: U \rightarrow M_{1}$, where $U \in \mathscr{X}$. Since $p_{1} \oplus p_{2}: X_{1} \oplus X_{2} \rightarrow M_{1} \oplus M_{2}$ is an \mathscr{X}-envelope, $\left(p_{1} \oplus p_{2}\right) g=\iota f$ for a homomorphism $g: U \rightarrow X_{1} \oplus X_{2}$, and so $f=\pi \iota f=\pi\left(p_{1} \oplus p_{2}\right) \iota^{\prime} \pi^{\prime} g=$ $p_{1} \pi^{\prime} g$. Assume that $p_{1} \alpha=p_{1}$ for a homomorphism $\alpha: X_{1} \rightarrow X_{1}$. Then $\left(p_{1} \oplus p_{2}\right)\left(\alpha \oplus 1_{X_{2}}\right)=p_{1} \oplus p_{2}$. By the definition of \mathscr{X}-envelope, $\alpha \oplus 1_{X_{2}}$ is an isomorphism, and so α is an isomorphism as well. Thus, $p_{1}: X_{1} \rightarrow M_{1}$ is an \mathscr{X}-envelope. Analogously, $p_{2}: X_{2} \rightarrow M_{2}$ is an \mathscr{X}-envelope. By Theorem $10, M_{1}$ and M_{2} are mutually \mathscr{X}-projective. Then Lemma 6 implies $M_{1} \simeq M_{2} \simeq M$. Thus, M is pure infinite.
(2): Assume that M is not directly finite. Then $M=M_{1} \oplus M_{2}$, where $M_{1} \simeq M$ and $M_{2} \neq 0$. It is easy to see that $X \simeq X_{1} \oplus X_{2}$ and $X_{1} \simeq X$. Thus, X is not directly finite.
(3): By (2), X is not directly finite. Then there are some submodules X_{1}, X_{2}, and X_{3} of X such that $X=X_{1} \oplus X_{2} \oplus X_{3}$, where $X_{1} \neq 0$ and $X_{1} \simeq X_{2}$. The equalities $X_{1}=e_{1}(X), X_{2}=e_{2}(X)$, and $X_{3}=e_{3}(X)$ hold for some orthogonal idempotents $\left\{e_{1}, e_{2}, e_{3}\right\}$ in $\operatorname{End}(X)$. By Corollary 4

$$
\operatorname{Ker}(p)=e_{1}(\operatorname{Ker}(p)) \oplus e_{2}(\operatorname{Ker}(p)) \oplus e_{3}(\operatorname{Ker}(p)) .
$$

Then

$$
X / \operatorname{Ker}(p) \simeq X_{1} / e_{1}(\operatorname{Ker}(p)) \oplus X_{2} / e_{2}(\operatorname{Ker}(p)) \oplus X_{3} / e_{3}(\operatorname{Ker}(p)) .
$$

Denote $M_{1}=X_{1} / e(\operatorname{Ker}(p)), M_{2}=X_{2} /(1-e)(\operatorname{Ker}(p))$, and $M_{3}=X_{3} / e_{3}(\operatorname{Ker}(p))$. Then $M \simeq M_{1} \oplus$ $M_{2} \oplus M_{3}$. Since $\pi_{i}: X_{i} \rightarrow X_{i} / e_{i}(\operatorname{Ker}(p))$ is an \mathscr{X}-envelope for every $1 \leq i \leq 3$; therefore, $M_{1} \simeq M_{2}$.

Let M be a right R-module. A module M is a lifting \mathscr{X}-module provided that there is an \mathscr{X}-cover $p: X \rightarrow M$ of M such that for every idempotent $g \in \operatorname{End}(X)$ there is an idempotent $f: M \rightarrow M$ such that $g(X)+\operatorname{Ker}(p)=p^{-1}(f(M))$.

The following is immediate:
Proposition 16. Let $p: X \rightarrow M$ be an epimorphic \mathscr{X}-cover. If M is an \mathscr{X}-idempotent coinvariant module then M is a lifting \mathscr{X}-module.

Proposition 17. Let N be a direct summand of M. If M is a lifting \mathscr{X}-module that possesses an epimorphic \mathscr{X}-cover, and N has an \mathscr{X}-cover; then N is a lifting \mathscr{X}-module.

Proof. Let $p_{1}: X_{1} \rightarrow N$ be an \mathscr{X}-cover. It is easy to see that X_{1} is isomorphic to a direct summand K of X such that $\left.p\right|_{K}: K \rightarrow N$ is an \mathscr{X}-cover of N. Thus, we may assume that $p_{1}=\left.p\right|_{X_{1}}$: $X_{1} \rightarrow N$ is an \mathscr{X}-cover of N and X_{1} is a direct summand of X. Let $g: X_{1} \rightarrow X_{1}$ be an idempotent endomorphism of X_{1}. Consider the homomorphism $g^{\prime}=\iota g \pi: X \rightarrow X$, where $\iota: X_{1} \rightarrow X$ and $\pi: X \rightarrow X_{1}$ are embeddings. Then $g^{\prime 2}=g^{\prime}$. Since M is a lifting \mathscr{X}-module, there is a homomorphism $f^{\prime 2}=f^{\prime}: M \rightarrow M$ such that $g^{\prime}(X)+\operatorname{Ker}(p)=p^{-1}\left(f^{\prime}(M)\right)$. Then $f^{\prime}(M)=p\left(g\left(X_{1}\right)\right)=p_{1}\left(g\left(X_{1}\right)\right) \leq N$, and so $f^{\prime}(M)$ is a direct summand of N. There is an idempotent homomorphism $f: N \rightarrow N$ such that $p_{1}\left(g\left(X_{1}\right)\right)=f^{\prime}(M)=f(N)$. Then $g\left(X_{1}\right)+\operatorname{Ker}\left(p_{1}\right)=p_{1}^{-1}(f(N))$. Thus, N is a lifting \mathscr{X}-module.

Let $p: X \rightarrow M$ be an \mathscr{X}-cover of M, and let A be a submodule of M. A submodule A is \mathscr{X}-coclosed in M provided that $A=p(g(X))$ for an idempotent endomorphism $g \in \operatorname{End}(X)$.

Theorem 18. Let $p: X \rightarrow M$ be an epimorphic \mathscr{X}-cover. The following are equivalent:
(1) M is a lifting \mathscr{X}-module;
(2) each \mathscr{X}-coclosed submodule of M is a direct summand of M.

Proof. (1) \Rightarrow (2): Let $U=p(g(X))$, where $g^{2}=g \in \operatorname{End}(X)$. There exists an endomorphism $f^{2}=f \in \operatorname{End}(M)$ such that $g(X)+\operatorname{Ker}(p)=p^{-1}(f(M))$. Hence, $U=p(g(X))=f(M)$ is a direct summand of M.
$(2) \Rightarrow(1)$: Let g be an idempotent in $\operatorname{End}(X)$. By hypothesis, $U=p(g(X))$ is a direct summand of M. There exists a homomorphism $f^{2}=f \in \operatorname{End}(M)$ such that $p(g(X))=f(M)$. Then $g(X)+$ $\operatorname{Ker}(p)=p^{-1}(f(M))$. Thus, M is a lifting \mathscr{X}-module.

If \mathscr{X} is the class of projective right R-modules then the standard argument shows that a right module M over a perfect right ring R is a lifting \mathscr{X}-module if and only if M is a lifting module [28, Theorem 2.6].

By the end of this section we assume that all modules M under consideration possess \mathscr{C}-covers $p: X \rightarrow M$, where \mathscr{C} is the class of modules which satisfies the conditions
(1) \mathscr{C} is closed under isomorphisms;
(2) each quotient module M / A for M possesses an epimorphic \mathscr{C}-cover $p_{M / A}: X_{M / A} \rightarrow M / A$ such that $\operatorname{Ker}\left(p_{M / A}\right) \ll X_{M / A}$;
(3) for every direct summand N of M and every natural homomorphism $\pi: N \rightarrow N / A$, there exists a split epimorphism $\psi: X_{N} \rightarrow X_{N / A}$ such that the diagram commutes:

A module M is an SSP-module provided that the sum of two direct summands of M is a direct summand of M.

Proposition 19. Let $M=M_{1} \oplus M_{2}$ be a module, and let $p_{i}: X_{i} \rightarrow M_{i}, i=1,2$, and $p=p_{1} \oplus p_{2}$: $X_{1} \oplus X_{2} \rightarrow M$ be \mathscr{C}-covers. If X is an SSP-module and each \mathscr{C}-coclosed submodule $N \leq M$ satisfying either $N+M_{1}=M$ or $N+M_{2}=M$ is a direct summand of M; then M is a lifting \mathscr{C}-module.

Proof. Let X be an SSP-module, and let $N=p(g(X))$ be a \mathscr{C}-coclosed submodule of M, where g is an idempotent of $\operatorname{End}(X)$. Then the submodule $H=g(X)+X_{2}$ is a direct summand of X. Hence, $p(H)$ is a \mathscr{C}-coclosed submodule of M. On the other hand, $X=H+X_{1}$, and so $M=p(H)+M_{1}$. By hypothesis, $p(H)$ is a direct summand of M. Then $M=p(H) \oplus H^{\prime}$ for a submodule H^{\prime} of M. It is easy to notice that $H^{\prime}=p\left(X^{\prime}\right)$ for a direct summand X^{\prime} of X such that $\left.p\right|_{X^{\prime}}: X^{\prime} \rightarrow H^{\prime}$ is a \mathscr{C}-cover. Since $X^{\prime}+g(X)$ is a direct summand of X; therefore, $p g(X) \oplus H^{\prime}=p\left(g(X)+X^{\prime}\right)$ is a \mathscr{C}-coclosed submodule of M. Since $M=p(g(X))+p\left(X_{2}\right)+H^{\prime}, M=\left[p g(X) \oplus H^{\prime}\right]+M_{2}$. So, $p g(X) \oplus H^{\prime}$ is a direct summand of M. Thus, $N=p g(X)$ is a direct summand of M.

Theorem 20. The following are equivalent:
(1) M is a \mathscr{C}-idempotent coinvariant module;
(2) M is a lifting \mathscr{C}-module, and M_{1} and M_{2} are mutually \mathscr{C}-projective for every decomposition $M=M_{1} \oplus M_{2}$;
(3) M is a lifting \mathscr{C}-module, and M_{1} and M_{2} are mutually projective for every decomposition $M=$ $M_{1} \oplus M_{2}$.

Proof. (1) \Rightarrow (2) follows from Theorem 10 and Proposition 16.
$(2) \Rightarrow(3)$ follows from Proposition 7.
$(3) \Rightarrow(1)$: Assume that $p: X \rightarrow M$ is an epimorphic \mathscr{C}-cover of M. Let g be an idempotent in $\operatorname{End}(X)$. Since M is a lifting \mathscr{C}-module, $A=p(g(X))$ and $B=p((1-g)(X)$ are direct summands
of M. Then $A+B=M$ and $M=B \oplus B^{\prime}$ for some $B^{\prime} \leq M$. Since A is B-projective, there is a submodule $C \leq A$ such that $M=B \oplus C$. Let $\pi: B \oplus C \rightarrow C$ be the canonical projection. For every $x \in X$ there are $x_{1}, y_{1}, y_{2} \in X$ such that $p g\left(y_{1}\right)+p(1-g)\left(y_{2}\right) \in C$ and

$$
p(x)=p(1-g)\left(x_{1}\right)+p g\left(y_{1}\right)+p(1-g)\left(y_{2}\right)=p g(x)+p(1-g)(x)
$$

Then

$$
\begin{aligned}
0 & =p(1-g)\left(x_{1}\right)+p(1-g)\left(y_{2}\right)-p(1-g)(x)+p g\left(y_{1}\right)-p g(x) \\
& =p\left[(1-g)\left(x_{1}\right)+(1-g)\left(y_{2}\right)-(1-g)(x)+g\left(y_{1}\right)-g(x)\right]
\end{aligned}
$$

Thus,

$$
(1-g)\left(x_{1}\right)+(1-g)\left(y_{2}\right)-(1-g)(x)+g\left(y_{1}\right)-g(x) \in \operatorname{Ker}(p)
$$

Hence, $g\left(y_{1}\right)-g(x) \in g(\operatorname{Ker}(p))$. Let $a \in \operatorname{Ker}(p)$ be such that $g\left(y_{1}\right)-g(x)=g(a)$. Since $p g\left(y_{1}\right)+p(1-$ $g)\left(y_{2}\right) \in C \leq A=p g(X)$; therefore, $(1-g)\left(y_{2}\right) \in(1-g)(\operatorname{Ker}(p))$, and $(1-g)\left(y_{2}\right)=(1-g)(b)$ for some $b \in \operatorname{Ker}(p)$. Then

$$
\begin{gathered}
(\pi p-p g)(x)=p g\left(y_{1}\right)+p(1-g)\left(y_{2}\right)-p g(x)=p\left[g\left(y_{1}\right)-g(x)\right]+p(1-g)\left(y_{2}\right) \\
=p(g(a))+p(1-g)(b)=(\pi p-p g)(-a)+(\pi p-p g)(b)
\end{gathered}
$$

Hence, $X=\operatorname{Ker}(p)+\operatorname{Ker}(\pi p-p g)$. Since $\operatorname{Ker}(p) \ll X, \pi p-p g=0$. Thus, M is a \mathscr{C}-idempotent coinvariant module.

Corollary 21. Let R be a perfect right ring. If M is a right R-module then the following are equivalent:
(1) M is a quasidiscrete module;
(2) M is a lifting module, and M_{1} and M_{2} are mutually projective for every decomposition $M=$ $M_{1} \oplus M_{2}$.

3. \mathscr{X}-Discrete and \mathscr{X}-Continuous Modules

Let M be a right R-module, let $p: X \rightarrow M$ be an \mathscr{X}-cover of M, and let $S=\operatorname{End}(X)$. If $p g_{1}=f p=p g_{2}$ for some homomorphisms $g_{1}, g_{2} \in S$ and $f \in \operatorname{End}(M)$ then $p\left(g_{1}-g_{2}\right) h=0$ for every $h \in S$, and so $p=p\left(1-\left(g_{1}-g_{2}\right) h\right)$. Then $1-\left(g_{1}-g_{2}\right) h$ is an automorphism. Thus, $g_{1}-g_{2} \in J(S)$, and the ring homomorphism $\Phi: \operatorname{End}(M) \rightarrow S / J(S)$ is defined, which acts by the rule $\Phi(f)=f^{\prime}+J(S)$, where $f^{\prime}: X \rightarrow X$ is a homomorphism such that $p f^{\prime}=f p$. Denote the kernel of Φ by $\nabla(M)=\operatorname{Ker}(\Phi)$. Then we have an embedding $\bar{\Phi}: M / \nabla(M) \rightarrow S / J(S)$. It is easy to notice that if \mathscr{X} is the class of projective right R-modules then $\nabla(M)=\{f \in \operatorname{End}(M) \mid f(M) \ll M\}$.

Lemma 22. Let R be a perfect right ring, let M be a quasidiscrete right R-module, and let $p: P \rightarrow M$ be a projective cover of M. The following are equivalent:
(1) M is a discrete module;
(2) if $p e_{i}=e_{i}^{\prime} p, i=1,2$, for some idempotents $e_{1}, e_{2} \in \operatorname{End}(P)$ and $e_{1}^{\prime}, e_{2}^{\prime} \in \operatorname{End}(M)$, the diagram commutes:

for some homomorphisms α, α^{\prime}, and α is an isomorphism then α^{\prime} is an isomorphism.
Proof. (1) $\Rightarrow(2)$: Let M be a discrete module, let $e_{1}, e_{2} \in \operatorname{End}(P)$ and $e_{1}^{\prime}, e_{2}^{\prime} \in \operatorname{End}(M)$ be some idempotents, let $\alpha: e_{1}(P) \rightarrow e_{2}(P)$ be an isomorphism, let $\alpha: e_{1}^{\prime}(M) \rightarrow e_{2}^{\prime}(M)$ be a homomorphism, and $p e_{i}=e_{i}^{\prime} p, i=1,2, p \alpha=\alpha^{\prime} p$. Clearly, α^{\prime} is an epimorphism. Since M is discrete, $e_{1}^{\prime}(M)=\operatorname{Ker}\left(\alpha^{\prime}\right) \oplus N$ with $N \leq M$. Since $p_{\mid e_{1}(P)}^{-1}\left(\operatorname{Ker}\left(\alpha^{\prime}\right)\right)=\operatorname{Ker}(p \alpha)$ is a small submodule of $e_{1}(P)$, we have $\operatorname{Ker}\left(\alpha^{\prime}\right)=0$.
$(2) \Rightarrow(1)$: Assume that M satisfies the hypotheses of (2). Let $e \in \operatorname{End}(M)$, and let $f: M \rightarrow e M$ be an epimorphism. Consider a projective envelope $p^{\prime}: P^{\prime} \rightarrow e M$ of $e M$. We have $p^{\prime} \alpha=f p$ for some homomorphism $\alpha: P \rightarrow P^{\prime}$. It is easy to notice that α is an epimorphism. Then $P=P_{0} \oplus \operatorname{Ker}(\alpha)$, where $P_{0} \leq P$. Since M is a quasidiscrete module, $M=p\left(P_{0}\right) \oplus p(\operatorname{Ker}(\alpha))$. By (2), $f_{\mid p\left(P_{0}\right)}$ is an isomorphism. Thus, f is a split epimorphism.

In this section we assume unless otherwise stated that \mathscr{X} is the class of right R-modules which is closed under the isomorphisms, $p: X \rightarrow M$ is an epimorphic \mathscr{X}-cover of a right R-module M, and $S=\operatorname{End}(X)$ is a semiregular ring. By Lemma 2, for every idempotent $e^{2}=e \in \operatorname{End}(X)$ there is a unique idempotent $f \in \operatorname{End}(M)$ such that $p e=f p$. In what follows, we denote this idempotent by \hat{e}.

Let $p: X \rightarrow M$ be an \mathscr{X}-cover of M. A module M is \mathscr{X}-discrete provided that
(1) M is an \mathscr{X}-idempotent coinvariant module;
(2) if for some idempotents $e_{1}, e_{2} \in \operatorname{End}(X)$ and homomorphisms α and α^{\prime} the diagram commutes:

while α is an isomorphism; then α^{\prime} is an isomorphism.
Lemma 23. If M is an \mathscr{X}-idempotent coinvariant module then all idempotents in $\operatorname{End}(M) / \nabla(M)$ are lifted modulo the ideal $\nabla(M)$.

Proof. Let $s+\nabla(M)$ be an idempotent in $\operatorname{End}(M) / \nabla(M)$. Then $\bar{\Phi}(s+\nabla(M))=s^{\prime}+J(S)$ is an idempotent in $S / J(S)$, where $s p=p s^{\prime}$. Since S is a semiregular ring, there is an idempotent ε in S such that $s^{\prime}+J(S)=\varepsilon+J(S)$. Since M is \mathscr{X}-idempotent coinvariant, by Lemma 2 there is an idempotent e in $\operatorname{End}(M)$ satisfying $\bar{\Phi}(e+\nabla(M))=\varepsilon+J(S)$. Hence, $s+\nabla(M)=e+\nabla(M)$.

Theorem 24. If M is an \mathscr{X}-discrete module then $\operatorname{End}(M)$ is semiregular and $J(\operatorname{End}(M))=\nabla(M)$.
Proof. Let $T=\operatorname{End}(M)$ and $\nabla=\nabla(M)$. Consider an arbitrary endomorphism $\alpha: M \rightarrow M$. Then $p \beta=\alpha p$ for an endomorphism $\beta: X \rightarrow X$. Let $\bar{S}=S / J(S)$. Given $y \in S$, denote the coset $y+J(S)$ by \bar{y}. We use an analogous notation for the ring T / ∇. Since \bar{S} is a regular ring, there is $x \in S$ such that $\bar{\beta}=\bar{\beta} \bar{x} \bar{\beta}$. Let $\bar{e}=\bar{x} \bar{\beta}$ and $\bar{f}=\bar{\beta} \bar{x}$. Then $\bar{e}^{2}=\bar{e}, \bar{f}^{2}=\bar{f}$ and $\bar{\beta}=\bar{\beta} \bar{e}, \bar{f} \bar{\beta} \bar{e}=\bar{\beta}$. Since the idempotents in S are lifted modulo $J(S)$, we may assume without loss of generality that $e, f \in S$ are some idempotents. Since

$$
(\bar{e} \bar{x} \bar{f})(\bar{f} \bar{\beta} \bar{e})=\bar{e} \bar{x}(\bar{f} \bar{\beta} \bar{e})=\bar{e} \bar{x} \bar{\beta}=\bar{e},
$$

we have $(e x f)(f \beta e)=e+j$ for some $j \in J(S)$. Thus, $(e x f)(f \beta e)=e+e j e$. Since $e+e j e \in U(e S e)$, there is $x^{\prime} \in S$ such that $\left(e x^{\prime} f\right)(f \beta e)=e$. Hence, $f \beta e: e(X) \rightarrow f(X)$ is a monomorphism.

On the other hand, $(\bar{f} \bar{\beta} \bar{e})(\bar{e} \bar{x} \bar{f})=\bar{\beta}(\bar{e} \bar{x} \bar{f})=(\bar{\beta} \bar{x} \bar{x}) \bar{f}=\bar{f}$. So there is $j^{\prime} \in J(S)$ such that $(f \beta e)(e x f)=$ $f+j^{\prime}$. Therefore, $(f \beta e)\left(e x^{\prime \prime} f\right)=f$ for some $x^{\prime \prime} \in S$. Thus, $f \beta e: e(X) \rightarrow f(X)$ is an isomorphism. Since $\hat{e} p=p e$ and $\hat{f} p=p f$, the diagram commutes:

Since M is an \mathscr{X}-discrete module, $\hat{f} \alpha \hat{e}: \hat{e}(M) \rightarrow \hat{f}(M)$ is an isomorphism. Let $\hat{e} \alpha^{\prime} \hat{f}: \hat{f}(M) \rightarrow \hat{e}(M)$ be an inverse homomorphism to $\hat{f} \alpha \hat{e}$. Then $(\hat{f} \alpha \hat{e})\left(\hat{e} \alpha^{\prime} \hat{f}\right)=\hat{f}$ and $\left(\hat{e} \alpha^{\prime} \hat{f}\right)(\hat{f} \alpha \hat{e})=\hat{e}$.

Let $\gamma=\hat{e} \alpha^{\prime} \hat{f} \in T$. Then

$$
\bar{\Phi}(\overline{\alpha \gamma \alpha})=\bar{\beta} \bar{\Phi}(\bar{\gamma}) \bar{\beta}=\bar{\beta} \Phi(\gamma) \bar{f} \bar{\beta} \bar{e}=\bar{\beta} \Phi(\gamma) \Phi(\hat{f} \alpha \hat{e})=\bar{\beta} \Phi(\gamma(\hat{f} \alpha \hat{e}))=\bar{\beta} \Phi(\hat{e})=\bar{\beta} \bar{e}=\bar{\beta}=\bar{\Phi}(\bar{\alpha}) .
$$

Since $\bar{\Phi}$ is injective, $\overline{\alpha \gamma \alpha}=\bar{\alpha}$. Thus, T / ∇ is a regular ring.

Show that $J(T)=\nabla$. Since T / ∇ is regular, $J(T) \leq \nabla$. Prove an inverse inclusion. Let $\alpha \in \nabla$, and let $\beta: X \rightarrow X$ be a homomorphism satisfying $\alpha p=p \beta$. Then $0=\bar{\Phi}(\alpha+\nabla)=\beta+J(S)$, and so $\beta \in J(S)$. Given an arbitrary $\gamma: M \rightarrow M$, let γ^{\prime} be an endomorphism of X such that $\gamma p=p \gamma^{\prime}$. Since $\bar{\Phi}(\alpha \gamma+\nabla)=\beta \gamma^{\prime}+J(S)=0$; therefore, $1_{X}-\beta \gamma^{\prime}$ is an isomorphism. Since M is \mathscr{X}-discrete, $1_{M}-\alpha \gamma$ is an isomorphism for every $\gamma \in T$. Thus, $\alpha \in J(T)$.

Theorem 25. If M is an \mathscr{X}-idempotent coinvariant module then M is \mathscr{X}-discrete if and only if $\nabla(M)=J(\operatorname{End}(M))$ and $\operatorname{End}(M) / \nabla(M)$ is a regular ring.

Proof. Necessity follows from Theorem 24. Assume that $\nabla(M)=J(\operatorname{End}(M))$ and $\operatorname{End}(M) / \nabla(M)$ is regular. Show that M is \mathscr{X}-discrete. Let $T=\operatorname{End}(M)$ and $S=\operatorname{End}(X)$. Consider the commutative diagram

where α is an isomorphism, while e_{1} and e_{2} are some idempotents in S. Show that α^{\prime} is an isomorphism. Since α is an isomorphism, $\alpha \alpha^{-1}=1_{e_{2}(X)}$ and $\alpha^{-1} \alpha=1_{e_{1}(X)}$ for some homomorphism $\alpha^{-1}: e_{2}(X) \rightarrow$ $e_{1}(X)$. Let $\gamma \in S$ be an endomorphism acting by the rule $\gamma\left(e_{1} m+\left(1-e_{1}\right) m\right)=\alpha e_{1} m$, and let $\gamma^{\prime} \in S$ be an endomorphism defined by $\gamma\left(e_{2} m+\left(1-e_{2}\right) m\right)=\alpha^{-1} e_{2} m$, where $m \in P$. Then $\gamma \gamma^{\prime}=e_{2}$ and $\gamma^{\prime} \gamma=e_{1}$. Consider the endomorphism $\omega \in T$ that acts by the rule $\omega\left(\hat{e}_{1} m+\left(1-\hat{e}_{1}\right) m\right)=\alpha^{\prime} \hat{e}_{1} m$, where $m \in M$. Clearly, $\omega=\omega \hat{e}_{1}=\hat{e}_{2} \omega$. Then for every $m \in P$ we have

$$
p \gamma(m)=p \alpha\left(e_{1}(m)\right)=\alpha^{\prime} p\left(e_{1}(m)\right)=\alpha^{\prime} \hat{e}_{1} p(x)=\omega p(m)
$$

Since $T / J(T)$ is a regular ring, $\omega-\omega \beta_{1} \omega \in J(T)$ for some $\beta_{1} \in T$. We have $p \beta=\beta_{1} p$ for some $\beta \in S$. Hence, $\gamma-\gamma \beta \gamma \in J(S)$.

The containment $\gamma^{\prime}(\gamma-\gamma \beta \gamma) \in J(S)$ yields $e_{1}-e_{1} \beta \gamma \in J(S)$. Since $\bar{\Phi}$ is injective, $\hat{e}_{1}-\hat{e}_{1} \beta_{1} \omega \in J(T)$. Hence, $\hat{e}_{1}-\hat{e}_{1} \beta_{1} \omega \hat{e}_{1} \in \hat{e}_{1} J(T) \hat{e}_{1}=J\left(\hat{e}_{1} T \hat{e}_{1}\right)$. Then $\hat{e}_{1} \beta_{1} \omega \hat{e}_{1} \in U\left(\hat{e}_{1} T \hat{e}_{1}\right)$, and there is $t \in T$ such that $e_{1}^{\prime} t \omega \hat{e}_{1}=\hat{e}_{1}$. Thus, $\alpha^{\prime}: \hat{e}_{1}(M) \rightarrow \hat{e}_{2}(M)$ is a monomorphism.

The inclusion $(\gamma-\gamma \beta \gamma) \gamma^{\prime} \in J(S)$ implies $e_{2}-\gamma \beta e_{2} \in J(S)$. Then $\hat{e}_{2} \omega \beta_{1} \hat{e}_{2} \in U\left(\hat{e}_{2} T \hat{e}_{2}\right)$. Hence, $\hat{e}_{2} \omega t^{\prime} \hat{e}_{2}=\hat{e}_{2}$ for some $t^{\prime} \in T$. Thus, α^{\prime} is an isomorphism.

Corollary 26. The endomorphism ring of every indecomposable \mathscr{X}-discrete module is local.
Proof. This is immediate from Theorem 24.
Theorem 27. If M is an \mathscr{X}-discrete module then M has the finite exchange property.
Proof. This is immediate from Theorems 24 and [29, Proposition 1.6].
A ring R is clean provided that every r in R may be represented as $r=e+u$, where $e^{2}=e \in R$ and u is invertible in R. A module M is clean if $\operatorname{End}(M)$ is a clean ring.

Theorem 28. If M is an \mathscr{X}-discrete module and $\operatorname{End}(X)$ is a clean ring then $\operatorname{End}(M)$ is clean.
Proof. Let α be an arbitrary element in $\operatorname{End}(M)$. There is an endomorphism $\beta \in X$ such that $p \beta=\alpha p$. Since $\operatorname{End}(X)$ is a clean ring, $\beta=e+\gamma$ for an automorphism γ of X and an idempotent $e \in \operatorname{End}(X)$. Since M is \mathscr{X}-idempotent coinvariant, $p e=e_{1} p$ for an idempotent $e_{1} \in \operatorname{End}(M)$. Let $\gamma^{\prime}=\alpha-e_{1} \in \operatorname{End}(M)$. Then $p \gamma=p(\beta-e)=p \beta-p e=\alpha p-e_{1} p=\gamma^{\prime} p$. Since M is \mathscr{X}-discrete, γ^{\prime} is an automorphism of M. Thus, M is a clean module.

A module M is quasicontinuous provided that M is invariant under the idempotent endomorphism ring of the injective envelope of M. A quasicontinuous module M is continuous if each submodule of M isomorphic to a direct summand of M is a direct summand of M. The following may be proved by the standard argument.

Lemma 29. Let M be a quasicontinuous module, and let $u: M \rightarrow E(M)$ be an injective envelope of M. The following are equivalent:
(1) M is a continuous module;
(2) if $e_{i} u=u e_{i}^{\prime}$ for $i=1,2$ and some idempotents $e_{1}, e_{2} \in \operatorname{End}(E)$ and $e_{1}^{\prime}, e_{2}^{\prime} \in \operatorname{End}(M)$, the diagram commutes:

for some homomorphisms α and α^{\prime}, while α is an isomorphism; then α^{\prime} is an isomorphism.
Let $u: M \rightarrow X$ be an \mathscr{X}-envelope of M. A module M is \mathscr{X}-continuous if the following hold:
(1) M is an \mathscr{X}-idempotent invariant module;
(2) if $e_{i} u=u e_{i}^{\prime}$ for $i=1,2$ and some idempotents $e_{1}, e_{2} \in \operatorname{End}(E)$ and $e_{1}^{\prime}, e_{2}^{\prime} \in \operatorname{End}(M)$, the diagram commutes:

for some homomorphisms α and α^{\prime}, while α is an isomorphism; then α^{\prime} is an isomorphism.
In what follows, we assume that $u: M \rightarrow X$ is a monomorphic \mathscr{X}-envelope of a right R-module M and $\operatorname{End}_{R}(X)$ is a semiregular ring. Then the ring homomorphism $\Phi: \operatorname{End}(M) \rightarrow S / J(S)$ holds, which is defined by the rule $\Phi(f)=\bar{f}+J(S)$, where $\bar{f}: X \rightarrow X$ is a homomorphism such that $\bar{f} u=u f$. Let $\Delta(M)=\operatorname{Ker}(\Phi)$. Then we have the monomorphism $\bar{\Phi}: M / \Delta(M) \rightarrow S / J(S)$. It is easy to notice that if \mathscr{X} is the class of injective right R-modules then $\Delta(M)=\left\{f \in \operatorname{End}(M) \mid \operatorname{Ker}(f) \leq_{e} M\right\}$.

We list the dual analogs to Theorems 24, 25, 27, and 28.
Theorem 30. If M is an \mathscr{X}-continuous module then $\operatorname{End}(M)$ is semiregular and $J(\operatorname{End}(M))=$ $\Delta(M)$.

Theorem 31. If M is an \mathscr{X}-idempotent invariant module then M is \mathscr{X}-continuous if and only if $\Delta(M)=J(\operatorname{End}(M))$ and $\operatorname{End}(M) / \Delta(M)$ is regular.

Theorem 32. If M is an \mathscr{X}-continuous module then M has the finite exchange property.
Theorem 33. If M is an \mathscr{X}-continuous module then $\operatorname{End}(M)$ is clean.

4. Some Applications

As some applications of the above results, we consider the cases of flat covers as well as injective and pure injective envelopes.

Let R be a ring, and let \mathscr{F} be the class of flat right R-modules. Each right R-module possesses a flat envelope by [30, Theorem 3]. If R is a perfect right ring then every flat envelope of an arbitrary right R-module M coincides with the projective envelope of M by [25, Proposition 1.3.1]. Thus, a right R-module M over a perfect right ring R is discrete if and only if M is an \mathscr{F}-discrete module.

Theorem 34. Let M be an \mathscr{F}-discrete right R-module. The following hold:
(1) End M is a semiregular ring;
(2) M has the finite exchange property;
(3) End M is a clean ring;
(4) if M is an indecomposable module then End M is a local ring.

Proof. This follows from [21, Lemma 5.1], Theorems 24 and 20, and Corollary 21.

Corollary 35. Let R be a perfect right ring, and let M be a discrete right R-module. Then
(1) End M is a semiregular ring, and $J(\operatorname{End}(M))=\{f \in \operatorname{End}(M) \mid f(M) \ll M\}$;
(2) M has the finite exchange property;
(3) End M is a clean ring;
(4) if M is an indecomposable module then End M is a local ring.

Corollary 36. Let R be a semiperfect ring, and let M be a finitely generated discrete right R module. Then
(1) End M is a semiregular ring, and $J(\operatorname{End}(M))=\{f \in \operatorname{End}(M) \mid f(M) \ll M\}$;
(2) M has the finite exchange property;
(3) End M is a clean ring;
(4) if M is an indecomposable module then End M is a local ring.

Theorem 37. Let M be a continuous right R-module. Then
(1) End M is a semiregular ring, and $J(\operatorname{End}(M))=\left\{f \in \operatorname{End}(M) \mid \operatorname{Ker}(f) \leq_{e} M\right\}$;
(2) M has the finite exchange property;
(3) End M is a clean ring;
(4) if M is an indecomposable module then End M is a local ring.

Proof. This follows from Theorems 31, 33, and 34, if \mathscr{X} is the class of all injective right R-modules in these theorems.

A module M is pure continuous provided that M is an \mathscr{X}-continuous module, where \mathscr{X} is the class of pure injective right R-modules. By [31, Proposition 6], each module possesses a monomorphic pure injective envelope, and [32, Theorem 9] implies that the endomorphism ring of every pure injective right module is semiregular and right self-injective. Then Theorems $24,27,28$ and Corollary 26 imply the assertion that generalizes the results from [32] on the endomorphism rings of pure injective modules:

Theorem 38. Let M be a pure continuous right R-module. Then
(1) End M is a semiregular ring;
(2) M has the finite exchange property;
(3) End M is a clean ring;
(4) if M is an indecomposable module then End M is a local ring.

Remark. It is known that the Schröder-Bernstein problem is solved affirmatively for the discrete modules over perfect rings and for the continuous modules [16, Theorem 3.17]. Therefore, it is of interest to study this problem in the general case for the \mathscr{X}-continuous and \mathscr{X}-discrete modules. The flat, injective, discrete, and continuous modules play an essential role in the homological characterization of rings. It stands to reason to understand the structure of the rings over which every module is \mathscr{F}-discrete. Obviously, the regular rings are some examples of these rings. A module M over a Prüfer ring is flat if and only if M is a torsion-free module by [30, Theorem 3]. The description of pure injective \mathbb{Z}-modules [33, Theorem 3.2] and continuous \mathbb{Z}-modules [16, p. 19] is well known. Therefore, the problem is natural of describing \mathscr{F}-discrete modules and pure continuous modules over Prüfer rings (in particular, over the ring of integers).

Le Van Thuyet and Truong Cong Quynh would like to thank Hue University for support.

References

1. Johnson R. E. and Wong E. T., "Quasi-injective modules and irreducible rings," J. Lond. Math. Soc., vol. 36, no. 1, 260-268 (1961).
2. Dickson S. E. and Fuller K. R., "Algebras for which every indecomposable right module is invariant in its injective envelope," Pacific J. Math., vol. 31, no. 3, 655-658 (1969).
3. Jain S. K. and Singh S., "On pseudo-injective modules and self pseudo injective rings," J. Math. Sci., vol. 2, 23-31 (1967).
4. Er N., Singh S., and Srivastava A., "Rings and modules which are stable under automorphisms of their injective hulls," J. Algebra, vol. 379, 223-229 (2013).
5. Abyzov A. N., Quynh T. C., and Tai D. D., "Dual automorphism-invariant modules over perfect rings," Sib. Math. J., vol. 58, no. 5, 743-751 (2017).
6. Guil Asensio P. A., Keskin D. T., Kaleboḡaz B., and Srivastava A. K., "Modules which are coinvariant under automorphisms of their projective covers," J. Algebra, vol. 466, no. 15, 147-152 (2016).
7. Singh S. and Srivastava A. K., "Dual automorphism-invariant modules," J. Algebra, vol. 371, no. 1, 262-275 (2012).
8. Jeremy L., "Sur les modules et anneaux quasi-continus," C. R. Acad. Sci. Paris, vol. 273, 80-83 (1971).
9. Jeremy L., "Modules et anneaux quasi-continus," Canad. Math. Bull., vol. 17, no. 2, 217-228 (1974).
10. Mohamed S. and Bouhy T., "Continuous modules," Arab. J. Sci. Eng., vol. 2, 107-122 (1977).
11. Takeuchi T., "On direct modules," Hokkaido Math. J., vol. 1, 168-177 (1972).
12. Utumi Y., "On continuous rings and self-injective rings," Trans. Amer. Math. Soc., vol. 118, 158-173 (1965).
13. Goel V. K. and Jain S. K., " π-Injective modules and rings whose cyclics are π-injective," Comm. Algebra, vol. 6, no. 1, 59-72 (1978).
14. Dung N. V., Huynh D. V., Smith P. F., and Wisbauer R., Extending Modules, Longman Sci. Technical, Harlow (1994) (Pitman Res. Notes Math.; Vol. 313).
15. Clark J., Lomp C., Vanaja N., and Wisbauer R., Lifting Modules. Supplements and Projectivity in Module Theory, Birkhäuser, Basel, Boston, and Berlin (2006).
16. Mohammed S. H. and Müller B. J., Continuous and Discrete Modules, Cambridge Univ. Press, New York and Sydney (1990) (London Math. Soc. Lecture Note Ser.; Vol. 147).
17. Nicholson W. K. and Yousif M. F., Quasi-Frobenius Rings, Cambridge Univ. Press, Cambridge (2003).
18. Tuganbaev A. A., Ring Theory. Arithmetic Modules and Rings [Russian], MCCME, Moscow (2009).
19. Birkenmeier G. F., Park J. K., and Rizvi S. T., Extensions of Rings and Modules, Springer-Verlag, New York (2013).
20. Guil Asensio P. A., Kaleboḡaz B., and Srivastava A. K., "The Schröder-Bernstein problem for modules," J. Algebra, vol. 498, 153-164 (2018).
21. Guil Asensio P. A., Keskin Tütüncü D., and Srivastava A. K., "Modules invariant under automorphisms of their covers and envelopes," Israel J. Math., vol. 206, no. 1, 457-482 (2015).
22. Guil Asensio P., Srivastava A. K., and Quynh T. C., "Additive unit structure of endomorphism rings and invariance of modules," Bull. Math. Sci., vol. 7, no. 2, 229-246 (2017).
23. Thuyet L. V., Dan P., and Quynh T. C., "Modules which are invariant under idempotents of their envelopes," Colloq. Math., vol. 143, no. 2, 237-250 (2016).
24. Enochs E. E. and Jenda O. M. G., Relative Homological Algebra, Walter de Gruyter, Berlin (2011) (Gruyter Expo. Math.; Vol. 30).
25. Xu J., Flat Covers of Modules, Springer-Verlag, Berlin (1996) (Lecture Notes Math.; Vol. 1634)).
26. Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia (1991).
27. Wu L. E. and Jans J. P., "On quasi projectives," Illinois J. Math., vol. 11, no. 2, 439-448 (1967).
28. Nguyen X. H. and Zhou Y., "Rings whose cyclic modules are lifting and \oplus-supplemented," Comm. Algebra, vol. 46, no. 11, 4918-4927 (2018).
29. Nicholson W. K., "Lifting idempotents and exchange rings," Trans. Amer. Math. Soc., vol. 229, 269-278 (1977).
30. Bican L., El Bashir R., and Enochs E., "All modules have flat covers," Bull. London Math. Soc., vol. 33, no. 4, 385-390 (2001).
31. Warfield R. B., "Purity and algebraic compactness for modules," Pacific J. Math., vol. 28, no. 3, 699-719 (1969).
32. Zimmermann-Huisgen B. and Zimmermann W., "Algebraically compact rings and modules," Math. Z., Bd 161, Heft 1, 81-93 (1978).
33. Fuchs L., Abelian Groups, Springer-Verlag, Berlin (2015).
A. N. Abyzov

Kazan (Volga Region) Federal University, Kazan, Russia
E-mail address: Adel.Abyzov@kpfu.ru
V. T. LE

Department of Mathematics, College of Education
Hue University, Hue City, Vietnam
E-mail address: lvthuyet@hueuni.edu.vn
C. Q. Truong

Department of Mathematics, University of Danang
University of Science and Education, Danang City, Vietnam
E-mail address: tcquynh@ued.udn.vn
A. A. Tuganbaev

National Research University MPEI, Moscow, Russia
E-mail address: tuganbaev@gmail.com

[^0]: V. T. Le and C. Q. Truong were supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED; Grant 101.04-2018.02). C. Q. Truong was supported by the Funds for Science and Technology Development of the University of Danang (Grant B2017-DN03-08). A. N. Abyzov was supported by the subsidy of the Government Task for Kazan (Volga Region) Federal University (Grant 1.13556.2019/13.1). A. A. Tuganbaev was supported by the Russian Science Foundation (Grant 16-11-10013).

