On the distance from the origin to an entire graphic m-shrinker

N. T. M. Duyen and N. T. T. Loan

Abstract

Let Σ be an entire graphic m-shrinker in \mathbb{R}^{n} and X be the position vector field of Σ. By using the generalized divergence theorem, we obtain a formula for the weighted volume of Σ that is related to X, and give a simple proof for it. Thanks to this formula, an upper bound for the distance from the origin to the m-shrinker is given.

M.S.C. 2010: 53C25, 53A10, 49Q05.

Key words: Weighted minimal graphs; Gauss space; self-shrinkers; Bernstein's theorem.

1 Introduction

A minimal surface is a surface that locally minimizes its area. This is equivalent to that the surface has zero mean curvature. The classical Bernstein's theorem asserts that an entire minimal graph over \mathbb{R}^{2} is a plane in \mathbb{R}^{3} (see [10]). Many mathematicians tried to generalize the Bernstein's theorem to higher dimensions as well as higher codimensions. In 1965, De Giorgi proved the Bernstein's theorem for entire minimal graphs over \mathbb{R}^{3} in \mathbb{R}^{4} (see [7]). In 1966, Almgren proved the theorem in \mathbb{R}^{5} (see [1]). In 1968, Simons extended the theorem to \mathbb{R}^{8}. He proved that an entire minimal graph of dimension n has to be planar for $n \leq 7$ (see [11]). In 1969, Bombieri, De Giorgi, and Giusti produced a counterexample in dimension 8 and higher (see [3]). In the theory of minimal hypersurfaces, Bernstein's theorem is one of the most fundamental theorems. Thus, it is natural to ask whether there is a Bernstein type theorem in an ambient space other than \mathbb{R}^{n}, such as Riemannian manifolds, LorentzMinkowski spaces, warped product spaces, manifolds with density,... In particular, a theme widely approached in recent years is Bernstein type theorem in a manifold with density, a Riemannian manifold with a positive function e^{-f} used to weight both the volume and the perimeter area. A hypersurface Σ is said to be f-minimal (or weighted minimal or minimal with density e^{-f}) if the f-mean curvature (or weighted mean curvature) of Σ,

$$
H_{f}(\Sigma)=H(\Sigma)+\langle\nabla f, N\rangle=0
$$

[^0]where $H(\Sigma)(=-\operatorname{div} N)$ and N are the classical mean curvature and the unit normal vector field of Σ, respectively. If $H_{f}(\Sigma)=\lambda$, a constant, then Σ is called a λ hypersurface.

Shrinkers are minimal hypersurfaces in \mathbb{R}^{n} under the conformally changed metric $g_{i j}=e^{-\frac{|x|^{2}}{2(n-1)}} \delta_{i j}$ (see [6]). They are special examples of weighted minimal hypersurfaces in \mathbb{R}^{n} with density $e^{-\frac{|x|^{2}}{4}}$, a modified version of Gauss space $\mathbb{G}^{n}, \mathbb{R}^{n}$ with density $e^{-f}=(2 \pi)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{2}}$. To answer the question of whether there is a Bernstein type theorem for shrinkers, Ecker and Huisken (see [8]) showed that a smooth shrinker is a hyperplane if it is an entire graphic shrinker with polynomial area growth. Recently, Lu Wang (see [12]) removed the assumption of polynomial area growth. She proved that smooth shrinkers in \mathbb{R}^{n}, that are entire graphs are hyperplanes. Cheng and Wei (see [4]) proved that an entire graphic λ-hypersurface in Euclidean space is a hyperplane. In [9], D. T. Hieu established a weighted area estimate for entire graphs with bounded weighted mean curvature in Gauss space. Thanks to this, the Bernstein type theorems for graphic shrinkers as well as for graphic λ-hypersurfaces are immediately obtained as sequences. It should be noted that all mentioned above are for the case of codimension one, i.e., for hypersurfaces.

For m-surface (i.e., an m-dimensional surface) Σ^{m} in \mathbb{R}^{n}, the f-mean curvature vector of Σ^{m} is $\vec{H}_{f}\left(\Sigma^{m}\right)=\vec{H}\left(\Sigma^{m}\right)+X^{N}$, where $\vec{H}\left(\Sigma^{m}\right)$ and X^{N} are the mean curvature vector and the projection of the position vector field X into the normal bundle of Σ^{m}, respectively. An m-shrinker is an m-surface satisfies the equation $\vec{H}+\frac{X^{N}}{2}=0$. Up to now, some Bernstein type theorems for entire graphic shrinkers with higher codimensions have been proved with some additional conditions. H. Zhou (see [14]) proved a Bernstein type theorem for entire graphic shrinkers in \mathbb{R}^{4} of a smooth map f from \mathbb{R}^{2} to \mathbb{R}^{2} with its Jacobian, J_{f}, satisfies that $J_{f}+1>0$ or $1-J_{f}>0$ for all $x \in \mathbb{R}^{2}$. After that, he proved such a theorem in \mathbb{R}^{n+l} for a smooth map f from \mathbb{R}^{n} to \mathbb{R}^{l} with its eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{r}$, satisfy that $\left|\lambda_{i} \lambda_{j}\right| \leq 1$ for $i \neq j$, where r is the rank of the differential of f.

It should be noted that the Bernstein type theorem for entire graphic shrinkers of codimension one is a stronger version than the classical one. An entire graphic shrinker is not only a hyperplane but also passing through the origin, i.e., the distance from the origin to the shrinker is zero. It is natural to consider the weaker question whether the entire graphic m-shrinker (i.e., an m-dimensional entire graphic shrinker) in \mathbb{R}^{n} $(n-m>1)$ passes through the origin. In this paper, we prove a partial result for this question: an entire graphic m-shrinker is not too far from the origin.

2 Distance from the origin to an entire graphic m shrinker

In \mathbb{R}, by integration by parts, it is not hard to check that

$$
2 \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{4}} d x=\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{4}} x^{2} d x
$$

Observe that the left-hand side of this equation represents twice the weighted length of a straight line passing through the origin in $\overline{\mathbb{G}}^{n}, \mathbb{R}^{n}$ with density $e^{-\frac{|x|^{2}}{4}}$.

In [2], Claudio Arezzo and Jun Sun considered that Σ^{m} is an m-dimensional complete submanifold of \mathbb{R}^{n} without boundary, with polynomial volume growth, and $\vec{H}+\frac{X^{N}}{2}=0$. They gave a similar equation for Σ^{m} without proof (see [2], Lemma 2.4):

$$
\int_{\Sigma^{m}}\left(|X|^{2}-2 m\right) e^{-\frac{|X|^{2}}{4}}=0
$$

Now, we consider that Σ is an entire graph m-shrinker in \mathbb{R}^{n}. By using the generalized divergence theorem, a simple proof for the same equation for m-planes passing through the origin in $\overline{\mathbb{G}}^{n}$ as well as entire graphic m-shrinkers in \mathbb{R}^{n} will be given in the next propositions. Thanks to them, the main theorem, Theorem 2.5, is obtained.

We first prove the following lemma.
Lemma 2.1. Let Σ be a graphic m-shrinker in \mathbb{R}^{n} and X be the position vector field of Σ. We have

$$
\operatorname{div}_{\Sigma} X=m
$$

and

$$
\operatorname{div}_{\Sigma}\left(e^{-f} X\right)=m e^{-f}-\frac{1}{2} e^{-f}\left|X^{T}\right|^{2}
$$

where $f=\sum_{i=1}^{n} \frac{x_{i}^{2}}{4}=\frac{1}{4} \sum_{i=1}^{n} x_{i}^{2}$ and X^{T} is the projection of the position vector field X into the tangent bundle of Σ.
Proof. A direct computation shows that for every $v \in \operatorname{Tan}_{p} \Sigma$,

$$
\nabla_{v} X=v
$$

Thus, for any orthonormal basis of $\operatorname{Tan}_{p} \Sigma,\left\{e_{1}(p), e_{2}(p), \ldots, e_{m}(p)\right\}$, we have

$$
\operatorname{div}_{\Sigma} X=\sum_{i=1}^{m} e_{i} \nabla_{e_{i}} X=\sum_{i=1}^{m} e_{i} e_{i}=m
$$

and

$$
\begin{align*}
\operatorname{div}_{\Sigma}\left(e^{-f} X\right) & =\sum_{i=1}^{m} e_{i} \nabla_{e_{i}}\left(e^{-f} X\right) \\
& =\sum_{i=1}^{m} e_{i}\left(e^{-f} \nabla_{e_{i}} X+e_{i}\left(e^{-f}\right) X\right) \\
& =\sum_{i=1}^{m} e_{i}\left(e^{-f} \nabla_{e_{i}} X-e^{-f}\left\langle\nabla f, e_{i}\right\rangle X\right) \\
& =\sum_{i=1}^{m} e_{i}\left(e^{-f} \nabla_{e_{i}} X-\frac{1}{2} e^{-f}\left\langle X, e_{i}\right\rangle X\right) \\
& =e^{-f}\left(\sum_{i=1}^{m} e_{i} \nabla_{e_{i}} X-\frac{1}{2} \sum_{i=1}^{m}\left\langle X, e_{i}\right\rangle\left\langle X, e_{i}\right\rangle\right) \\
& =e^{-f}\left(\operatorname{div}_{\Sigma} X-\frac{1}{2}\left|X^{T}\right|^{2}\right) \\
& =m e^{-f}-\frac{1}{2} e^{-f}\left|X^{T}\right|^{2} \tag{2.1}
\end{align*}
$$

This completes the proof of Lemma 2.1.
Proposition 2.2. Let Σ_{0} be an m-plane passing through the origin in $\overline{\mathbb{G}}^{n}$, and X be a position vector field of Σ_{0}. Then we have

$$
2 m \operatorname{Vol}_{f} \Sigma_{0}=\int_{\Sigma_{0}} e^{-f}|X|^{2} d V
$$

where $f=\sum_{i=1}^{n} \frac{x_{i}^{2}}{4}=\frac{1}{4} \sum_{i=1}^{n} x_{i}^{2}$.
Proof. Since Σ_{0} is an m-plane passing through the origin in \mathbb{G}^{n} and X is in Σ_{0}, $\left|X^{T}\right|^{2}=|X|^{2}$ and it follows from (2.1) that

$$
\begin{align*}
\int_{\Sigma_{0}} \operatorname{div}_{\Sigma_{0}}\left(e^{-f} X\right) d V & =m \int_{\Sigma_{0}} e^{-f} d V-\frac{1}{2} \int_{\Sigma_{0}} e^{-f}\left|X^{T}\right|^{2} d V \\
& =m \operatorname{Vol}_{f} \Sigma_{0}-\frac{1}{2} \int_{\Sigma_{0}} e^{-f}|X|^{2} d V \tag{2.2}
\end{align*}
$$

Let B_{R} be an n-ball with center O and radius R in $\mathbb{R}^{n}, \nu(p)$ be the unit vector in the tangent plane to $B_{R} \cap \Sigma_{0}$ at p that is normal to $\partial\left(B_{R} \cap \Sigma_{0}\right)$ and that points away from $B_{R} \cap \Sigma_{0}$. Since X and ν have the same direction, $\langle X, \nu\rangle=R$ on $\partial\left(B_{R} \cap \Sigma_{0}\right)$.

By using the generalize divergence theorem (see [13]), we get

$$
\begin{align*}
\int_{B_{R} \cap \Sigma_{0}} \operatorname{div}_{\Sigma_{0}}\left(e^{-f} X\right) d V & =\int_{\partial\left(B_{R} \cap \Sigma_{0}\right)} e^{-f}\langle X, \nu\rangle d V-\int_{B_{R} \cap \Sigma_{0}} e^{-f}\langle\vec{H}, X\rangle d V \\
& =R \cdot e^{-\frac{R^{2}}{4}} \operatorname{Vol}\left(\partial\left(B_{R} \cap \Sigma_{0}\right)\right) \tag{2.3}
\end{align*}
$$

because $\vec{H}=0$ on Σ_{0}.
Moreover, it is clear that $\partial\left(B_{R} \cap \Sigma_{0}\right)$ is an $(m-1)$-sphere with center O and radius R. Therefore, we have

$$
\operatorname{Vol}\left(\partial\left(B_{R} \cap \Sigma_{0}\right)\right)=\frac{2 \pi^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)} R^{m-1}
$$

where Γ is the gamma function, which satisfies $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \Gamma(1)=1$, and $\Gamma(x+1)=$ $x \Gamma(x)$ for any x.

Thus, taking the limit of both sides of (2.3) as R tends to infinity, we obtain

$$
\int_{\Sigma_{0}} \operatorname{div}_{\Sigma_{0}}\left(e^{-f} X\right)=0
$$

Combining with (2.2), we get

$$
2 m \operatorname{Vol}_{f} \Sigma_{0}=\int_{\Sigma_{0}} e^{-f}|X|^{2} d V
$$

as desired.
Remark 2.1. Since an entire graphic m-shrinker Σ in \mathbb{R}^{n} is proper, it has Euclidean volume growth (see [5]), that is, there exist constants C so that for all $R \geq 1$

$$
\operatorname{Vol}\left(B_{R} \cap \Sigma\right) \leq C R^{m}
$$

Lemma 2.3. Let Σ be an entire graphic m-shrinker in $\mathbb{R}^{n}, \nu(p)$ be the unit vector in the tangent plane to $B_{R} \cap \Sigma$ at p that is normal to $\partial\left(B_{R} \cap \Sigma\right)$ and that points away from $B_{R} \cap \Sigma$. We have

$$
\lim _{R \rightarrow \infty} e^{-\frac{R^{2}}{4}} \int_{\partial\left(B_{R} \cap \Sigma\right)}\langle X, \nu\rangle d V=0
$$

Proof. It is not hard to check that

$$
\begin{aligned}
& \Delta_{\Sigma} X=\vec{H}=-\frac{X^{N}}{2} \\
& \Delta_{\Sigma}|X|^{2}=2\left\langle X, \Delta_{\Sigma} X\right\rangle+2\left|\nabla_{\Sigma} X\right|^{2}=2\langle X, \vec{H}\rangle+2 m=2 m-\left|X^{N}\right|^{2} \\
& \nabla_{\Sigma}|X|^{2}=2 X^{T}
\end{aligned}
$$

Hence,

$$
\int_{B_{R} \cap \Sigma} \operatorname{div}_{\Sigma}\left(X^{T}\right) d V=\int_{B_{R} \cap \Sigma} \frac{\Delta_{\Sigma}|X|^{2}}{2} d V=\int_{B_{R} \cap \Sigma}\left(m-\frac{1}{2}\left|X^{N}\right|^{2}\right) d V
$$

Moreover, by using the divergence theorem, we have

$$
\int_{B_{R} \cap \Sigma} \operatorname{div}_{\Sigma}\left(X^{T}\right) d V=\int_{\partial\left(B_{R} \cap \Sigma\right)}\left\langle X^{T}, \nu\right\rangle d V=\int_{\partial\left(B_{R} \cap \Sigma\right)}\langle X, \nu\rangle d V
$$

It follows that

$$
0 \leq \int_{\partial\left(B_{R} \cap \Sigma\right)}\langle X, \nu\rangle d V=\int_{B_{R} \cap \Sigma}\left(m-\frac{1}{2}\left|X^{N}\right|^{2}\right) d V \leq m \int_{B_{R} \cap \Sigma} d V \leq m C R^{m}
$$

since Σ has Euclidean volume growth.
Therefore,

$$
\begin{equation*}
0 \leq e^{-\frac{R^{2}}{4}} \int_{\partial\left(B_{R} \cap \Sigma\right)}\langle X, \nu\rangle d V \leq e^{-\frac{R^{2}}{4}} m C R^{m} \tag{2.4}
\end{equation*}
$$

Taking the limit of both sides of (2.4) as R tends to infinity, we get

$$
\lim _{R \rightarrow \infty} e^{-\frac{R^{2}}{4}} \int_{\partial\left(B_{R} \cap \Sigma\right)}\langle X, \nu\rangle d V=0
$$

as desired.
Proposition 2.4. Proposition 2.2 also holds true for Σ being an entire graphic m shrinker in \mathbb{R}^{n}.
Proof. From (2.1),

$$
\int_{B_{R} \cap \Sigma} \operatorname{div}_{\Sigma}\left(e^{-f} X\right) d V=m \int_{B_{R} \cap \Sigma} e^{-f} d V-\frac{1}{2} \int_{B_{R} \cap \Sigma} e^{-f}\left|X^{T}\right|^{2} d V
$$

By using the generalized divergence theorem, we have

$$
\int_{B_{R} \cap \Sigma} \operatorname{div}_{\Sigma}\left(e^{-f} X\right) d V=\int_{\partial\left(B_{R} \cap \Sigma\right)} e^{-f}\langle X, \nu\rangle d V-\int_{B_{R} \cap \Sigma} e^{-f}\langle\vec{H}, X\rangle d V
$$

Therefore,

$$
\begin{aligned}
m \int_{B_{R} \cap \Sigma} e^{-f} d V=\int_{\partial\left(B_{R} \cap \Sigma\right)} e^{-f}\langle X, \nu\rangle d V & +\frac{1}{2} \int_{B_{R} \cap \Sigma} e^{-f}\left|X^{T}\right|^{2} d V \\
& -\int_{B_{R} \cap \Sigma} e^{-f}\langle\vec{H}, X\rangle d V
\end{aligned}
$$

Since Σ is an m-shrinker in \mathbb{R}^{n}, i.e., $\vec{H}+\frac{1}{2} X^{N}=0$,

$$
\langle\vec{H}, X\rangle=-\frac{1}{2}\left\langle X^{N}, X\right\rangle=-\frac{1}{2}\left|X^{N}\right|^{2}
$$

It follows that

$$
\begin{align*}
& m \int_{B_{R} \cap \Sigma} e^{-f} d V=\int_{\partial\left(B_{R} \cap \Sigma\right)} e^{-f}\langle X, \nu\rangle d V+\frac{1}{2} \int_{B_{R} \cap \Sigma} e^{-f}\left|X^{T}\right|^{2} d V \\
& +\frac{1}{2} \int_{B_{R} \cap \Sigma} e^{-f}\left|X^{N}\right|^{2} d V \\
& =e^{-\frac{R^{2}}{4}} \int_{\partial\left(B_{R} \cap \Sigma\right)}\langle X, \nu\rangle d V+\frac{1}{2} \int_{B_{R} \cap \Sigma} e^{-f}|X|^{2} d V . \tag{2.5}
\end{align*}
$$

According to Lemma 2.3, we have

$$
\lim _{R \rightarrow \infty} e^{-\frac{R^{2}}{4}} \int_{\partial\left(B_{R} \cap \Sigma\right)}\langle X, \nu\rangle d V=0
$$

Therefore, taking the limit of both sides of (2.5) as R tends to infinity, we get

$$
2 m \operatorname{Vol}_{f} \Sigma=\int_{\Sigma} e^{-f}|X|^{2} d V
$$

Thus, Proposition 2.2 also holds true for Σ being an entire graphic m-shrinker in \mathbb{R}^{n}.

The following theorem gives an upper bound for the distance from O to an entire graphic m-shrinker in \mathbb{R}^{n}. It shows that an entire graphic m-shrinker in \mathbb{R}^{n} is not too far from the origin.
Theorem 2.5. Let Σ be an entire graphic m-shrinker in \mathbb{R}^{n}. Then the distance from the origin to $\Sigma, d(O, \Sigma)$, satisfies

$$
d(O, \Sigma)<\sqrt{2 m}
$$

Therefore, an entire graphic m-shrinker in \mathbb{R}^{n} is not too far from the origin.
Proof. Let $k=\sqrt{2 m}$ and B_{k} be the n-ball with center O and radius k. It is clear that

$$
\begin{equation*}
2 m=k^{2} \leq|X|^{2}, \forall X \in \Sigma-B_{k} \text { and } \exists X \in \Sigma-B_{k}: 2 m<|X|^{2} \tag{2.6}
\end{equation*}
$$

From Proposition 2.4, we have
$\int_{\Sigma} e^{-f}\left(2 m-|X|^{2}\right) d V=\int_{\Sigma \cap B_{k}} e^{-f}\left(2 m-|X|^{2}\right) d V+\int_{\Sigma-B_{k}} e^{-f}\left(2 m-|X|^{2}\right) d V=0$.
It follows from (2.6) that the last integral is negative, therefore the first one is positive. Hence, $\Sigma \cap B_{k} \neq \varnothing$, and $d(O, \Sigma)<\sqrt{2 m}$. Thus, an entire graphic m-shrinker in \mathbb{R}^{n} is not too far from the origin.

References

[1] J. Almgren, Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. 84 (1966), 277-292.
[2] C. Arezzo and S. Jun, Self-shrinkers for the mean curvature flow in arbitrary codimension, Math. Z. 274 (2013), 993-1027.
[3] E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243-268.
[4] M. Cheng and G. Wei, The Gauss image of λ-hypersurfaces and a Bernstein type problem, arXiv preprint arXiv:1410.5302 (2014).
[5] X. Cheng and D. Zhou, Volume estimate about shrinkers, Proc. Amer. Math. Soc. 141 (2013), 687-696.
[6] H. Colding and P. Minicozzi, Generic mean curvature flow I; generic singularities, Ann. of Math. (2012), 755-833.
[7] E. De Giorgi, Una estensione del teorema di Bernstein, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 19 (1965), 79-85.
[8] K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. of Math. 130 (1989), 453-471.
[9] D. T. Hieu, A weighted volume estimate and its application to Bernstein type theorems in Gauss space, Colloq. Math. 159 (2020), 25-28.
[10] R. Osserman, A survey of minimal surfaces, Courier Corporation, 2013.
[11] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.
[12] L. Wang, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata, 151 (2011), 297-303.
[13] B. White, Lectures on minimal surface theory, arXiv preprint arXiv:1308.3325 (2013).
[14] H. Zhou, Some Bernstein Type Results of Graphical Self-Shrinkers with High Codimension in Euclidean Space, Thesis (Ph.D.)-City University of New York, ProQuest LLC, Ann Arbor, MI (2015), 74 pp.

Authors' address:
Nguyen Thi My Duyen, Nguyen Thi Thanh Loan
Department of Mathematics, University of Education,
Hue University, 32 Le Loi, Hue, Vietnam.
E-mail addresses: ntmduyen@hueuni.edu.vn
nttloan.dhsp@hueuni.edu.vn

[^0]: Differential Geometry - Dynamical Systems, Vol.23, 2021, pp. 52-58.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2021.

