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1. Introduction

Many important classes of the modules close to the injective (projective) may be defined by injective
envelopes (projective covers). The quasi-injective modules were introduced in [1] as those invariant under
the endomorphisms of their injective envelopes. In the same paper, it was shown that a moduleM is quasi-
injective if and only if each homomorphism from a submodule ofM toM is extended to an endomorphism
of M. A module is automorphism-invariant provided that it is invariant under the automorphisms of
its injective envelope. The automorphism-invariant modules over finite-dimensional algebras were first
studied by Dickson and Fuller in [2]. The notion of pseudoinjective module was introduced in [3]; i.e., such
a module in which every monomorphism from a submodule of M to M is extended to an endomorphism
of M . In [4], it was shown that M is pseudoinjective if and only if M is an automorphism-invariant
module. The dual notion to an automorphism-invariant module is that of an automorphism-coinvariant
(or dual automorphism-invariant) module. This notion was recently studied in [5–7].
The continuous modules and their extensions, the so-called quasicontinuous modules, were introduced

and studied in [8–11] as the module analogs of continuous and quasicontinuous rings which were considered
by Utumi in [12]. It was shown in [13] that a module M is quasicontinuous if and only if M is invariant
under the idempotent endomorphisms of the injective envelope of M . Many important properties of
continuous and quasicontinuous modules and their duals are reflected in [14–19].
The general theory of modules invariant or coinvariant under the automorphisms of their envelopes

or covers, respectively, was recently developed in [20–22]. The theory of modules invariant under the
idempotent endomorphisms of their envelopes was studied in [23].
In Section 2, we consider the modules coinvariant under the idempotent endomorphisms of their

covers. Given an arbitrary class X of right R-modules closed under the isomorphic images, we introduce
and study the notion of lifting X -module. In the case when R is a perfect right ring and X is the
class of projective right R-modules, the class of lifting X -modules coincides with the class of right lifting
R-modules. In Section 3, we show that the continuous (discrete) modules may be defined by the injective
(projective) envelopes (covers). This fact allows us to give the definitions of X -continuous module and
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X -discrete module which are the natural and wide generalizations of the notions of continuous module
and discrete module. We study the general properties of the endomorphism rings of X -continuous and
X -discrete modules. We show that every X -continuous (X -discrete) module has the finite exchange
property. By way of application, we address the cases of projective covers, injective envelopes, and pure
injective envelopes.
The Jacobson radical of a ring R is denoted by J(R). The fact that N is a submodule of M (a small

submodule and an essential submodule) is denoted by N ≤ M (respectively, by N � M and N ≤e M).
The Jacobson radical of a right R-module M is denoted by J(M).
We use the standard notions and facts of ring and module theories (for example, see [18, 24–26]).

2. XXX -Idempotent Coinvariant Modules

We assume that X is a class of right R-modules which is closed under the isomorphic images and
direct summands. A homomorphism g : X → M of right R-modules is an X -cover of a module M
provided that
(1) X ∈X ; and, for every homomorphism g′ : X ′ →M with X ′ ∈X , there exists a homomorphism

h : X ′ → X such that g′ = gh;
(2) g = gh implies that h is an automorphism for every endomorphism h : X → X.
A moduleM is a lifting module provided that for every submodule N ofM there are submodulesM1

and M2 of M satisfying M =M1 ⊕M2, M1 ≤ N , and M2 ∩N �M2.

A module M is a D3-module if X ∩ Y is a direct summand of M for all direct summands X and Y
of M such that X + Y = M . A module M is quasidiscrete provided that M is a lifting module and
a D3-module simultaneously.

Proposition 1 [16, Proposition 4.45]. Let u : P → M be a projective cover of a module M. The
following are equivalent:
(1) M is a quasidiscrete module;
(2) M is an idempotent coinvariant module; i.e., α(Ker(u)) ⊆ Ker(u) for every idempotent endomor-

phism α of P .

LetM be a right R-module. A moduleM isX -idempotent coinvariant provided that there exists an
X -cover u : X →M such that for every idempotent g ∈ End(X) there is an endomorphism f :M →M
such that the diagram commutes:

X
p ��

g

��

M

f
��

X
p

�� M .

Lemma 2. Let p : X → M be an epimorphic X -cover of a right R-module M . If M is an
X -idempotent coinvariant module then for every idempotent g2 = g ∈ End(X) there is a unique homo-
morphism f ∈ End(M) such that fp = pg and f2 = f .
Proof. There are f, f ′ ∈ End(M) satisfying fp = pg and f ′p = p(1 − g). Then f ′fp = f ′pg = 0.

Since p is an epimorphism, f ′f = 0. As p = pg + p(1− g) = f ′p+ fp = (f ′ + f)p, we have id = f ′ + f .
Thus, f = f2 ∈ End(M). Since p is an epimorphism, f is unique. �
Lemma 3. Let p : X →M be an epimorphic X -cover of M . The following are equivalent:
(1) M is an X -idempotent coinvariant module;
(2) g(Ker(p)) ≤ Ker(p) for every idempotent endomorphism of X.
Proof. (1)⇒ (2) is obvious.
(2)⇒ (1): Assume that g = g2 ∈ End(X). Then g(Ker(p)) ≤ Ker(p). Consider the homomorphism

ψ : X/g(Ker(p)) → M defined as ψ(x + g(Ker(p)) = p(x) for all x ∈ X. Since p is an epimorphism, for
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every m ∈M there is x ∈ X such that m = p(x). Consider the mapping
φ :M → X/g(Ker(p)), m �→ g(x) + g(Ker(p)).

It is easy to see that φ is a homomorphism. Put f = ψφ :M →M . Then

fp(x) = ψφ(p(x)) = ψ(g(x) + g(Ker(p)) = pg(x)

for every x ∈ X. Hence, fp = pg. �
Corollary 4. Let p : X →M be an epimorphic X -cover of M. The following are equivalent:
(1) M is an X -idempotent coinvariant module;
(2) if X =

⊕
I Xi then Ker(p) =

⊕
I(Xi ∩Ker(p));

(3) if X = X1 ⊕X2 then Ker(p) = (X1 ∩Ker(p))⊕ (X2 ∩Ker(p));
(4) if e ∈ End(X) is an idempotent then Ker(p) = e(Ker(p))⊕ (1− e)(Ker(p)).
Lemma 5. Let M be a module, and let N be a direct summand of M . If M is an X -idempotent

coinvariant module and N possesses an X -cover then N is an X -idempotent coinvariant module.

Proof. Let p : X → M and p1 : X1 → N be some X -covers, let π : M → N be a projection,
and let ι : N →M be an embedding. Consider an arbitrary idempotent endomorphism g1 of X1. There
are homomorphisms h1 : X1 → X and h2 : X → X1 satisfying ph1 = ιp1 and p1h2 = πp. Hence,
p1h2h1 = p1, and h2h1 is an isomorphism. Then h(h2h1) = idX1 for some homomorphism h : X1 → X1.
Let g = h1(g1h)h2 : X → X. Then g is an idempotent endomorphism of X. SinceM is anX -idempotent
coinvariant module, there is a homomorphism f :M →M such that fp = pg. Let f1 = πfι. Then

f1p1 = πfιp1 = πfph1 = πpgh1 = πph1(g1h)h2h1 = πph1g1 = p1h2h1g1 = p1g1.

Thus, N is an X -idempotent coinvariant module. �
Let M1 and M2 be some right R-modules. A module M1 is X -M2-projective provided that there

exist X -covers p1 : X1 → M1 and p2 : X2 → M2 such that for every homomorphism g : X1 → X2 there
is a homomorphism f :M1 →M2 such that the diagram commutes:

X1
p1−−−→ M1

g

⏐
⏐
�

⏐
⏐
�f

X2 −−−→
p2

M2 .

If M is X -M -projective then M is X -endomorphism coinvariant. The two right R-modules M1
and M2 are mutually X -projective provided that M1 is X -M2-projective and M2 is X -M1-projective.

Lemma 6. Let M1 and M2 be mutually X -projective right R-modules, and let p1 : X1 →M1 and
p2 : X2 →M2 be epimorphic X -covers. If X1 � X2 then M1 �M2.
Proof. Let g : X1 → X2 be an isomorphism. By hypothesis, there are homomorphisms f1 : M1 →

M2 and f2 : M2 → M1 such that f1p1 = p2g and f2p2 = p1g
−1. Then f1f2p2 = p2 and f2f1p1 = p1.

Hence, f1f2 = idM2 and f2f1 = idM1 . �
Proposition 7. Assume that a module M2 possesses an epimorphic X -cover p2 : X2 → M2 and

each quotient module M1/A of M1 possesses an X -cover pA : XA → M1/A such that for every natural
homomorphism f : M1 → M1/A there exists a split epimorphism ψ : X1 → XA satisfying pAψ = fp1,
where p1 : X1 →M1 is an X -cover. Then if M2 is M1-X -projective then M2 is M1-projective.

Proof. Let A be a submodule of M = M1 ⊕M2 such that M = A +M1. It is easy to notice that
there is a homomorphism g :M2 →M1/(A∩M1) such that g(m2) = m1+A∩M1 if a = m1+m2, where
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m1 ∈M1, m2 ∈M1, and a ∈ A. By hypothesis, we have the commutative diagram

X1
ψ−−−→ X ′1

p1

⏐
⏐
�

⏐
⏐
�p′1

M1 −−−→
π

M1/(A ∩M1)

for an epimorphism ψ : X1 → X ′1, where p′1 : X ′1 → M1/(A ∩M1) is an X -envelope, π is the natural
homomorphism, and ψι = 1X′1 for some homomorphism ι : X ′1 → X1.

By the definition of X -cover, there exists a homomorphism f : X2 → X ′1 such that the diagram
commutes:

X2
f−−−→ X ′1

p2

⏐
⏐
�

⏐
⏐
�p′1

M2 −−−→
g

M1/(A ∩M1).

Since M2 is C -M1-projective, there is a homomorphism φ :M2 →M1 such that the diagram commutes:

X2
ιf−−−→ X1

p2

⏐
⏐
�

⏐
⏐
�p1

M2 −−−→
φ

M1 .

Given b ∈M2, there is x ∈ X2 such that b = p2(x). Then
φ(b) = φp2(x) = p1ιf(x),

g(b) = gp2(x) = p
′
1f(x) = p

′
1ψιf(x) = πp1ιf(x) = πφ(b).

Put C = {φ(m2)+m2 | m2 ∈M2} ≤M. ThenM =M1⊕C, and C ≤ A. Hence,M2 isM1-projective
by [15, 4.12]. �

Proposition 8. Let p1 : X1 → M1 and p2 : X2 → M2 be some epimorphic X -covers, and Ker(p1)
� X1. If M1 is M2-projective then M1 is M2-X -projective.

Proof. Let f : X1 → X2 be a module homomorphism. Without loss of generality, we may
assume that M2 = X2/Ker(p2), and p2 : X2 → X2/Ker(p2) is the natural homomorphism. Put
N = Ker(p2) + f(Ker(p1)). Since f(Ker(p1)) ⊆ N ; therefore, πp2f = f1p1 for some homomorphism
f1 : M1 → X2/N , where π : X2/Ker(p2) → X2/N is the natural homomorphism. By hypothesis,
πf2 = f1 for a homomorphism f2 : M1 → M2. By the definition of X -cover, there is a homomor-
phism g : X1 → X2 satisfying p2g = f2p1. Then, for an arbitrary x ∈ X1 there are x1 ∈ Ker(p1) and
x2 ∈ Ker(p2) such that (f − g)(x) = x2 + f(x1). Since p2(f − g)(x− x1) = p2(x2 + f(x1))− p2f(x1) = 0;
therefore, x ∈ Ker(p1) + Ker(p2(f − g)). Thus, X1 = Ker(p1) + Ker(p2(f − g)) = Ker(p2(f − g)). Hence,
(f − g)(X1) ⊆ Ker(p2). Since g(Ker(p1)) ≤ Ker(p2); therefore, f(Ker(p1)) ≤ Ker(p2). Then p2f = f ′p1
for a homomorphism f ′ :M1 →M2. �
The following corollary of Propositions 7 and 8 is important:

Corollary 9 [27]. Let M and N be some right R-modules, and let π1 : P →M and π2 : P
′ → N be

some projective covers of M and N , respectively. Then the following are equivalent:
(1) M is N -projective;
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(2) for every homomorphism f : P → P ′ there is a homomorphism g :M → N such that the diagram
commutes:

P
π1−−−→ M

f

⏐
⏐
�

⏐
⏐
�g

P ′ −−−→
π2

N.

In particular, if π : P →M is a projective cover of M then M is quasiprojective if and only if Ker(φ) is
a completely invariant submodule of P .

Theorem 10. Let M = M1 ⊕ M2 be a module, and let p1 : X1 → M1, p2 : X2 → M2, and
p1 ⊕ p2 : X1 ⊕ X2 → M be some X -covers of right R-modules. If M is X -idempotent coinvariant
then Mi is X -Mj-projective for every i = j.
Proof. Let g : X1 → X2 be a homomorphism. Define the homomorphism g′ : X1 ⊕X2 → X1 ⊕X2

by the matrix g′ =
(
idX1 0
g 0

)

. Then g′2 = g′. Since M is an X -idempotent coinvariant module,

f ′p = pg′ for some f ′ ∈ End(M). Let f = π2f
′ι1, where ι1 : M1 → M is the natural embedding, and

π2 :M →M2 is the canonical projection. Then fp1 = p2g. Thus, M1 is X -M2-projective. �
Theorem 11. Let M =

⊕n
i=1Mi be a module, and let pi : Xi → Mi be some X -covers. Then the

following are equivalent:
(1) M1 ⊕M2 ⊕ · · · ⊕Mn is an X -endomorphism coinvariant module;
(2) Mi and Mj are mutually X -projective for all i, j ∈ {1, 2, . . . , n}.
Proof. It suffices to consider the case n = 2.
(1)⇒ (2): Since every X -endomorphism coinvariant module is X -idempotent coinvariant, item (2)

follows from Lemma 5 and Theorem 10.
(2) ⇒ (1): Assume that Mi is an X -Mj-projective module for all i, j ∈ {1, 2}. By [24, Proposi-

tion 5.5.4], p1 ⊕ p2 : X1 ⊕ X2 → M1 ⊕M2 is an X -cover. Let g be an endomorphism of X1 ⊕ X2,
let ι1 : X1 → X1 ⊕ X2 and ι2 : X2 → X1 ⊕ X2 be some embeddings, and let π1 : X1 ⊕ X2 → X1
and π2 : X1 ⊕ X2 → X2 be the canonical projections. Since Mi and Mj are mutually X -projective
for all i, j ∈ {1, 2}; there is a homomorphism fji : Mi → Mj such that pj(πjgιi) = fjipi. Let

f :M1⊕M2 →M1⊕M2 be an endomorphism whose matrix is
(
f11 f12
f21 f22

)

. Then (p1⊕p2)g = f(p1⊕p2).
Thus, M =M1 ⊕M2 is an X -endomorphism coinvariant module. �
Corollary 12. A module M is an X -endomorphism coinvariant if and only if M ⊕M is an X -

endomorphism coinvariant module.

Corollary 13. Let M =
⊕n

i=1Mi be a right module over a perfect right ring. The following are
equivalent:
(1) M1 ⊕M2 ⊕ · · · ⊕Mn is a quasiprojective module;
(2) Mi and Mj are mutually projective for all i, j ∈ {1, 2, . . . , n}.
Corollary 14. If M is a right module over a perfect right ring then M is a quasiprojective module

if and only if M ⊕M is a quasiprojective module.

A module M is pure infinite provided that M = M ⊕M. If M is not isomorphic to a proper direct
summand then M is directly finite.

Theorem 15. LetM be anX -idempotent coinvariant module, and let p : X →M be an epimorphic
X -cover of M . The following are equivalent:
(1) M is pure infinite if and only if X is pure infinite module;
(2) if X is a directly finite module then M is directly finite;
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(3) if X is the class of projective modules and M is not directly finite then M = M1 ⊕M2 ⊕M3,
where M1 ∼=M2 = 0.
Proof. (1): (⇒) Assume that M is infinite. Then M = M1 ⊕M2, where M1 � M2 � M . Let

p1 : X1 → M1 and p2 : X2 → M2 be X -envelopes. Clearly, X � X1 ⊕X2 and X � X1 � X2. Thus, X
is pure infinite.
(⇐) Assume that X = X1⊕X2 and X1 � X2 � X. Then X1 = e(X) and X2 = (1− e)(X) for some

e2 = e ∈ End(X). By Corollary 4 Ker(p) = e(Ker(p))⊕ (1− e)(Ker(p)). Then
X/Ker(p) � X1/e(Ker(p))⊕X2/(1− e)(Ker(p)).

Denote M1 = X1/e(Ker(p)) and M2 = X2/(1− e)(Ker(p)). Show that the natural homomorphisms
p1 : X1 →M1 and p2 : X2 →M2 are X -envelopes. Let ι :M1 →M1⊕M2 and ι′ : X1 → X1⊕X2 be the
natural embeddings, and let π : M1 ⊕M2 → M1 and π

′ : X1 ⊕X2 → X1 be the projections. Consider
an arbitrary homomorphism f : U → M1, where U ∈ X . Since p1 ⊕ p2 : X1 ⊕ X2 → M1 ⊕M2 is an
X -envelope, (p1⊕ p2)g = ιf for a homomorphism g : U → X1⊕X2, and so f = πιf = π(p1⊕ p2)ι′π′g =
p1π

′g. Assume that p1α = p1 for a homomorphism α : X1 → X1. Then (p1 ⊕ p2)(α ⊕ 1X2) = p1 ⊕ p2.
By the definition of X -envelope, α⊕ 1X2 is an isomorphism, and so α is an isomorphism as well. Thus,
p1 : X1 → M1 is an X -envelope. Analogously, p2 : X2 → M2 is an X -envelope. By Theorem 10, M1
and M2 are mutually X -projective. Then Lemma 6 implies M1 �M2 �M . Thus, M is pure infinite.
(2): Assume that M is not directly finite. Then M = M1 ⊕M2, where M1 � M and M2 = 0. It is

easy to see that X � X1 ⊕X2 and X1 � X. Thus, X is not directly finite.
(3): By (2), X is not directly finite. Then there are some submodules X1, X2, and X3 of X such

that X = X1 ⊕ X2 ⊕ X3, where X1 = 0 and X1 � X2. The equalities X1 = e1(X), X2 = e2(X), and
X3 = e3(X) hold for some orthogonal idempotents {e1, e2, e3} in End(X). By Corollary 4

Ker(p) = e1(Ker(p))⊕ e2(Ker(p))⊕ e3(Ker(p)).
Then

X/Ker(p) � X1/e1(Ker(p))⊕X2/e2(Ker(p))⊕X3/e3(Ker(p)).
Denote M1 = X1/e(Ker(p)), M2 = X2/(1− e)(Ker(p)), and M3 = X3/e3(Ker(p)). Then M � M1 ⊕
M2 ⊕M3. Since πi : Xi → Xi/ei(Ker(p)) is an X -envelope for every 1 ≤ i ≤ 3; therefore, M1 �M2. �
Let M be a right R-module. A module M is a lifting X -module provided that there is an X -cover

p : X → M of M such that for every idempotent g ∈ End(X) there is an idempotent f : M → M such
that g(X) + Ker(p) = p−1(f(M)).
The following is immediate:

Proposition 16. Let p : X →M be an epimorphic X -cover. If M is an X -idempotent coinvariant
module then M is a lifting X -module.

Proposition 17. Let N be a direct summand of M . If M is a lifting X -module that possesses an
epimorphic X -cover, and N has an X -cover; then N is a lifting X -module.

Proof. Let p1 : X1 → N be an X -cover. It is easy to see that X1 is isomorphic to a direct
summand K of X such that p|K : K → N is an X -cover of N . Thus, we may assume that p1 = p|X1 :
X1 → N is an X -cover of N and X1 is a direct summand of X. Let g : X1 → X1 be an idempotent
endomorphism of X1. Consider the homomorphism g′ = ιgπ : X → X, where ι : X1 → X and
π : X → X1 are embeddings. Then g

′2 = g′. Since M is a lifting X -module, there is a homomorphism
f ′2 = f ′ : M → M such that g′(X) + Ker(p) = p−1(f ′(M)). Then f ′(M) = p(g(X1)) = p1(g(X1)) ≤ N ,
and so f ′(M) is a direct summand of N . There is an idempotent homomorphism f : N → N such that
p1(g(X1)) = f

′(M) = f(N). Then g(X1) + Ker(p1) = p−11 (f(N)). Thus, N is a lifting X -module. �
Let p : X →M be an X -cover ofM , and let A be a submodule ofM . A submodule A is X -coclosed

in M provided that A = p(g(X)) for an idempotent endomorphism g ∈ End(X).
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Theorem 18. Let p : X →M be an epimorphic X -cover. The following are equivalent:
(1) M is a lifting X -module;
(2) each X -coclosed submodule of M is a direct summand of M .

Proof. (1) ⇒ (2): Let U = p(g(X)), where g2 = g ∈ End(X). There exists an endomorphism
f2 = f ∈ End(M) such that g(X) + Ker(p) = p−1(f(M)). Hence, U = p(g(X)) = f(M) is a direct
summand of M .
(2) ⇒ (1): Let g be an idempotent in End(X). By hypothesis, U = p(g(X)) is a direct summand

of M . There exists a homomorphism f2 = f ∈ End(M) such that p(g(X)) = f(M). Then g(X) +
Ker(p) = p−1(f(M)). Thus, M is a lifting X -module. �
If X is the class of projective right R-modules then the standard argument shows that a right

module M over a perfect right ring R is a lifting X -module if and only if M is a lifting module [28,
Theorem 2.6].
By the end of this section we assume that all modules M under consideration possess C -covers

p : X →M , where C is the class of modules which satisfies the conditions
(1) C is closed under isomorphisms;
(2) each quotient module M/A for M possesses an epimorphic C -cover pM/A : XM/A → M/A such

that Ker(pM/A)� XM/A;
(3) for every direct summand N of M and every natural homomorphism π : N → N/A, there exists

a split epimorphism ψ : XN → XN/A such that the diagram commutes:

XN
ψ−−−→ XN/A

pN

⏐
⏐
�

⏐
⏐
�pN/A

N −−−→
π

N/A .

A module M is an SSP-module provided that the sum of two direct summands of M is a direct
summand of M.

Proposition 19. Let M =M1 ⊕M2 be a module, and let pi : Xi →Mi, i = 1, 2, and p = p1 ⊕ p2 :
X1 ⊕X2 → M be C -covers. If X is an SSP-module and each C -coclosed submodule N ≤ M satisfying
either N +M1 =M or N +M2 =M is a direct summand of M ; then M is a lifting C -module.

Proof. Let X be an SSP-module, and let N = p(g(X)) be a C -coclosed submodule ofM , where g is
an idempotent of End(X). Then the submoduleH = g(X)+X2 is a direct summand ofX. Hence, p(H) is
a C -coclosed submodule ofM . On the other hand, X = H+X1, and soM = p(H)+M1. By hypothesis,
p(H) is a direct summand of M . Then M = p(H) ⊕H ′ for a submodule H ′ of M . It is easy to notice
that H ′ = p(X ′) for a direct summand X ′ of X such that p|X′ : X ′ → H ′ is a C -cover. Since X ′+g(X) is
a direct summand of X; therefore, pg(X)⊕H ′ = p(g(X) +X ′) is a C -coclosed submodule of M . Since
M = p(g(X)) + p(X2) +H

′, M = [pg(X)⊕H ′] +M2. So, pg(X)⊕H ′ is a direct summand of M . Thus,
N = pg(X) is a direct summand of M . �
Theorem 20. The following are equivalent:
(1) M is a C -idempotent coinvariant module;
(2) M is a lifting C -module, and M1 and M2 are mutually C -projective for every decomposition

M =M1 ⊕M2;
(3) M is a lifting C -module, and M1 and M2 are mutually projective for every decomposition M =

M1 ⊕M2.
Proof. (1)⇒ (2) follows from Theorem 10 and Proposition 16.
(2)⇒ (3) follows from Proposition 7.
(3) ⇒ (1): Assume that p : X → M is an epimorphic C -cover of M . Let g be an idempotent

in End(X). Since M is a lifting C -module, A = p(g(X)) and B = p((1 − g)(X) are direct summands
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ofM . Then A+B =M andM = B⊕B′ for some B′ ≤M. Since A is B-projective, there is a submodule
C ≤ A such that M = B ⊕ C. Let π : B ⊕ C → C be the canonical projection. For every x ∈ X there
are x1, y1, y2 ∈ X such that pg(y1) + p(1− g)(y2) ∈ C and

p(x) = p(1− g)(x1) + pg(y1) + p(1− g)(y2) = pg(x) + p(1− g)(x).
Then

0 = p(1− g)(x1) + p(1− g)(y2)− p(1− g)(x) + pg(y1)− pg(x)
= p[(1− g)(x1) + (1− g)(y2)− (1− g)(x) + g(y1)− g(x)].

Thus,
(1− g)(x1) + (1− g)(y2)− (1− g)(x) + g(y1)− g(x) ∈ Ker(p).

Hence, g(y1)− g(x) ∈ g(Ker(p)). Let a ∈ Ker(p) be such that g(y1)− g(x) = g(a). Since pg(y1) + p(1−
g)(y2) ∈ C ≤ A = pg(X); therefore, (1− g)(y2) ∈ (1− g)(Ker(p)), and (1− g)(y2) = (1− g)(b) for some
b ∈ Ker(p). Then

(πp− pg)(x) = pg(y1) + p(1− g)(y2)− pg(x) = p[g(y1)− g(x)] + p(1− g)(y2)
= p(g(a)) + p(1− g)(b) = (πp− pg)(−a) + (πp− pg)(b).

Hence, X = Ker(p) + Ker(πp − pg). Since Ker(p) � X, πp − pg = 0. Thus, M is a C -idempotent
coinvariant module. �
Corollary 21. Let R be a perfect right ring. If M is a right R-module then the following are

equivalent:
(1) M is a quasidiscrete module;
(2) M is a lifting module, and M1 and M2 are mutually projective for every decomposition M =

M1 ⊕M2.
3. XXX -Discrete and XXX -Continuous Modules

Let M be a right R-module, let p : X → M be an X -cover of M , and let S = End(X). If
pg1 = fp = pg2 for some homomorphisms g1, g2 ∈ S and f ∈ End(M) then p(g1 − g2)h = 0 for every
h ∈ S, and so p = p(1 − (g1 − g2)h). Then 1 − (g1 − g2)h is an automorphism. Thus, g1 − g2 ∈ J(S),
and the ring homomorphism Φ : End(M)→ S/J(S) is defined, which acts by the rule Φ(f) = f ′ + J(S),
where f ′ : X → X is a homomorphism such that pf ′ = fp. Denote the kernel of Φ by ∇(M) = Ker(Φ).
Then we have an embedding Φ : M/∇(M) → S/J(S). It is easy to notice that if X is the class of
projective right R-modules then ∇(M) = {f ∈ End(M) | f(M)�M}.
Lemma 22. Let R be a perfect right ring, let M be a quasidiscrete right R-module, and let

p : P →M be a projective cover of M. The following are equivalent:
(1) M is a discrete module;
(2) if pei = e′ip, i = 1, 2, for some idempotents e1, e2 ∈ End(P ) and e′1, e′2 ∈ End(M), the diagram

commutes:
e1(P )

α−−−→ e2(P )

p

⏐
⏐
�

⏐
⏐
�p

e′1(M) −−−→
α′

e′2(M)

for some homomorphisms α, α′, and α is an isomorphism then α′ is an isomorphism.
Proof. (1) ⇒ (2): Let M be a discrete module, let e1, e2 ∈ End(P ) and e′1, e′2 ∈ End(M) be some

idempotents, let α : e1(P )→ e2(P ) be an isomorphism, let α : e
′
1(M)→ e′2(M) be a homomorphism, and

pei = e′ip, i = 1, 2, pα = α′p. Clearly, α′ is an epimorphism. Since M is discrete, e′1(M) = Ker(α′)⊕N
with N ≤M. Since p−1|e1(P )(Ker(α

′)) = Ker(pα) is a small submodule of e1(P ), we have Ker(α′) = 0.
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(2) ⇒ (1): Assume that M satisfies the hypotheses of (2). Let e ∈ End(M), and let f :M → eM be
an epimorphism. Consider a projective envelope p′ : P ′ → eM of eM. We have p′α = fp for some
homomorphism α : P → P ′. It is easy to notice that α is an epimorphism. Then P = P0⊕Ker(α), where
P0 ≤ P. Since M is a quasidiscrete module, M = p(P0) ⊕ p(Ker(α)). By (2), f|p(P0) is an isomorphism.
Thus, f is a split epimorphism. �
In this section we assume unless otherwise stated that X is the class of right R-modules which is

closed under the isomorphisms, p : X → M is an epimorphic X -cover of a right R-module M , and
S = End(X) is a semiregular ring. By Lemma 2, for every idempotent e2 = e ∈ End(X) there is a unique
idempotent f ∈ End(M) such that pe = fp. In what follows, we denote this idempotent by ê.
Let p : X →M be an X -cover of M. A module M is X -discrete provided that
(1) M is an X -idempotent coinvariant module;
(2) if for some idempotents e1, e2 ∈ End(X) and homomorphisms α and α′ the diagram commutes:

e1(X)
α−−−→ e2(X)

p

⏐
⏐
�

⏐
⏐
�p

ê1(M) −−−→
α′

ê2(M),

while α is an isomorphism; then α′ is an isomorphism.

Lemma 23. If M is an X -idempotent coinvariant module then all idempotents in End(M)/∇(M)
are lifted modulo the ideal ∇(M).
Proof. Let s+∇(M) be an idempotent in End(M)/∇(M). Then Φ(s+∇(M)) = s′ + J(S) is an

idempotent in S/J(S), where sp = ps′. Since S is a semiregular ring, there is an idempotent ε in S such
that s′ + J(S) = ε+ J(S). Since M is X -idempotent coinvariant, by Lemma 2 there is an idempotent e
in End(M) satisfying Φ(e+∇(M)) = ε+ J(S). Hence, s+∇(M) = e+∇(M). �
Theorem 24. IfM is anX -discrete module then End(M) is semiregular and J(End(M)) = ∇(M).
Proof. Let T = End(M) and ∇ = ∇(M). Consider an arbitrary endomorphism α :M →M . Then

pβ = αp for an endomorphism β : X → X. Let S = S/J(S). Given y ∈ S, denote the coset y + J(S)
by ȳ. We use an analogous notation for the ring T/∇. Since S is a regular ring, there is x ∈ S such that
β̄ = β̄x̄β̄. Let ē = x̄β̄ and f̄ = β̄x̄. Then ē2 = ē, f̄2 = f̄ and β̄ = β̄ē, f̄ β̄ē = β̄. Since the idempotents in S
are lifted modulo J(S), we may assume without loss of generality that e, f ∈ S are some idempotents.
Since

(ēx̄f̄)(f̄ β̄ē) = ēx̄(f̄ β̄ē) = ēx̄β̄ = ē,

we have (exf)(fβe) = e + j for some j ∈ J(S). Thus, (exf)(fβe) = e + eje. Since e + eje ∈ U(eSe),
there is x′ ∈ S such that (ex′f)(fβe) = e. Hence, fβe : e(X)→ f(X) is a monomorphism.
On the other hand, (f̄ β̄ē)(ēx̄f̄) = β̄(ēx̄f̄) = (β̄ēx̄)f̄ = f̄ . So there is j′ ∈ J(S) such that (fβe)(exf) =

f + j′. Therefore, (fβe)(ex′′f) = f for some x′′ ∈ S. Thus, fβe : e(X)→ f(X) is an isomorphism. Since

êp = pe and f̂p = pf , the diagram commutes:

e(X)
fβe−−−→ f(X)

p

⏐
⏐
�

⏐
⏐
�p

ê(M) −−−→
f̂αê

f̂(M).

Since M is an X -discrete module, f̂αê : ê(M)→ f̂(M) is an isomorphism. Let êα′f̂ : f̂(M)→ ê(M) be

an inverse homomorphism to f̂αê. Then (f̂αê)(êα′f̂) = f̂ and (êα′f̂)(f̂αê) = ê.
Let γ = êα′f̂ ∈ T . Then
Φ(αγα) = β̄Φ(γ)β̄ = β̄Φ(γ)f̄ β̄ē = β̄Φ(γ)Φ(f̂αê) = β̄Φ(γ(f̂αê)) = β̄Φ(ê) = β̄ē = β̄ = Φ(α).

Since Φ is injective, αγα = α. Thus, T/∇ is a regular ring.
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Show that J(T ) = ∇. Since T/∇ is regular, J(T ) ≤ ∇. Prove an inverse inclusion. Let α ∈ ∇,
and let β : X → X be a homomorphism satisfying αp = pβ. Then 0 = Φ(α + ∇) = β + J(S), and so
β ∈ J(S). Given an arbitrary γ : M → M , let γ′ be an endomorphism of X such that γp = pγ′. Since
Φ(αγ +∇) = βγ′+ J(S) = 0; therefore, 1X − βγ′ is an isomorphism. Since M is X -discrete, 1M −αγ is
an isomorphism for every γ ∈ T . Thus, α ∈ J(T ). �
Theorem 25. If M is an X -idempotent coinvariant module then M is X -discrete if and only if

∇(M) = J(End(M)) and End(M)/∇(M) is a regular ring.
Proof. Necessity follows from Theorem 24. Assume that ∇(M) = J(End(M)) and End(M)/∇(M)

is regular. Show that M is X -discrete. Let T = End(M) and S = End(X). Consider the commutative
diagram

e1(X)
α−−−→ e2(X)

p

⏐
⏐
�

⏐
⏐
�p

ê1(M) −−−→
α′

ê2(M) ,

where α is an isomorphism, while e1 and e2 are some idempotents in S. Show that α
′ is an isomorphism.

Since α is an isomorphism, αα−1 = 1e2(X) and α
−1α = 1e1(X) for some homomorphism α−1 : e2(X) →

e1(X). Let γ ∈ S be an endomorphism acting by the rule γ(e1m+ (1− e1)m) = αe1m, and let γ′ ∈ S be
an endomorphism defined by γ(e2m+(1− e2)m) = α−1e2m, where m ∈ P . Then γγ′ = e2 and γ′γ = e1.
Consider the endomorphism ω ∈ T that acts by the rule ω(ê1m + (1 − ê1)m) = α′ê1m, where m ∈ M .
Clearly, ω = ωê1 = ê2ω. Then for every m ∈ P we have

pγ(m) = pα(e1(m)) = α
′p(e1(m)) = α′ê1p(x) = ωp(m).

Since T/J(T ) is a regular ring, ω − ωβ1ω ∈ J(T ) for some β1 ∈ T . We have pβ = β1p for some
β ∈ S. Hence, γ − γβγ ∈ J(S).
The containment γ′(γ−γβγ) ∈ J(S) yields e1−e1βγ ∈ J(S). Since Φ is injective, ê1− ê1β1ω ∈ J(T ).

Hence, ê1 − ê1β1ωê1 ∈ ê1J(T )ê1 = J(ê1T ê1). Then ê1β1ωê1 ∈ U(ê1T ê1), and there is t ∈ T such that
e′1tωê1 = ê1. Thus, α′ : ê1(M)→ ê2(M) is a monomorphism.
The inclusion (γ − γβγ)γ′ ∈ J(S) implies e2 − γβe2 ∈ J(S). Then ê2ωβ1ê2 ∈ U(ê2T ê2). Hence,

ê2ωt
′ê2 = ê2 for some t′ ∈ T . Thus, α′ is an isomorphism. �
Corollary 26. The endomorphism ring of every indecomposable X -discrete module is local.

Proof. This is immediate from Theorem 24. �
Theorem 27. If M is an X -discrete module then M has the finite exchange property.

Proof. This is immediate from Theorems 24 and [29, Proposition 1.6]. �
A ring R is clean provided that every r in R may be represented as r = e + u, where e2 = e ∈ R

and u is invertible in R. A module M is clean if End(M) is a clean ring.

Theorem 28. If M is an X -discrete module and End(X) is a clean ring then End(M) is clean.

Proof. Let α be an arbitrary element in End(M). There is an endomorphism β ∈ X such that
pβ = αp. Since End(X) is a clean ring, β = e + γ for an automorphism γ of X and an idempotent
e ∈ End(X). Since M is X -idempotent coinvariant, pe = e1p for an idempotent e1 ∈ End(M). Let
γ′ = α− e1 ∈ End(M). Then pγ = p(β − e) = pβ − pe = αp− e1p = γ′p. Since M is X -discrete, γ′ is an
automorphism of M. Thus, M is a clean module. �
A module M is quasicontinuous provided that M is invariant under the idempotent endomorphism

ring of the injective envelope of M . A quasicontinuous module M is continuous if each submodule of M
isomorphic to a direct summand of M is a direct summand of M . The following may be proved by the
standard argument.
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Lemma 29. Let M be a quasicontinuous module, and let u : M → E(M) be an injective envelope
of M . The following are equivalent:
(1) M is a continuous module;
(2) if eiu = ue

′
i for i = 1, 2 and some idempotents e1, e2 ∈ End(E) and e′1, e′2 ∈ End(M), the diagram

commutes:

e′1(M)
α′−−−→ e′2(M)

u

⏐
⏐
�

⏐
⏐
�u

e1(E) −−−→
α

e2(E)

for some homomorphisms α and α′, while α is an isomorphism; then α′ is an isomorphism.
Let u :M → X be an X -envelope of M. A module M is X -continuous if the following hold:
(1) M is an X -idempotent invariant module;
(2) if eiu = ue

′
i for i = 1, 2 and some idempotents e1, e2 ∈ End(E) and e′1, e′2 ∈ End(M), the diagram

commutes:

e′1(M)
α′−−−→ e′2(M)

u

⏐
⏐
�

⏐
⏐
�u

e1(E) −−−→
α

e2(E)

for some homomorphisms α and α′, while α is an isomorphism; then α′ is an isomorphism.
In what follows, we assume that u :M → X is a monomorphic X -envelope of a right R-module M

and EndR(X) is a semiregular ring. Then the ring homomorphism Φ : End(M)→ S/J(S) holds, which
is defined by the rule Φ(f) = f̄ + J(S), where f̄ : X → X is a homomorphism such that f̄u = uf . Let
Δ(M) = Ker(Φ). Then we have the monomorphism Φ : M/Δ(M) → S/J(S). It is easy to notice that
if X is the class of injective right R-modules then Δ(M) = {f ∈ End(M) | Ker(f) ≤e M}.
We list the dual analogs to Theorems 24, 25, 27, and 28.

Theorem 30. If M is an X -continuous module then End(M) is semiregular and J(End(M)) =
Δ(M).

Theorem 31. If M is an X -idempotent invariant module then M is X -continuous if and only if
Δ(M) = J(End(M)) and End(M)/Δ(M) is regular.

Theorem 32. If M is an X -continuous module then M has the finite exchange property.

Theorem 33. If M is an X -continuous module then End(M) is clean.

4. Some Applications

As some applications of the above results, we consider the cases of flat covers as well as injective and
pure injective envelopes.
Let R be a ring, and let F be the class of flat right R-modules. Each right R-module possesses

a flat envelope by [30, Theorem 3]. If R is a perfect right ring then every flat envelope of an arbitrary
right R-module M coincides with the projective envelope of M by [25, Proposition 1.3.1]. Thus, a right
R-module M over a perfect right ring R is discrete if and only if M is an F -discrete module.

Theorem 34. Let M be an F -discrete right R-module. The following hold:
(1) EndM is a semiregular ring;
(2) M has the finite exchange property;
(3) EndM is a clean ring;
(4) if M is an indecomposable module then EndM is a local ring.

Proof. This follows from [21, Lemma 5.1], Theorems 24 and 20, and Corollary 21. �
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Corollary 35. Let R be a perfect right ring, and let M be a discrete right R-module. Then
(1) EndM is a semiregular ring, and J(End(M)) = {f ∈ End(M) | f(M)�M};
(2) M has the finite exchange property;
(3) EndM is a clean ring;
(4) if M is an indecomposable module then EndM is a local ring.

Corollary 36. Let R be a semiperfect ring, and let M be a finitely generated discrete right R-
module. Then
(1) EndM is a semiregular ring, and J(End(M)) = {f ∈ End(M) | f(M)�M};
(2) M has the finite exchange property;
(3) EndM is a clean ring;
(4) if M is an indecomposable module then EndM is a local ring.

Theorem 37. Let M be a continuous right R-module. Then
(1) EndM is a semiregular ring, and J(End(M)) = {f ∈ End(M) | Ker(f) ≤e M};
(2) M has the finite exchange property;
(3) EndM is a clean ring;
(4) if M is an indecomposable module then EndM is a local ring.

Proof. This follows from Theorems 31, 33, and 34, if X is the class of all injective right R-modules
in these theorems. �
A module M is pure continuous provided that M is an X -continuous module, where X is the class

of pure injective right R-modules. By [31, Proposition 6], each module possesses a monomorphic pure
injective envelope, and [32, Theorem 9] implies that the endomorphism ring of every pure injective right
module is semiregular and right self-injective. Then Theorems 24, 27, 28 and Corollary 26 imply the
assertion that generalizes the results from [32] on the endomorphism rings of pure injective modules:

Theorem 38. Let M be a pure continuous right R-module. Then
(1) EndM is a semiregular ring;
(2) M has the finite exchange property;
(3) EndM is a clean ring;
(4) if M is an indecomposable module then EndM is a local ring.

Remark. It is known that the Schröder–Bernstein problem is solved affirmatively for the discrete
modules over perfect rings and for the continuous modules [16, Theorem 3.17]. Therefore, it is of interest
to study this problem in the general case for the X -continuous and X -discrete modules. The flat,
injective, discrete, and continuous modules play an essential role in the homological characterization of
rings. It stands to reason to understand the structure of the rings over which every module is F -discrete.
Obviously, the regular rings are some examples of these rings. A module M over a Prüfer ring is flat if
and only if M is a torsion-free module by [30, Theorem 3]. The description of pure injective Z-modules
[33, Theorem 3.2] and continuous Z-modules [16, p. 19] is well known. Therefore, the problem is natural
of describing F -discrete modules and pure continuous modules over Prüfer rings (in particular, over the
ring of integers).
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vol. 498, 153–164 (2018).
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