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Abstract. Let Σ be an entire graphic m-shrinker in Rn and X be the
position vector field of Σ. By using the generalized divergence theorem,
we obtain a formula for the weighted volume of Σ that is related to X,
and give a simple proof for it. Thanks to this formula, an upper bound
for the distance from the origin to the m-shrinker is given.
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1 Introduction

A minimal surface is a surface that locally minimizes its area. This is equivalent to
that the surface has zero mean curvature. The classical Bernstein’s theorem asserts
that an entire minimal graph over R2 is a plane in R3 (see [10]). Many mathematicians
tried to generalize the Bernstein’s theorem to higher dimensions as well as higher
codimensions. In 1965, De Giorgi proved the Bernstein’s theorem for entire minimal
graphs over R3 in R4 (see [7]). In 1966, Almgren proved the theorem in R5 (see
[1]). In 1968, Simons extended the theorem to R8. He proved that an entire minimal
graph of dimension n has to be planar for n ≤ 7 (see [11]). In 1969, Bombieri,
De Giorgi, and Giusti produced a counterexample in dimension 8 and higher (see
[3]). In the theory of minimal hypersurfaces, Bernstein’s theorem is one of the most
fundamental theorems. Thus, it is natural to ask whether there is a Bernstein type
theorem in an ambient space other than Rn, such as Riemannian manifolds, Lorentz-
Minkowski spaces, warped product spaces, manifolds with density,... In particular,
a theme widely approached in recent years is Bernstein type theorem in a manifold
with density, a Riemannian manifold with a positive function e−f used to weight both
the volume and the perimeter area. A hypersurface Σ is said to be f -minimal (or
weighted minimal or minimal with density e−f ) if the f -mean curvature (or weighted
mean curvature) of Σ,

Hf (Σ) = H(Σ) + 〈∇f,N〉 = 0,
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where H(Σ) (= − divN) and N are the classical mean curvature and the unit normal
vector field of Σ, respectively. If Hf (Σ) = λ, a constant, then Σ is called a λ-
hypersurface.

Shrinkers are minimal hypersurfaces in Rn under the conformally changed metric

gij = e−
|x|2

2(n−1) δij (see [6]). They are special examples of weighted minimal hyper-

surfaces in Rn with density e−
|x|2
4 , a modified version of Gauss space Gn, Rn with

density e−f = (2π)−
n
2 e−

|x|2
2 . To answer the question of whether there is a Bernstein

type theorem for shrinkers, Ecker and Huisken (see [8]) showed that a smooth shrinker
is a hyperplane if it is an entire graphic shrinker with polynomial area growth. Re-
cently, Lu Wang (see [12]) removed the assumption of polynomial area growth. She
proved that smooth shrinkers in Rn, that are entire graphs are hyperplanes. Cheng
and Wei (see [4]) proved that an entire graphic λ-hypersurface in Euclidean space
is a hyperplane. In [9], D. T. Hieu established a weighted area estimate for entire
graphs with bounded weighted mean curvature in Gauss space. Thanks to this, the
Bernstein type theorems for graphic shrinkers as well as for graphic λ-hypersurfaces
are immediately obtained as sequences. It should be noted that all mentioned above
are for the case of codimension one, i.e., for hypersurfaces.

For m-surface (i.e., an m-dimensional surface) Σm in Rn, the f -mean curvature

vector of Σm is ~Hf (Σm) = ~H(Σm) + XN , where ~H(Σm) and XN are the mean
curvature vector and the projection of the position vector field X into the normal
bundle of Σm, respectively. An m-shrinker is an m-surface satisfies the equation
~H + XN

2 = 0. Up to now, some Bernstein type theorems for entire graphic shrinkers
with higher codimensions have been proved with some additional conditions. H.
Zhou (see [14]) proved a Bernstein type theorem for entire graphic shrinkers in R4 of
a smooth map f from R2 to R2 with its Jacobian, Jf , satisfies that Jf + 1 > 0 or
1− Jf > 0 for all x ∈ R2. After that, he proved such a theorem in Rn+l for a smooth
map f from Rn to Rl with its eigenvalues {λi}ri=1, satisfy that |λiλj | ≤ 1 for i 6= j,
where r is the rank of the differential of f.

It should be noted that the Bernstein type theorem for entire graphic shrinkers of
codimension one is a stronger version than the classical one. An entire graphic shrinker
is not only a hyperplane but also passing through the origin, i.e., the distance from
the origin to the shrinker is zero. It is natural to consider the weaker question whether
the entire graphic m-shrinker (i.e., an m-dimensional entire graphic shrinker) in Rn

(n −m > 1) passes through the origin. In this paper, we prove a partial result for
this question: an entire graphic m-shrinker is not too far from the origin.

2 Distance from the origin to an entire graphic m-
shrinker

In R, by integration by parts, it is not hard to check that

2

∫ ∞
−∞

e−
x2

4 dx =

∫ ∞
−∞

e−
x2

4 x2 dx.

Observe that the left-hand side of this equation represents twice the weighted length

of a straight line passing through the origin in Gn
, Rn with density e−

|x|2
4 .
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In [2], Claudio Arezzo and Jun Sun considered that Σm is an m-dimensional
complete submanifold of Rn without boundary, with polynomial volume growth, and
~H + XN

2 = 0. They gave a similar equation for Σm without proof (see [2], Lemma
2.4): ∫

Σm

(|X|2 − 2m)e−
|X|2

4 = 0.

Now, we consider that Σ is an entire graph m-shrinker in Rn. By using the gener-
alized divergence theorem, a simple proof for the same equation for m-planes passing
through the origin in Gn

as well as entire graphic m-shrinkers in Rn will be given in
the next propositions. Thanks to them, the main theorem, Theorem 2.5, is obtained.

We first prove the following lemma.

Lemma 2.1. Let Σ be a graphic m-shrinker in Rn and X be the position vector field
of Σ. We have

divΣX = m;

and

divΣ(e−fX) = me−f − 1

2
e−f |XT |2,

where f =
∑n

i=1
x2
i

4 = 1
4

∑n
i=1 x

2
i and XT is the projection of the position vector field

X into the tangent bundle of Σ.

Proof. A direct computation shows that for every v ∈ TanpΣ,

∇vX = v.

Thus, for any orthonormal basis of TanpΣ, {e1(p), e2(p), ..., em(p)}, we have

divΣX =

m∑
i=1

ei∇eiX =

m∑
i=1

eiei = m;

and

divΣ(e−fX) =

m∑
i=1

ei∇ei(e
−fX)

=

m∑
i=1

ei
(
e−f∇eiX + ei(e

−f )X
)

=

m∑
i=1

ei
(
e−f∇eiX − e−f 〈∇f, ei〉X

)
=

m∑
i=1

ei

(
e−f∇eiX −

1

2
e−f 〈X, ei〉X

)

= e−f

(
m∑
i=1

ei∇eiX −
1

2

m∑
i=1

〈X, ei〉〈X, ei〉

)

= e−f
(

divΣX −
1

2
|XT |2

)
= me−f − 1

2
e−f |XT |2.(2.1)
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This completes the proof of Lemma 2.1. �

Proposition 2.2. Let Σ0 be an m-plane passing through the origin in Gn
, and X be

a position vector field of Σ0. Then we have

2mVolf Σ0 =

∫
Σ0

e−f |X|2 dV,

where f =
∑n

i=1
x2
i

4 = 1
4

∑n
i=1 x

2
i .

Proof. Since Σ0 is an m-plane passing through the origin in Gn and X is in Σ0,
|XT |2 = |X|2 and it follows from (2.1) that∫

Σ0

divΣ0
(e−fX) dV = m

∫
Σ0

e−f dV − 1

2

∫
Σ0

e−f |XT |2 dV

= mVolf Σ0 −
1

2

∫
Σ0

e−f |X|2 dV.(2.2)

Let BR be an n-ball with center O and radius R in Rn, ν(p) be the unit vector in
the tangent plane to BR ∩Σ0 at p that is normal to ∂(BR ∩Σ0) and that points away
from BR ∩ Σ0. Since X and ν have the same direction, 〈X, ν〉 = R on ∂(BR ∩ Σ0).

By using the generalize divergence theorem (see [13]), we get∫
BR∩Σ0

divΣ0
(e−fX) dV =

∫
∂(BR∩Σ0)

e−f 〈X, ν〉 dV −
∫
BR∩Σ0

e−f 〈 ~H,X〉 dV

= R.e−
R2

4 Vol(∂(BR ∩ Σ0)),(2.3)

because ~H = 0 on Σ0.
Moreover, it is clear that ∂(BR∩Σ0) is an (m−1)-sphere with center O and radius

R. Therefore, we have

Vol(∂(BR ∩ Σ0)) =
2π

m
2

Γ(m
2 )
Rm−1,

where Γ is the gamma function, which satisfies Γ( 1
2 ) =

√
π, Γ(1) = 1, and Γ(x+ 1) =

xΓ(x) for any x.
Thus, taking the limit of both sides of (2.3) as R tends to infinity, we obtain∫

Σ0

divΣ0
(e−fX) = 0.

Combining with (2.2), we get

2mVolf Σ0 =

∫
Σ0

e−f |X|2 dV

as desired. �

Remark 2.1. Since an entire graphic m-shrinker Σ in Rn is proper, it has Euclidean
volume growth (see [5]), that is, there exist constants C so that for all R ≥ 1

Vol(BR ∩ Σ) ≤ CRm.
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Lemma 2.3. Let Σ be an entire graphic m-shrinker in Rn, ν(p) be the unit vector in
the tangent plane to BR ∩ Σ at p that is normal to ∂(BR ∩ Σ) and that points away
from BR ∩ Σ. We have

lim
R→∞

e−
R2

4

∫
∂(BR∩Σ)

〈X, ν〉 dV = 0.

Proof. It is not hard to check that

∆ΣX = ~H = −X
N

2
;

∆Σ|X|2 = 2〈X,∆ΣX〉+ 2|∇ΣX|2 = 2〈X, ~H〉+ 2m = 2m− |XN |2;

∇Σ|X|2 = 2XT .

Hence, ∫
BR∩Σ

divΣ(XT ) dV =

∫
BR∩Σ

∆Σ|X|2

2
dV =

∫
BR∩Σ

(m− 1

2
|XN |2) dV.

Moreover, by using the divergence theorem, we have∫
BR∩Σ

divΣ(XT ) dV =

∫
∂(BR∩Σ)

〈XT , ν〉 dV =

∫
∂(BR∩Σ)

〈X, ν〉 dV.

It follows that

0 ≤
∫
∂(BR∩Σ)

〈X, ν〉 dV =

∫
BR∩Σ

(m− 1

2
|XN |2) dV ≤ m

∫
BR∩Σ

dV ≤ mCRm,

since Σ has Euclidean volume growth.
Therefore,

0 ≤ e−R2

4

∫
∂(BR∩Σ)

〈X, ν〉 dV ≤ e−R2

4 mCRm.(2.4)

Taking the limit of both sides of (2.4) as R tends to infinity, we get

lim
R→∞

e−
R2

4

∫
∂(BR∩Σ)

〈X, ν〉 dV = 0

as desired. �

Proposition 2.4. Proposition 2.2 also holds true for Σ being an entire graphic m-
shrinker in Rn.

Proof. From (2.1),∫
BR∩Σ

divΣ(e−fX) dV = m

∫
BR∩Σ

e−f dV − 1

2

∫
BR∩Σ

e−f |XT |2 dV.

By using the generalized divergence theorem, we have∫
BR∩Σ

divΣ(e−fX) dV =

∫
∂(BR∩Σ)

e−f 〈X, ν〉 dV −
∫
BR∩Σ

e−f 〈 ~H,X〉 dV.
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Therefore,

m

∫
BR∩Σ

e−f dV =

∫
∂(BR∩Σ)

e−f 〈X, ν〉 dV +
1

2

∫
BR∩Σ

e−f |XT |2 dV

−
∫
BR∩Σ

e−f 〈 ~H,X〉 dV.

Since Σ is an m-shrinker in Rn, i.e., ~H +
1

2
XN = 0,

〈 ~H,X〉 = −1

2
〈XN , X〉 = −1

2
|XN |2.

It follows that

m

∫
BR∩Σ

e−f dV =

∫
∂(BR∩Σ)

e−f 〈X, ν〉 dV +
1

2

∫
BR∩Σ

e−f |XT |2 dV

+
1

2

∫
BR∩Σ

e−f |XN |2 dV

= e−
R2

4

∫
∂(BR∩Σ)

〈X, ν〉 dV +
1

2

∫
BR∩Σ

e−f |X|2 dV.(2.5)

According to Lemma 2.3, we have

lim
R→∞

e−
R2

4

∫
∂(BR∩Σ)

〈X, ν〉 dV = 0.

Therefore, taking the limit of both sides of (2.5) as R tends to infinity, we get

2mVolf Σ =

∫
Σ

e−f |X|2 dV.

Thus, Proposition 2.2 also holds true for Σ being an entire graphic m-shrinker in Rn.
�

The following theorem gives an upper bound for the distance from O to an entire
graphic m-shrinker in Rn. It shows that an entire graphic m-shrinker in Rn is not
too far from the origin.

Theorem 2.5. Let Σ be an entire graphic m-shrinker in Rn. Then the distance from
the origin to Σ, d(O,Σ), satisfies

d(O,Σ) <
√

2m.

Therefore, an entire graphic m-shrinker in Rn is not too far from the origin.

Proof. Let k =
√

2m and Bk be the n-ball with center O and radius k. It is clear that

2m = k2 ≤ |X|2, ∀X ∈ Σ−Bk and ∃X ∈ Σ−Bk : 2m < |X|2(2.6)

From Proposition 2.4, we have∫
Σ

e−f (2m− |X|2) dV =

∫
Σ∩Bk

e−f (2m− |X|2) dV +

∫
Σ−Bk

e−f (2m− |X|2) dV = 0.

It follows from (2.6) that the last integral is negative, therefore the first one is positive.

Hence, Σ ∩Bk 6= f� , and d(O,Σ) <
√

2m. Thus, an entire graphic m-shrinker in Rn

is not too far from the origin. �
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