
ETRI Journal. 2021;0(0):1–10. | 1wileyonlinelibrary.com/journal/etrij

1 | INTRODUCTION

OpenMP [1] is an application programming interface (API)
that supports multi- platform shared- memory multiprocessing
programming in C, C++, and Fortran. It consists of a set of
compiler directives, library routines, and environment vari-
ables that influence runtime behavior. Parallel regions are ex-
plicitly specified in an original sequential program by adding
compiler directives. By using this programming model, pro-
grammers can easily transform a sequential program into a
parallel program. Additionally, OpenMP is relatively simple

when compared to other tools such as the message passing
interface (MPI) [2].

Based on its easy- to- use and high- performance characteris-
tics, OpenMP has been widely used and has quickly become a
standard parallel programming tool for shared- memory systems.
Many compilers have been developed for Linux, Windows,
MacOS, Solaris, FreeBSD, etc.[3] However, based on its
shared- memory model architecture, OpenMP cannot run on
distributed- memory systems such as clusters, grids, and clouds.

Many efforts have been made to port OpenMP onto
distributed- memory architectures. However, except for

Received: 22 May 2020 | Revised: 3 September 2020 | Accepted: 22 October 2020

DOI: 10.4218/etrij.2020-0201

O R I G I N A L A R T I C L E

New execution model for CAPE using multiple threads on
multicore clusters

Xuan Huyen Do1 | Viet Hai Ha2 | Van Long Tran3 | Eric Renault4

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2021 ETRI

1Information Technology Department,
University of Sciences, Hue University,
Hue, Vietnam
2Office for STIC, University of Education,
Hue University, Hue, Vietnam
3Technology and Business Department, Phu
Xuan University, Hue, Vietnam
4LIGM, University Gustave Eiffel, CNRS,
ESIEE Paris, Marne la Vallee, France

Correspondence
Viet Hai Ha, Office for STIC, University of
Education, Hue University, Hue, Vietnam.
Email: hviethai@hueuni.edu.vn

Funding information
This research was supported by the Ministry
of Education and Training (Vietnam) for
project B2019- DHH- 09.

Abstract
Based on its simplicity and user- friendly characteristics, OpenMP has become the
standard model for programming on shared- memory architectures. Checkpointing-
aided parallel execution (CAPE) is an approach that utilizes the discontinuous in-
cremental checkpointing technique (DICKPT) to translate and execute OpenMP
programs on distributed- memory architectures automatically. Currently, CAPE im-
plements the OpenMP execution model by utilizing the DICKPT to distribute paral-
lel jobs and their data to slave machines, and then collects the results after executing
these distributed jobs. Although this model has been proven to be effective in terms
of performance and compatibility with OpenMP on distributed- memory systems,
it cannot fully exploit the capabilities of multicore processors. This paper presents
a novel execution model for CAPE that utilizes two levels of parallelism. In the
proposed model, we add another level of parallelism in the form of multithreaded
processes on slave machines with the goal of better exploiting their multicore CPUs.
Initial experimental results presented near the end of this paper demonstrate that this
model provides significantly enhanced CAPE performance.

K E Y W O R D S

Checkpointing- aided parallel execution, high- performance computing, OpenMP, parallel
computing

www.wileyonlinelibrary.com/journal/etrij
https://orcid.org/0000-0001-7108-537X
mailto:
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:hviethai@hueuni.edu.vn

2 | DO et al.

checkpointing- aided parallel execution (CAPE) [4– 10], no
solutions have successfully met both of the following require-
ments: (i) to be fully compliant with the OpenMP API and (ii)
to provide high performance. The most prominent approaches
include the use of a synchronous serial interface [11], the
SCASH library [12], RC model [13], source- to- source transla-
tion to a tool such as MPI [14,15], global arrays [16], or clus-
tered OpenMP [17].

CAPE is another effort to overcome the restrictions dis-
cussed above based on the checkpointing technique. Two ver-
sions of CAPE have been developed and tested on clusters
in which one machine (master machine) takes the role of the
master thread and the others (slave machines) work as slave
threads [7,9]. Its ability to be compliant with the OpenMP
standard while providing high performance was proven in
[7,8]. However, in the current execution model of CAPE,
each slave machine utilizes one process containing a single
thread to perform its assigned tasks. Consequently, the ad-
vantages of multicore CPU systems are wasted [18]. To over-
come this limitation, the most promising solution is to use
multithreaded processes on slave machines to execute their
tasks in parallel.

In this paper, we propose a novel model to overcome
this limitation and present some initial experimental re-
sults. The main contributions of this study can be summa-
rized as follow.

• We proposing a novel CAPE execution model that utilizes
multiple threads on each slave machine.

• We demonstrate how to implement the proposed model.
• Experimental results demonstrate a performance improve-

ment rate of 1.6 to 3.1 times compared to previous methods
depending on the number of CPU cores used.

The remainder of this paper is organized as follows.
Section 2 discusses the principles of CAPE, ranging from
its execution model and method of compiling OpenMP pro-
grams to its limitations. The next section presents the pro-
posed model for CAPE on multicore CPU systems. Section 4
presents experimental results and evaluations in which the
proposed execution model achieves a speedup ranging from
1.6 to 3.1 times compared to the previous model of CAPE.
The final section discusses our conclusions and plans for fu-
ture work.

2 | PRINCIPLES OF CAPE

2.1 | Execution model

The first important difference between CAPE and the origi-
nal OpenMP model is the use of processes instead of threads.
This replacement facilitates the distribution of parallel sec-
tions of OpenMP programs onto networked machines.

Figure 1 illustrates the execution model of CAPE while
running on a system consisting of three machines: one master
and two slaves. The master is in charge of the initial threads
from the original OpenMP execution model, and the two
slaves execute threads assigned by the master. First, an ap-
plication is initialized and runs on all nodes until reaching a
parallel section. At this point, the master divides the work of
the parallel section and distributes it to the slave nodes uti-
lizing discontinuous incremental checkpointing (DICKPT)
[4,7]. Each slave node receives a separate checkpoint, injects
it into its memory space, and executes the divided work from
the parallel section. Next, the calculated results are extracted
according to the checkpoints and sent to the master node. The
master node receives all checkpoints from slave nodes and
merges them into a single united checkpoint, which is then
broadcasted to the system. After every node (including the
master node) injects the united checkpoint into its memory
space, they can be considered to be in the same state of com-
pleting the parallel section. They then continue the next in-
struction in the application.

It should be noted that in this execution model, CAPE
can only be applied to OpenMP programs matching
Bernstein's conditions [19]. However, the introduction of
some additional processes for OpenMP shared variables
that do not change the CAPE principle can overcome this
restriction.

F I G U R E 1 Single- threaded CAPE execution model

ickpt1 ickpt2

result1 result2

run
parallel
code

fork

join

Parallel

Sequence

Sequence

Slaver 1 Slaver 2Master

 | 3DO et al.

2.2 | Compiling OpenMP programs for
execution on the CAPE platform

The compiling chain for CAPE is illustrated in Figure 2.
CAPE contains a compliant tool to translate and execute
OpenMP programs on a networked machine, such as a
cluster, automatically. The CAPE compiler utilizes a set of
transformation prototypes to transform an original OpenMP
program (such as the code in the upper rectangle in Figure 3)
into a CAPE program (such as the code in the lower rectan-
gle in Figure 3), which only contains C/C++ instructions.
Therefore, the CAPE program can be compiled into an ex-
ecutable form by a typical C/C++ compiler and can then
be executed on networked machines supporting the CAPE
platform.

2.3 | Prototypes to tranform OpenMP
programs into CAPE programs

In the CAPE framework, a set of functions has been defined
and implemented to perform the tasks related to DICKPT,
including distributing checkpoints, sending/receiving check-
points, and extracting/injecting checkpoints from/to program
memory. Additionally, a set of transformation prototypes
(templates) are defined in the CAPE compiler to perform the
translation of OpenMP programs into CAPE programs auto-
matically and make such programs executable in the CAPE
framework. Thus far, nested loops and shared- data variable
constructs have not been supported. However, this is not a
significant issue because it can be resolved at the level of
source- to- source translation and does not require any modi-
fications to the CAPE philosophy. After being translated, the
original OpenMP source code is free of OpenMP directives
and structures. Figure 3 presents an example of code substitu-
tion for the specific case of the omp parallel for construct.
This is a representative example of the substitutions we im-
plemented for other OpenMP constructs [20].

The automatically generated code is based on the fol-
lowing functions, which are components of the CAPE
framework:

statrt () begins monitoring the checkpointing application
process;

stop() begins monitoring the application process;
create (file) generates a discontinuous incremental check-

point and saves it to a file;
inject (file)injects a checkpoint stored in a file into the

memory space of the monitored process;
send (file, node) sends the checkpoint stored in a file

from the current node to another node;
waitfor (file) waits for the checkpoint file;
merge (file1, file2) merges the checkpoint in file2 into

that in file1;
broadcast (file) sends a checkpoint file to all slave nodes;
receive (file) waits for a checkpoint and stores it into a

file.
lastparallel() returns TRUE when the current parallel

block is the last block in the entire program or returns FALSE
otherwise.

2.4 | Drawbacks of CAPE on
multicore systems

Currently, multicore architectures are very common in CPUs,
and the number of cores is increasing steadily. Commodity
computers are equipped with two to eight CPU cores. This
has led to the popularity of computer networks with multi-
core nodes. Therefore, high- performance computing tools
should maximally exploit this architecture. However, in the
current execution model, CAPE does not focus on this archi-
tecture when transforming a parallel section in an application
into many sequential parts and assigning these parts to slave
nodes. Therefore, there is only one sequential process for a
user application running on each slave node, which wastes the
computing resources of multicore machines. This principle is

F I G U R E 2 Steps to compile OpenMP programs in CAPE

OpenMP program CAPE
Txl compiler

CAPE
program

C/C++
compiler

executable
code

CAPE
prototype

4 | DO et al.

clearly illustrated in Figure 4, where the slave machine has
a quad- core CPU, but only one core is fully exploited, while
the other cores are virtually idle.

3 | NOVEL CAPE EXECUTION
MODEL FOR EXPLOITING THE
ABILITIES OF MULTICORE
SYSTEMS

Our straightforward concept for better exploiting the calcula-
tion resources of multicore systems is to increase the number
of processes/threads that run in parallel on each node in a
system, particularly slave nodes. The details of our solutions
for implementing this concept are presented below.

3.1 | Novel CAPE execution model using two
parallel levels

In this solution, each original OpenMP parallel section is di-
vided into many multithreaded processes, each of which is
executed on a node, similar to the current CAPE execution
model. Therefore, on each node, applications run on slave
machines in multithreaded processes, which can better ex-
ploit the performance of multicore CPU systems. The main
problem with this solution is the ability to manage multi-
threaded applications using the checkpointer in CAPE. Many
conflicts occur when a single- threaded checkpointer defines
the memory space of a multithreaded process in a write-
protected state to perform checkpointing tasks. Therefore, it
is necessary to upgrade the current checkpointer of CAPE,
which can only checkpoint the single threads, to a multi-
threaded checkpointer.

Figure 5 illustrates the proposed multithreaded CAPE
execution model. In this model, each original OpenMP par-
allel section is divided into many processes, each of which
is executed on a node, similar to the current CAPE execu-
tion model. However, in the proposed model, the processes
on slave nodes are multithreaded, unlike in the current exe-
cution model. Therefore, the application processes on slave
nodes can better exploit the performance of multicore CPU
systems. Therefore, we have a two- level parallel execution
model in which level 1 is related to the division and si-
multaneous execution of original OpenMP parallel tasks
on multiple machines and level 2 is related to the use of
multiple threads on each slave node to execute its tasks in
parallel.

F I G U R E 3 Prototype for translating pragma omp parallel for
sections

#pragma omp parallel for
for (A ; B ; C)

D ;

1 if (master ()){
2 start ()
3 for (A ; B ; C){
4 create (before)
5 send (before, slaveri)
6 }
7 create (final)
8 stop ()
9 waitfor (after)
10 inject (after)
11 if (! last parallel ()){
12 merge (final , after)
13 broadcast (final)
14 }
15 }
16 else {
17 receive (before)
18 inject (before)
19 start ()
20 D ;
21 create (afteri)
22 stop ()
23 send (afteri, master)
24 if (! last parallel ()){
25 receive (final)
26 inject (final)
27 }
28 else
29 exit
30 }

automatically translated into

F I G U R E 4 Ratio of exploiting cores
when executing one process on each
calculation node

CPU History

50 40 30 20 10 0

100%

80%

60%

40%

20%

0%

CPU1 3.9% CPU2 5.1% CPU3 4.1% CPU4 100.0%

50 40 30 20 10 0

CPU1 3.9% CPU2 5.1% CPU3 4.1% CPU4 100.0%

 | 5DO et al.

3.2 | Prototype for translating omp parallel
for construction into multithreaded CAPE

To compile and execute OpenMP constructors in the pro-
posed CAPE execution model, the transformation proto-
types of the compiler must also be upgraded. For example,
as shown in Figure 6, the original OpenMP omp parallel for
construction is compiled into a set of instructions containing
both OpenMP and CAPE functions. This provides the ability
to execute this construction in two parallel levels, where the
first distributes tasks onto multiple machines and the second
handles the use of multiple threads to execute divided tasks
in parallel.

In Figure 6, lines 2 to 13 are executed on the master node,
whereas lines 17 to 31 are executed on slave nodes. On the
master node, at line 2, the memory of the application is set
to be write protected and checkpointing is initialized. Lines
4 to 6 are used to send checkpoints to the slave machines to
initialize the application state and assign tasks from the for
loop. Next, the master node creates a checkpoint to extract
local results and stops the checkpointing process. Lines 9 and
10 are used to receive the execution results from all slave
nodes and inject them into the memory of the application. If
there are other OpenMP parallel instructions, the master node
merges the results from the slave nodes with the local results
and broadcasts the final results to all slave nodes to synchro-
nize their memory spaces. The master node then prepares for
the next instructions.

Regarding the slave nodes, in lines 17 to 19, each node re-
ceives a checkpoint and injects its values into the application
memory. This phase serves to initialize the memory space
and prepare each node to receive information regarding how
to execute its assigned processes from the omp parallel for
construct. Subsequently, the checkpointing status is updated
before executing the omp parallel for construct in lines 20
to 22. Because this is a real OpenMP parallel construction, it
will be executed by multiple threads in parallel. This construct
is similar to the omp parallel for construct in the original
program, except for the number of iterations, which is equal

F I G U R E 5 Multithreaded CAPE execution model

ickpt1 ickpt2

result1 result2

run
parallel
code

fork

join

Parallel

Level 1

Sequence

Sequence

Slaver 1 Slaver 2Master

fork

join

fork

join

Level 2

F I G U R E 6 Prototype to translate pragma omp parallel for
sections into multithreaded CAPE

#pragma omp parallel for
for (A ; B ; C)

D ;

1 if (master ()){
2 start ()
3 for (A ; B ; C){
4 create (before)
5 send (before, slaveri)
6 }
7 create (final)
8 stop ()
9 waitfor (after)
10 inject (after)
11 if (! last parallel ()){
12 merge (final , after)
13 broadcast (final)
14 }
15 }
16 else {
17 receive (before)
18 inject (before)
19 start ()
20 #pragma omp parallel for
21 for (Ai ; Bi ; Ci)
22 D ;
23 create (afteri)
24 stop ()
25 send (afteri, master)
26 if (! last parallel ()){
27 receive (final)
28 inject (final)
29 }
30 else
31 exit
32 }

automatically translated into

6 | DO et al.

to the quotient of the original number of iterations and the
number of slave nodes. Therefore, in this section, OpenMP
is responsible for dividing tasks between threads and for ex-
ecution and synchronization between threads. Because it is a
standard tool for multithreaded programming, OpenMP can
handle these jobs effectively. Therefore, CAPE only has to
perform the work of monitoring and checkpointing. This pro-
cess is defined in lines 23 to 25, where CAPE extracts local
execution results from the current node and sends them to the
master node. The slave node then receives the merged results
of all other slave nodes from the master node and injects them
into the application memory space, and then switches to exe-
cute the next instruction in the application.

3.3 | Challenges of multithreaded
checkpointing

Switching to a two- level parallel execution model requires
a new checkpointer that can checkpoint multithreaded pro-
cesses. This is necessary to satisfy the principles of CAPE,
which is based on the checkpointing technique. The tasks
of dividing and distributing the tasks in a parallel section
from the master node to the slave nodes and then extract-
ing the results of executing divided sections on the slave
nodes for the master node are performed using snapshots
(checkpoints) of the application's memory. One important
compulsory condition for this mechanism is that the data
region of the application must be the same for all nodes.
This means that if the value of variable A in the applica-
tion running on the master node is stored at address M1,
then the address of this value on all slave nodes must also
be M1. Most operating systems and CPUs that support vir-
tual memory management mechanisms divide the memory
space of an application into equal- sized pages starting at an
index of zero [21,22]. Therefore, if one program runs on
the same operating system on different computers, then in
the memory spaces of that program on each computer, the
addresses of the data regions will be the same (some oper-
ating systems set different shift spaces at the beginnings of
data regions, but this can be circumvented by setting a sys-
tem option before starting the application). For example,
on Linux 32 bit operating systems, each running program is
allocated a virtual (logical) memory space of 4 GB, where
1 GB is used for kernel space and 3 GB are used for user
space. This virtual memory is organized into a series of
continuous memory pages of equal size (4 KB). However,
the condition that the program data memory spaces have
the same addresses is no longer fully satisfied when run-
ning multiple threads. When a new thread is created, its
local data are allocated to the stack region of the main pro-
cess. On Linux/x86- 32 systems, the default stack size for
a new thread is 2 MB [23]. Consequently, it is necessary

to synchronize the addresses of data in the stack regions of
the threads when processing checkpoints.

The current checkpointer in CAPE uses the ptrace mech-
anism [24,25] to monitor and execute checkpointing tasks.
This is the typical mechanism for the checkpointing tech-
nique. However, it cannot be applied to the monitoring of
multithreaded processes. To solve this problem, in our new
checkpointer, we utilize a checkpointing library and insert
its checkpointing functions inside the target application.
This does not alter the main principles of CAPE. We also
change the method of locking (setting to write- protected sta-
tus) the memory spaces of applications from using a kernel-
level driver to directly locking each memory region using the
mprotect function in the user- level space, which reduces po-
tential errors and decreases total execution time.

3.4 | Theoretical speedup of the proposed
CAPE execution model

According to Amdahl's law [26], the theoretical speedup
when using multiple processors can be expressed as

Where Slatency is the theoretical speedup of the execution of the
entire task, s is the speedup of the parts of the task that benefit
from improved system resources (number of parallel processes
or threads), and p is the proportion of the execution time that the
parts benefiting from improved resources originally required.

Consider the case of executing a parallel application on a
system of eight machines, each of which is equipped with a
dual- core CPU. Under the most ideal assumptions, the code that
is executed in parallel takes up the entire duration of the program
(P = 1) and the data communication time between machines is
ignored. Then, the maximum acceleration factor of CAPE in the
case of using only one core (single- threaded processes) is

In the case of using both cores of each CPU (two- threaded
processes), the maximum acceleration factor is

Therefore, the greatest theoretical speedup factor when
using two cores compared to that when using one core is
a factor of. A speedup factor of 16 is achieved compared to
the case of sequential application. Actual execution times and
speedup factors were derived experimentally and the results are

(1)Slatency =
1

(1 − p) +
p

s

,

(2)Slatency =
1

(1 − 1) +
1

8

= 8.

(3)Slatency =
1

(1 − 1) +
1

8∗2

= 16.

 | 7DO et al.

presented in Section 4. It should be noted that for parallel pro-
grams, in addition to the time spent on dividing, transmitting,
and synthesizing results, there are some other factors affecting
system performance, such as time required to create and man-
age processes/threads. All of these factors always make the real
speedup of parallel programs less than the theoretical value.

4 | EXPERIMENTS AND
EVALUATIONS

To measure the impact of the proposed execution model on
system performance, following the mathematical analysis
presented in Section 3, various experiments were conducted.
These experiments were performed using a matrix- matrix
multiplication program on two clusters of personal comput-
ers connected through a 100 Mbps local area network and
operated by the Ubuntu 18.04.3 LTS operating system with
the following OpenSSH server configurations.

1. A 16 node cluster with different computer configurations.
There were six Intel(R) Core(TM) i3- 2100 3.1 GHz,
8 GB RAM computers, two AMD Phenom(TM) II X4
925 2.80 GHz, 8 GB RAM computers, one Intel(R)
Core(TM) i3- 2120 3.3 GHz, 4 GB RAM computer,
two Intel(R) Pentium(R) Dual E2160 1.80 GHz, 2 GB
RAM computers, and five Intel(R) Core(TM)2 Duo CPU
E7300 2.66 GHz, 3 GB RAM computers.

2. An eight- node cluster with different computer configura-
tions. There were six Intel(R) Core(TM) i3- 2100 3.1 GHz
8 GB RAM computers and two AMD Phenom(TM) II
X4 925 2.80 GHz, 8 GB RAM computers. Tests were
executed with different matrix sizes of 9600*9600 and
6400*6400, and different numbers of threads on the slave
nodes of one, two, and four. Each scenario was tested
at least 10 times to measure total execution time, and a
confidence interval of at least 98% was achieved for our
measurements. The data reported here represent the av-
erage values of the 10 measurements. Two comparisons
were used to evaluate the performance of the proposed
execution model. The first was a comparison to the origi-
nal execution model, which uses only a single thread on
slave nodes. The second was a comparison to the MPI,
which is the best- performing tool for parallel execution
on distributed machines. Figures 7 and 8 demonstrate that
both the CAPE and MPI run times are reduced when the
numbers of threads/processes increase. In all cases, MPI
performance is better than CAPE performance with a rela-
tively stable ratio ranging from 2% to 21%. This is rea-
sonable because in CAPE, applications are monitored and
checkpointed, which increases their run times. It should
be noted that relative to MPI, the performance of CAPE is
very promising.

Table 1 reveals that the performance of the original CAPE
version using checkpointing drops by approximately 15% on
average in the case of 16 nodes and 5% in the case eight
nodes compared to the MPI. The speedup of CAPE com-
pared to running OpenMP on one node (a machine with a
quad- core CPU) ranges from 6.77 to 7.68 times in case of
eight nodes and from 10.27 to 13.09 times in the case of 16
nodes. In the case of the 9600*9600 matrix size on the eight-
node cluster, CAPE performance is 4% to 11% lower than
that of the MPI.

Figure 9 presents the CAPE and MPI speedup ratios for
a variety of matrix sizes and numbers of threads when run-
ning on an eight- node cluster. One can see that OpenMP’s
speedup ratio is very stable because it only runs on one com-
puter. CAPE’s speedup ratio is roughly equivalent to that of

F I G U R E 7 Execution times (in seconds) on a 16 node cluster
with different numbers of threads

1 2 1 2
9600 9600 6400 6400
16 16 16 16

CAPE (s) 2776 1695 710 458
MPI (s) 2496 1397 644 396

0

500

1000

1500

2000

2500

3000

F I G U R E 8 Execution times (in seconds) on an eight- node cluster
with different numbers of threads

1 2 3 4 1 2 3 4
9600 9600 9600 9600 6400 6400 6400 6400

8 8 8 8 8 8 8 8
CAPE (s) 4791 2454 1890 1514 993 591 441 374
MPI (s) 4501 2368 1698 1366 955 589 440 365

0

1000

2000

3000

4000

5000

6000

8 | DO et al.

the MPI. For a smaller matrix size, the speedup is lower be-
cause the time required for task division and data synchro-
nization occupies a greater proportion of the total run time.
When the matrix size is larger, the speedup is higher because

the computation time occupies a greater proportion than the
time required for task division and data synchronization. The
speedup ratios of CAPE and the MPI are the closest with
the linear speedup in the case of utilizing two threads/pro-
cesses (1.90 to 1.95 times). In the cases of using three or four
threads/processes, the speedup ratios increase, but not exactly
linearly relative to the number of threads/processes. It should
be noted that the Intel(R) Core(TM) i3- 2100 CPU only has
two real cores (two hyperthreaded CPUs). This is why we
only tested with a number of threads limited to four, which
is equal to the number of cores multiplied by the hyper-
threading factor of each core. Results with more threads have
been omitted because we did not observe any performance
increases in cases with larger numbers of threads. This is rea-
sonable because in such a setting, a program is essentially
executed in the form of OpenMP code, meaning the optimal
number of threads is equal to the number of cores multiplied
by the hyperthreading factor of each thread, as discussed in
[27]. Therefore, we can conclude that the speedup ratio of
CAPE increases in the proposed execution model and that
the speedup is approximately linear relative to the number
of threads as long as this number is less than or equal to the
number of cores on the CPU. This is the most important re-
sult demonstrating the advantages of the proposed execution
model.

5 | CONCLUSIONS AND FUTURE
WORK

This paper presented the design and experimental results of
a novel execution model for CAPE that utilizes two- level

T A B L E 1 Performance comparisons between CAPE and the MPI

Num of nodes Size Core num CAPE (s) MPI(s) OpenMP(s) MPI/CAPE OpenMP/CAPE

a b c d e f g = (1−d/e) *100 h = f/d

16 9600 1 2776 2496 32 556 −11% 11.73

16 9600 2 1695 1397 17 401 −21% 10.27

16 6400 1 710 644 9292 −10% 13.09

16 9600 2 458 396 4919 −16% 10.74

Average −15% 11.46

8 9600 1 4791 4501 34 991 −6% 7.30

8 9600 2 2454 2368 17 942 −4% 7.31

8 9600 3 1890 1698 13 011 −11% 6.88

8 9600 4 1514 1366 10 243 −11% 6.77

8 6400 1 993 955 7147 −4% 7.20

8 6400 2 591 589 4488 0% 7.59

8 6400 3 441 440 3386 0% 7.68

8 6400 4 374 365 2653 −2% 7.09

Average −5% 7.23

F I G U R E 9 Speedup vs number of threads on an eight- node
cluster

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
1 2 3 4

Sp
ee

d
up

Number of threads

9600*9600 - MPI

6400*6400 - CAPE

9600*9600 - OpenMP

Linear speedup

9600*9600 - CAPE

6400*6400 - MPI

6400*6400 - OpenMP

 | 9DO et al.

parallelism to implement OpenMP on distributed machines.
Running multiple threads on slave nodes that are equipped
with multicore CPUs can increase the performance of
CAPE, where the greatest speedup ratio is achieved when
the number of threads is equal to the number of cores in the
CPUs. Additionally, the speedup of the proposed execu-
tion model is almost equal to that of the MPI, which is the
best- performing tool for parallel execution on distributed
machines. All of these factors demonstrate the advantages
of the proposed execution model when utilizing multicore
systems.

In the near future, we will conduct additional experiments
with CAPE on other applications and machines equipped
with CPUs containing additional cores.

ACKNOWLEDGMENTS
We would like to express our sincere thanks to the Ministry of
Education and Training of Vietnam for funding this research.

ORCID
Xuan Huyen Do https://orcid.org/0000-0001-7108-537X

REFERENCES
 1. OpenMP.org, Openmp application programming interface, version

4.5, 2015, Mar. 2020, available at: https://www.openmp.org/wp-
conte nt/uploa ds/openm p- 4.5.pdf.

 2. MPI Forum, Mpi: A message- passing interface standard, version
3.1, 2015, Mar. 2020, available at https://www.mpi- forum.org/
docs/mpi- 3.1/mpi31 - report.pdf.

 3. OpenMP.org, Openmp compilers and tool, 2019, Mar. 2020,
available at https://www.openmp.org/resou rces/openm p- compi
lers- tools/.

 4. H. V. Hai and R. Éric, Discontinuous incremental: A new approach
towards extremely lightweight checkpoints, in Proc. Int. Symp.
Comput. Netw. Distrib. Syst. (CNDS 2011) (Tehran, Iran), Feb.
2011, pp. 227– 232.

 5. H. V. Hai and R. Éric, Improving performance of cape using
discontinuous incremental checkpointing, in Proc. IEEE Int.
Conf. High Perform. Comput. Commun. (HPCC 2011) (Alberta,
Canada), Sept. 2011, pp. 802– 807.

 6. H. V. Hai and R. Éric, Design of a shared- memory model for cape,
in Proc. Int. Workshop on OpenMP (IWOMP 2012) (Rome, Italy),
June. 2012, pp. 262– 266.

 7. H. V. Hai and R. Éric, Design and performance analysis of cape
based on discontinuous incremental checkpoints, in Proc. IEEE
Pacific Rim Conf. Commun., Comput. Signal Process. (PacRim
2011) (BC, Canada), Aug. 2011, pp. 862– 867.

 8. T. V. Long, R. Éric, and H. V. Hai, Analysis and evaluation of the per-
formance of cape, in Proc IEEE Int. Conf. Scalable Comput. Commun.
(ScalCom 2016) (Toulouse, France), July 2016, pp. 620– 627.

 9. T. V. Long et al., Design and implementation of a new execution
model for cape, in Proc. Int. Symp. Inform. Commun. Technol.
(SoICT’s 2017) (Nha Trang, Vietnam), Dec. 2017, pp. 453– 459.

 10. T. V. Long et al., Time- stamp incremental checkpointing and its
application for an optimization of execution model to improve per-
formance of cape, Informatica 43 (2018), 301– 311.

 11. D. Margery et al., Kerrighed: A SSI cluster OS running OpenMP,
in Proc. European Workshop OpenMP (EWOMP 2003) (Aachen,
Germany), 2003.

 12. Y. Ojima et al., Performance of clusterenabled openmp for the
scash software distributed shared memory system, in Proc. IEEE/
ACM Int. Symp. Clust. Comput. Grid (CCGRID’03) (Tokyo,
Japan), May 2003, pp. 450– 456.

 13. S. Karlsson, S.– W. Lee, and M. Brorsson, A fully compliant
OpenMP implementation on software distributed shared memory,
in High Performance Computing— HiPC 2002. Springer, Berlin,
Heidelberg, 2002, pp. 195– 206.

 14. A. Saa- Garriga, D. Castells- Rufas, and J. Carrabina, Omp2mpi:
Automatic mpi code generation from openmp programs, in Proc.
Workshop High Perform. Energy Effic. Embed. Syst. (HIP3ES),
Netherlands, Amsterdam), Jan. 2015.

 15. A. C. Jacob et al., Exploiting fine- and coarse- grained parallelism
using a directive based approach, in Proc. Int. Workshop OpenMP
(IWOMP 2015) (Aachen, Germany), Oct. 2015, pp. 30– 41.

 16. L. Huang, B. Chapman, and Z. Liu, Towards a more efficient im-
plementation of OpenMP for clusters via translation to global ar-
rays, Parallel Comput. 31 (2005), 1114- 1139.

 17. J. P. Hoeinger, Extending OpenMP to clusters, White Paper, Intel
Corp., 2006, available at http://www.class cloud.org/grid/raw- attac
hment/ wiki/Osaka/ Intel_Extend_OpenMP_Clust er.pdf.

 18. H. V. Hai et al., Creating an easy to use and high performance
parallel platform on multi- cores networks, in Proc Mob., Secur.
Programmable Netw. (MSPN 2016) (Paris, France), June 2016.

 19. A. J. Bernstein, Analysis of programs for parallel processing, IEEE
Trans, Electr. Comput. EC- 15 (1966), no. 5, 757– 763.

 20. J. M. Dorta et al., Implementing OpenMP for clusters on top
of mpi, in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. EuroPVM/MPI 2005, Springer, Berlin,
Heidelberg, 2005, pp. 148– 155.

 21. M. Gorman, Understanding the Linux Virtual Memory Manager,
in Understanding The Linux Virtual Memory Manager Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004.

 22. Intel Inc., 5- level paging and 5- level ept. white paper. revision 1.1,
2017, Oct. 2019, available at https://softw are.intel.com/sites/ defau
lt/files/ manag ed/2b/80/5- level_paging_white_paper.pdf.

 23. Canonical Ltd, Ubuntu manpage: Pthread_create— create a new
thread, Oct. 2019, available at http://manpa ges.ubuntu.com/manpa
ges/bioni c/man3/pthre ad_create.3.htm.

 24. P. Padala, Playing with ptrace, part I, 2002, Oct. 2019, available at
https://www.linux journ al.com/artic le/6100.

 25. P. Padala, Playing with ptrace, part II, 2002, Oct. 2019, available
from https://www.linux journ al.com/artic le/6210.

 26. G. M. Amdahl. Validity of the single- processor approach to achiev-
ing large scale computing capabilities, 1967, Oct. 2019, available
at http://www- inst.eecs.berke ley.edu/~n252/paper/ Amdahl.pdf.

 27. J. H. Abdel- Qader and R. S. Walker, Performance evaluation of
openmp benchmarks on intel’s quad core processors, in Proc.
WSEAS Int. Conf. Comput.: Part of the 14th WSEAS CSCC
Multiconf., vol. 1, (Stevens Point, WI, USA), July 2010.

https://orcid.org/0000-0001-7108-537X
https://orcid.org/0000-0001-7108-537X
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/resources/openmp-compilers-tools/
http://www.classcloud.org/grid/raw-attachment/wiki/Osaka/Intel_Extend_OpenMP_Cluster.pdf
http://www.classcloud.org/grid/raw-attachment/wiki/Osaka/Intel_Extend_OpenMP_Cluster.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
http://manpages.ubuntu.com/manpages/bionic/man3/pthread_create.3.htm
http://manpages.ubuntu.com/manpages/bionic/man3/pthread_create.3.htm
https://www.linuxjournal.com/article/6100
https://www.linuxjournal.com/article/6210
http://www-inst.eecs.berkeley.edu/%7En252/paper/Amdahl.pdf

10 | DO et al.

AUTHOR BIOGRAPHIES

 Do Xuan Huyen received his MS de-
gree in Information Technology from
the Asian Institute of Technology,
Thailand, in 2003. He is currently a
PhD student of Computer Science at
the University of Sciences, Hue
University, Vietnam. His current re-

search interests include the development of CAPE and
E- government.

 Ha Viet Hai received his PhD from the
Insititut Mines Télécom, Télécom
SudParis, France, in 2012. He cur-
rently works at the University of
Education, Hue University, Vietnam,
where he is a lecturer in the Informatics
department and the head of the Office

for Science, Technology, and International Cooperation.
His current research interests include the development of
CAPE and the application of ICT in teaching.

 Tran Van Long received his PhD de-
gree from Télécom SudParis, France,
in 2018. He currently works at Phu
Xuan University, Vietnam, where he is
the dean of the Technology and
Business Department. His current re-
search interests include the develop-

ment of CAPE and artificial intelligence.

 Éric Renault received his MS degree
in Computer Engineering (diplôme
d’ingénieur) from ISTY and a second
MS degree in Computer Science
(DEA) from UVSQ in 1995. He re-
ceived a PhD in Computer Science
from UVSQ in 2000 and a qualifica-

tion for advising PhD students (HDR) from UPMC in
2011. He is a full professor at ESIEE Paris and a member
of LIGM (UMR CNRS 8049) at the Université Gustave
Eiffel, France. His research interests include high-
performance computing and messaging, compilation, vir-
tualization, positioning, and lightweight security for mo-
bile, sensor, and vehicular networks. He has worked on
several European projects and served as an expert for the
evaluation of French national projects (ANR), private
company research works (MESRI), and Eiffel Excellence
Scholarship Program applications (Campus France). He
has authored more than 100 articles in international jour-
nals and conferences.

