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We answer a basic question in Nevanlinna theory that Ahlfors currents associated to 
the same entire curve may be nonunique. Indeed, we will construct one exotic entire 
curve f : C → X which produces infinitely many cohomologically different Ahlfors 
currents. Moreover, concerning Siu’s decomposition, for an arbitrary k ∈ Z+∪{∞}, 
some of the obtained Ahlfors currents have singular parts supported on k irreducible 
curves. In addition, they can have nonzero diffuse parts as well. Lastly, we provide 
new examples of diffuse Ahlfors currents on the product of two elliptic curves and 
on P2(C), and we show cohomologically elaborate Ahlfors currents on blow-ups of 
X.
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r é s u m é

On répond à une question fondamentale dans la théorie de Nevanlinna que les 
courants d’Ahlfors associés à la même courbe entière peuvent être nonuniques. En 
effet, on construira une courbe entière exotique f : C → X qui produit infinité 
beaucoup des cohomologiquement différents courants d’Ahlfors. De plus, concernant 
la décomposition de Siu, pour un arbitraire k ∈ Z+ ∪ {∞}, certains des courants 
d’Ahlfors obtenus ont des parties singulières supportées sur k courbes irréductibles. 
En outre, ils peuvent également avoir des parties diffuses nonnulles. Enfin, on fournit 
nouveaux exemples des courants d’Ahlfors diffuses sur le produit de deux courbes 
elliptiques et sur P2(C), et on montre des cohomologiquement élaborés courants 
d’Ahlfors sur des éclatements de X.
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1. Introduction

Let X be a compact complex manifold equipped with an area form ω. Let f : C −→ X be a nonconstant 
entire holomorphic curve. An associated Ahlfors current of f is a positive closed current of bidimension 
(1, 1) obtained as the weak limit of a certain sequence of positive currents of bounded masses

{
[f(Drn)]

Areaω f(Drn)

}
n�1

,

where Drn are discs of increasing radii rn ↗ ∞ centered at the origin. Here, to ensure that such a limit 
current is closed, the sequence {rn} is chosen in such a way that the lengths of boundaries of the discs are 
asymptotically negligible compared with their areas, namely

lim
n→∞

Lengthω(f(∂Drn))
Areaω(f(Drn)) = 0.

By Ahlfors’ lemma (cf. [1,2]), for each positive number ε > 0, the set

{
r > 0 : Lengthω(f(∂Dr))

Areaω(f(Dr))
� ε

}

is of finite measure with respect to d r
r . Hence the above “length-area” condition is satisfied for most choices 

of increasing radii. Moreover, given a sequence of radii {rn}n�1 with rn ↗ ∞, after some small perturbation 
by scaling and extracting a subsequence, one can always obtain an Ahlfors current for f .

Ahlfors currents and their analogs obtained by taking the logarithmic average 
∫ d t

t (·), called Nevanlinna 
currents, are fundamental tools in studying complex hyperbolicity, value distribution theory and complex 
dynamical systems. Notably, they played a crucial role in the work McQuillan [3] on Green-Griffiths’ con-
jecture for algebraic surfaces of general type having positive Segre class (see also [1] for a simplified proof 
by Brunella). By employing Ahlfors currents, Duval [4] gave a quantitative version of the classical Brody’s 
Lemma and obtained a characterization of complex hyperbolicity in terms of linear isoperimetric inequality 
for holomorphic discs. Using such currents, some geometric refinement of the classical Cartan’s Second Main 
Theorem [5], as well as the high dimensional Weierstrass-Casorati Theorem [6] were obtained. The reader 
is also referred to [7] for recent key applications in complex dynamical systems.

Since Ahlfors currents and Nevanlinna currents encode geometric information of their original entire 
curves, several results in value distribution theory can be presented in terms of intersections of corresponding 
cohomology classes. For example, the First Main Theorem of Nevanlinna theory can be expressed as an 
inequality between the algebraic intersection and the geometric intersection (cf. [5]).

Note that in certain specific situations, Ahlfors currents (or Nevanlinna currents) from some holomorphic 
curve are unique [8,5,7,9], which subsequently leads to several interesting results. Therefore, it is natural 
and fundamental to ask generally

Question 1.1. Are all Ahlfors currents associated to the same entire curve cohomologically equivalent?

The study of such currents is itself of independent interest. By Siu’s decomposition Theorem [10], an 
Ahlfors current T can be written as the sum T = TSing +TDiff , where the singular part TSing =

∑
�∈I c� · [C�]

is some positive linear combination (c� > 0; I ⊂ Z+, could be ∅) of currents of integration on irreducible 
algebraic curves C�, and where the diffuse part TDiff is a positive closed (1, 1)–current having zero Lelong 
number along any algebraic curve. If the singular part TSing is nontrivial, Duval [11] showed that any 
irreducible curve C� above must be rational or elliptic (see also [12] for a local version). In [13], da Costa 
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gave an example of entire curve in the projective plane whose associated Ahlfors current is supported in 
some line. This construction can be modified to produce Ahlfors currents supported on a rational or an 
elliptic curve [14, Theorem 2.6.1]. On the other hand, we would like to mention the following unsolved 
question, which had been considered by Brunella [1, page 200].

Question 1.2. Is there any Ahlfors current from an entire curve such that both of its singular part and diffuse 
part are nontrivial?

In this paper, we answer the above two questions by constructing explicit examples.

Theorem 1.3. There exists an entire curve producing cohomologically different Ahlfors currents.

By Siu’s decomposition, Ahlfors currents with nontrivial singular parts can be distinguished as different 
types by the data (|I| ∈ Z+ ∪ {∞}, TDiff is trivial / nontrivial).

Theorem 1.4. There exists an entire curve producing all types of Ahlfors currents with nontrivial singular 
parts.

Remark 1.5. The above two results also hold true for Nevanlinna currents, see Subsection 7.2.

Lastly, it is natural to seek Ahlfors (Nevanlinna) currents with trivial singular part. Examples of such 
currents are known to exist on P 2(C), by looking at the Levi-flat real hypersurface in (C∗)2 defined by the 
equation |x| = |y|α, where α is an irrational real number (cf. [15, page 262]). Indeed, this real hypersurface 
is foliated by entire curves, while its closure in P 2(C) contains no algebraic curve. In [8] there are more 
examples of holomorphic curves whose associated Ahlfors (Nevanlinna) currents are diffuse and unique. In 
Section 7, we show new examples of diffuse Ahlfors currents on the product of two elliptic curves and on 
P 2(C), see Propositions 7.1, 7.2.

We now outline the ideas and the structure of this paper. As a matter of fact, our source of inspiration 
is an example due to da Costa [13] about a nondegenerate entire curve clustering to a line in P 2(C) (see 
also [5] for more discussions). In Section 2, we start with an elliptic curve C = C/Γ equipped with a negative 
line bundle L. For some large integer m � 1, we construct a section sm of π∗

0Lm having large exponential 
growth of order 2, where π0 : C → C is the canonical projection. The surface X is obtained by taking the 
geometric projectivization P (Lm⊕C) =: X of the vector bundle Lm⊕C on C. Thus the section sm induces 
a holomorphic map f0 : C → X clustering to the curve C∞ = C × [1 ⊕ 0]. To generate Ahlfors currents 
with larger singular supports, we hence modify the original section sm by multiplying it with a Weierstrass 
canonical product ψ(z) =

∏
λ∈Λ

(
1 − z

λ

)
e

z
λ+ z2

2λ2 , whose zero locus Λ is distributed in a delicate pattern, to 
make sure that the new section ψ · sm induces an entire curve f : C −→ X producing Ahlfors currents with 
more singularities. Indeed, for every λ ∈ Λ, since ψ · sm(λ) = 0, f(λ) touches the curve C0 := C × [0 ⊕ 1], 
defined by the zero section of π∗

0Lm, at ([λ], [0 ⊕ 1]).
The idea is that, the image of a small neighborhood of λ ∈ Λ ⊂ C by f shall contribute moderate area 

O(1) near the fiber P 1
[λ] ⊂ X over [λ] ∈ C, and once there are sufficiently many λ′ ∈ Λ mapping to the same 

class [λ] by π0, the area of the image of f should spend a positive portion about P 1
[λ], hence the Ahlfors 

currents should charge positive mass there. See the picture below for illustration.
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Nevertheless, to make sense of this idea, we need to show, first of all, that the growth of ψ is neither too 
rapid nor too slow, which will be accomplished in Section 3, by means of the Stirling formula as well as the 
symmetry of the lattice Γ. Consequently, in Section 4, we can manipulate Jensen’s formula to evaluate various 
areas, which distinguish the singularities of the Ahlfors currents. In Section 5, we present an algorithm for 
constructing the zero locus Λ, which is designed for the proofs of the main theorems in Section 6. In Section 7, 
we provide new examples of diffuse Ahlfors currents. Moreover, we show cohomologically elaborate Ahlfors 
currents on surfaces obtained by blowing-up X.
Convention: Throughout this paper, K denotes positive numbers which are uniformly bounded from both 
sides 0 < K1 < K < K2 < ∞. Further, notation K�1,�2,�3 indicates dependence on parameters 	1, 	2, 	3. The 
notation D(a, r) := {z ∈ C : |z − a| < r} means the disc centered at a ∈ C with the radius r > 0. When 
a = 0 ∈ C, we write Dr instead of D(0, r). For a point [a] in a torus C/Γ, we denote by D([a], r) ⊂ C/Γ the 
image of D(a, r) under the projection C → C/Γ. The differential operator dc stands for 

√
−1
4π (∂ − ∂).
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2. Construction

Fix a smooth elliptic curve C = C/Γ, where the lattice Γ := Z ⊕Z
√
−1 is chosen to simplify the arguments 

later. We can find a negative line bundle L on C equipped with some hermitian metric h′ having strictly 
negative curvature. Now comparing with the Kähler form ddc

(
|z|2

)
on C descending from the canonical 

projection π0 : C −→ C/Γ, the curvature of h′ is cohomologous to −2α d dc
(
|z|2

)
for some positive constant 

α, namely their difference is of the form ddc ϕ for some smooth real function ϕ on C/Γ. Therefore, replacing 
the initial metric h′ by h′eϕ =: h, the curvature becomes Θh = −2α d dc

(
|z|2

)
. Noting that the line bundle 

π∗
0L on C is holomorphically trivial, it has a nowhere vanishing holomorphic section k, which by Lelong-

Poincaré equation satisfies that ddc
(
log ‖k‖2

π∗
0h

)
= 2α d dc

(
|z|2

)
. Hence log ‖k‖2

π∗
0h

− 2α |z|2 is a harmonic 
function on C, hence can be written as the real part of some holomorphic function g. Therefore, the modified 
section s := e−g/2 k of π∗

0L has exponential growth of order two ‖s‖π∗
0h = ‖e−g/2 k‖π∗

0h = eα|z|
2 . The above 

construction is based on an idea of [13].



JID:MATPUR AID:3325 /FLA [m3L; v1.307] P.5 (1-21)
D.T. Huynh, S.-Y. Xie / J. Math. Pures Appl. ••• (••••) •••–••• 5
We now amplify the negativity of L, by introducing Lm := L⊗m for some big multiplicity m � 1 to be 
determined. For the metric hm := h⊗m of Lm, the section sm := s⊗m has large exponential growth

‖sm‖hm
= emα|z|2 . (2.1)

Now we introduce the complex surface X := P (Lm ⊕ C) obtained by the geometric projectivization of 
the rank 2 vector bundle Lm⊕C over C. Denote by π1 : X −→ C the canonical projection. By the fiberwised 
identification Lm

∼= Lm⊕1 ⊂ P (Lm⊕C), the total space of Lm can be embedded into X as an open subset, 
whose complement is the elliptic curve C∞ := C × [1 ⊕ 0] ⊂ P (Lm ⊕C) at “infinity”.

Next, we introduce an auxiliary holomorphic function

ψ(z) :=
∏
λ∈Λ

(
1 − z

λ

)
e

z
λ+ z2

2λ2

obtained by Weierstrass canonical product, where the zero locus Λ will be chosen carefully by the following 
sophisticated reasoning, to make sure that the global section ψ · sm of π∗

0Lm together with the inclusion 
ι : Lm ↪→ X induce an entire curve f : C −→ X producing complicated Ahlfors currents.

First of all, we would like to have the estimate log |ψ(z)| � O(|z|2), at least for |z| around ri for some 
specific radii ri ↗ ∞, in order to bound the area of f(Dri) by O(r2

i ).
Secondly, we require that the cardinality |Λ ∩Dri | = O(r2

i ), so that the image f(Dri) intersects the curve 
C0 := C × [0 ⊕ 1] ⊂ X defined by the zero section of Lm frequently enough.

Lastly, we require that each time when the image of the entire curve f intersects C0 for λ ∈ Λ with 
|λ| � 1, it contributes O(1) area near the fiber P 1

[λ] := π−1
1 ([λ]).

Thus we declare that

(i) near each annulus Ari := {z ∈ C : ri
2 � |z| � ri}, the zero locus Λ is a mild perturbation of Ari ∩ c Γ, 

where c � 5 is some positive integer to be determined. More precisely

Λ = ∪i�1 Bri where Bri := ∪μ∈Ari
∩cΓ {μ + xμ}.

Here at the moment we only tell that all xμ’s take values in the fundamental domain

D := {x + y
√
−1 : 0 � x, y < 1},

and later in Section 5, we will elaborate on the choices of xμ’s for delicate reasons.
(ii) {ri}i�1 grow very rapidly, say

r1 � 2020 · c, ri+1 � ri
4 (∀ i � 1). (2.2)

3. Preparations

Lemma 3.1. One has a uniform estimate | 
∑

λ∈Bri

1
λ | � K/c2 for all i = 1, 2, . . . .

Proof. In the special case that all xμ = 0, by the symmetry of Γ that (−1) ·Γ = Γ and that of Ar, the sum ∑
μ∈Ari

∩cΓ
1

μ+0 is always 0.
In general, for every μ ∈ Ari ∩cΓ, one has the estimate | 1

μ+xμ
− 1

μ+0 | � K/r2
i . Noting that the cardinality 

|Bri | � K · (ri/c)2, we conclude that | 
∑

λ∈Bri

1
λ | � K · (ri/c)2 · K/r2

i = K/c2. �
Lemma 3.2. One has a uniform estimate | 

∑ 1
2 | � K/(c2 ri) for all i = 1, 2, . . . .
λ∈Bri λ
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Proof. The argument goes much the same way as the preceding one, by using the rotational symmetry of 
Γ that 

√
−1 ·Γ = Γ. Indeed, we have the identity 

∑
μ∈Ari

∩cΓ
1

(μ+0)2 = 0. Moreover, for every μ ∈ Ari ∩ cΓ, 
we have | 1

(μ+xμ)2 − 1
(μ+0)2 | � K/r3

i . The remaining argument is clear. �
We make a convention that log 0 = −∞.

Proposition 3.3. For every i � 2 and for ri/3 � |z| � 3ri, one has

log |ψ(z)| � K · r2
i /c

2. (3.1)

To bound the area of f(Dri) by K · r2
i , it is crucial to have the above estimate. In fact, by classical 

complex analysis (cf. [16, Chapter 4]), we can check that ψ is well-defined and that the infinite product 
is uniformly convergent in bounded domains, and that the exponential growth order of ψ is, by applying 
Borel’s formula [16, page 30, Theorem 3], exactly 2, i.e. log |ψ(z)| � Kε · |z|2+ε for any ε > 0 and for large 
|z|. Nevertheless, for the critical case that ε = 0 we need more effort.

Proof. We first study I :=
∏i−1

�=1
∏

λ∈Br�
(1 − z

λ )e
z
λ+ z2

2λ2 concerning smaller annuli compared with Ari . Note 

that 
∏i−1

�=1
∏

λ∈Br�
|1 − z

λ | � (1 +3ri)|Br1 |+···+|Bri−1 | � (1 +3ri)K·ri/c2 . Hence by Lemmas 3.1, 3.2, we receive 

that log |I| � log (1 + 3ri)K·ri/c2 +
∑i−1

�=1(| 
∑

λ∈Br�

1
λ ||z| + | 

∑
λ∈Br�

1
λ2 || z

2

2 |) � K · r2
i /c

2.

Secondly, we observe II :=
∏

λ∈Bri
(1 − z

λ )e
z
λ+ z2

3λ2 concerning the annulus Ari . Note that each term 

|1 − z
λ | � K by our construction, and that |Bri | � K · (ri/c)2. Now using Lemmas 3.1, 3.2, we receive that 

log |II| � K · r2
i /c

2.
Lastly, we analyze III :=

∏
��i+1

∏
λ∈Br�

(1 − z
λ )e

z
λ+ z2

2λ2 concerning larger annuli compared with Ari . Now 

the key point is that, for each λ ∈ Br� , one has | zλ | �
3ri
r�/3 � 1. Therefore we can apply the Taylor expansion 

of log (1 − z
λ ) to achieve desired estimates. Indeed, noting that log

(
(1 − z

λ )e
z
λ+ z2

2λ2
)

= − 
∑

n�3
1
n ( z

λ )n, hence

∣∣∣log
∏

λ∈Br�

(1 − z

λ
)e

z
λ+ z2

2λ2

∣∣∣ � ∑
λ∈Br�

∑
n�3

1
n

∣∣∣ z
λ

∣∣∣n � K · r2
�/c

2 ·
∑
n�3

1
n

∣∣∣ 3ri
r�/3

∣∣∣n � K/c2 · r
3
i

r�
· K.

Since the sequence {r�}�>i grows very rapid by our construction (2.2), there holds 
∑

�>i
r3
i

r�
< K. Thus the 

above estimate yields |log III| � K/c2.
Combining all the above estimates about I, II, III, we receive the desired inequality (3.1). �
By our construction of Λ, it intersects each disc D(z, 1) at most once. Therefore we introduce

ψ1(z) :=
∏

λ∈Λ\D(z,1)

(
1 − z

λ

)
e

z
λ+ z2

2λ2 (3.2)

to capture the asymptotic behavior of ψ away from its zero locus Λ.

Proposition 3.4. For every z ∈ C with large |z|, one has

log |ψ1(z)| � −K · |z|2/c2. (3.3)

Proof. Fix a positive small number η = 1
100 . For every i � 1, we introduce the slightly larger annulus 

Ãri := {x ∈ C : (1 − η)ri/2 � |x| � (1 + η)ri} ⊇ Ari , to make sure that Ãri ⊇ Bi.
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Case (i): |z| large with z /∈ ∪i�Ãri . Then z lies between some two consequent annuli Ãrj and Ãrj+1 , 
i.e., (1 + η)rj < |z| < (1 − η)rj+1/2, and it is clear that ψ(z) = ψ1(z). Firstly, for each λ ∈ ∪j

�=1Br� , we 

have |1 − z
λ | � | zλ | − 1 � η′ := η/2. Thus 

∏j
�=1

∏
λ∈Br�

|1 − z
λ | � η′

∑j
�=1 |Br�

| � η′K·r2
j/c

2 � η′K·|z|2/c2 . Next, 

thanks to Lemmas 3.1, 3.2, we have 
∏j

�=1
∏

λ∈Br�
|e z

λ+ z2
2λ2 | � e−|z|

∑j
�=1 K/c2−|z|2

∑j
�=1 K·/(c2r�) � e−K·|z|2/c2 . 

Lastly, by mimicking the estimate of III in the preceding proof, we receive that

log |
∏

��j+1

∏
λ∈Br�

(1 − z

λ
)e

z
λ+ z2

2λ2 | � −
∑

��j+1

∑
λ∈Br�

∑
n�3

1
n
| z
λ
|n � −K · |z|2/c2.

Summarizing the above estimates, we conclude that log |ψ1(z)| = log |ψ(z)| � −K · |z|2/c2.
Case (ii): |z| large with z ∈ Ãrj for some j. By repeating the same arguments as above, we can show 

that, first of all, log | 
∏j−1

�=1
∏

λ∈Br�
(1 − z

λ )e
z
λ+ z2

2λ2 | � −K · |z|2/c2, and secondly, log | 
∏

��j+1
∏

λ∈Br�
(1 −

z
λ )e

z
λ+ z2

2λ2 | � −K · |z|2/c2. By Lemmas 3.1, 3.2, we receive log | 
∏

λ∈Brj
\D(z,1) e

z
λ+ z2

2λ2 | � −K · |z|2/c2. Thus 
the remaining problem is to show that log | 

∏
λ∈Brj

\D(z,1)(1 − z
λ )| � −K · |z|2/c2.

To start with, we find a point μ0 in cΓ having the least Euclidean distance to z. Then for every λ =
μ + xμ ∈ Brj , we have |λ − z| � |μ − z| − |xμ| � 1

2 (|μ − z| + |μ0 − z|) −
√

2 � 1
2 |μ − μ0| −

√
2. If moreover 

assume that μ �= μ0, then we can continue to estimate |λ − z| � 1
2 |μ − μ0| −

√
2 � 1

4 |μ − μ0|, whence 

|1 − z
λ | =

|λ−z|
|λ| � 1

8
|μ−μ0|

|μ| . Since (1
8 )|Brj

| � exp(−K · |rj |2/c2), we only need to show that

log
∏

μ0 
=μ∈Arj
∩cΓ

|μ− μ0|
|μ| � −K · |rj |2/c2 � −K · |z|2/c2. (3.4)

For any positive number r′, denote by Γ�r′ ⊂ Γ the subset of points whose real and imaginary parts have 
absolute value � r′. Note that, for every μ ∈ Arj ∩ cΓ \ (μ0 + Γ�ηrj ) far away from μ0, we have

|μ− μ0|
|μ| >

ηrj
rj

= η. (3.5)

Thus these μ’s, having cardinality |Arj ∩ cΓ \ (μ0 + Γ�ηrj )| � K · |rj |2/c2, cause no trouble for (3.4).
Lastly, we handle μ ∈ Arj∩cΓ ∩(μ0+Γ�ηrj ) simultaneously. Note that cΓ ∩Γ�ηrj \{0} can be decomposed 

into 2 horizontal parts consisting of ±{� · c + 0 ·
√
−1}[ ηc rj ]

�=1 , plus the remaining 4[ηc rj ] + 2 vertical parts 
consisting of ±{i · c + � · c

√
−1}[ ηc rj ]

�=1 for i = 0, ±1, ±2, . . . , ±[ηc rj ]. Each part contains consequential [ηc rj ]
points having absolute values � 1 · c, 2 · c, . . . , [ηc rj ] · c respectively. Hence

∏
0
=μ′∈cΓ∩Γ�ηrj

|μ′| � ([η
c
rj ]! · c[

η
c rj ])4[

η
c rj ]+2+2. (3.6)

Now it is time to apply the Stirling formula that for every positive integer n, one has

n! = nne−n
√

2πn eρn/12n

for some |ρn| � 1. A straightforward computation yields

log
∏

μ0 
=μ∈cΓ∩(μ0+Γ�ηrj
)

|μ− μ0|
|μ| � log

∏
0
=μ′∈cΓ∩Γ�ηrj

|μ′|
2rj

[by (3.6)] � log
((

[η rj ]! · c[
η
c rj ]

)4[ ηc rj ]+4
)
− log

(
(2rj)4[

η
c rj ]

2+4[ ηc rj ]
)

c
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=
[
log

((
[η
c
rj ]!

)4[ ηc rj ]+4
)
− log

((η
c
rj
)4[ ηc rj ]2+4[ ηc rj ]

)]

+ log
((η

2
)4[ ηc rj ]2+4[ ηc rj ]

)
[by the Stirling formula] � −K · |rj |2/c2. (3.7)

Now the remaining problem is that cΓ ∩(μ0+Γ�ηrj ) might exceed Arj . Let us decompose cΓ ∩(μ0+Γ�ηrj )
with respect to Arj into two parts (μ0 + Pin) ∪ (μ0 + Pout), where the first (resp. second) part lies entirely 
in (resp. outside) Arj . Since η is small, we can find some point y ∈ Arj ∩ cΓ such that y+Pout ⊂ Arj stays 
away from μ0 + Γ�8ηrj . See the picture below for illustration.

Lastly, we decompose Arj ∩ cΓ into 3 disjoint parts, μ0 + Pin, y + Pout and R the remaining. Note that ∏
μ∈y+Pout

|μ−μ0|
|μ| �

∏
μ∈μ0+Pout

|μ−μ0|
|μ| , because each factor on the left-hand-side � 8ηrj

rj
= 8η, while each 

factor on the right-hand-side �
√

2ηrj
ri/4 = 4

√
2η. Thus 

∏
μ0 
=μ∈Arj

∩cΓ
|μ−μ0|

|μ| �
∏

μ0 
=μ∈cΓ∩(μ0+Γ�ηrj
)
|μ−μ0|

|μ| ·∏
μ∈R

|μ−μ0|
|μ| . By the estimates (3.5), (3.7) and that the cardinality |R| � K ·r2

j/c
2, we conclude the proof. �

4. Estimates

4.1. f(z) is close to C∞ unless z is near Λ

Recalling (3.2), we first rewrite

||ψ · sm(z)||hm
= ||ψ1 · sm(z)||hm

· |♦(z)|

to concentrate positivity to the first factor, where if z ∈ D(λ, 1) for some λ ∈ Λ then ♦(z) = (1 − z
λ )e

z
λ+ z2

2λ2 , 
otherwise ♦(z) = 1. Now thanks to (2.1), (3.3), the left part satisfies that

||ψ1 · sm(z)||hm
� exp

(
(m · α− K/c2) · |z|2

)
.

A key trick in this paper is that we choose sufficiently large m and c such that

m · α− K/c2 > 0. (4.1)

Thus for any ε > 0, for all large |z| � 1 with dist(z, Λ) � ε, there holds

||ψ · sm(z)||hm
� 1, (4.2)
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i.e., f(z) is very close to C∞. Indeed, if dist(z, Λ) � 1, then ♦(z) = 1 and there is nothing to prove; otherwise 

ε � |z − λ| < 1 for some λ ∈ Λ, hence |♦(z)| � |z−λ|
|λ| · exp(− |z|

|λ| −
|z|2
2|λ|2 ) � ε

|z|+1 · exp(−2) for |z| � 1, 
therefore ||ψ · s(z)||hm

= ||ψ1 · s(z)||hm
· |♦(z)| is very large.

4.2. Bound the area 
∫
D2ri

f∗ωX from above

From now on, we fix a Kähler form ωC =
√
−1
2 d z∧d z on C descending from the standard Euclidean area 

form on C. The metric hm = h⊗m of Lm = L⊗m together with the Euclidean metric | d z| on C provide a 
metric for the vector bundle E := Lm ⊕C, and therefore it induces a metric on the tautological line bundle 
OP(E)(−1) on P (E) = X. Restricting to any fiber of π1 : X −→ C, the curvature form ΘOP(E)(−1) is strictly 
negative due to the property of the Fubini-Study metric of the tautological line bundle OP1(−1). Therefore, 
by standard compactness argument, for sufficiently small ε1 > 0, we receive a Kähler form on X of the 
shape

ωX := π∗
1ωC − ε1 ΘOP(E)(−1). (4.3)

We can identify the total space Lm = {(z, ξ) : ξ ∈ Lm|z} with a Zariski open set of P (Lm ⊕ C), by 
mapping (z, ξ) �→ (z, [ξ ⊕ 1]). Thus in the local coordinates (z, ξ), the curvature

ΘOP(E)(−1) = − d dc
(
log (‖ξ‖2

hm
+ 1)

)
(4.4)

is of Fubini-Study shape. For r lies in [ 13ri, 3ri] for some i � 1, by Jensen’s formula, we receive

r∫
1

d t

t

∫
Dt

f∗ΘOP(E)(−1) = − 1
4π

2π∫
0

log (‖ψ · sm‖2
hm

+ 1)(reiθ) d θ + 1
4π

2π∫
0

log (‖ψ · sm‖2
hm

+ 1)(eiθ) d θ

[use (2.1), (3.1)] � −K · r2
i .

Noting that π1 ◦ f = π0, where π0 : C → C/Γ is the canonical projection, we have 
∫
Dt

f∗π∗
1ωC = π · t2. 

Hence the Nevanlinna order function satisfies the estimate

Tf,r(ωX) =
r∫

1

d t

t

∫
Dt

f∗ωX =
r∫

1

d t

t

∫
Dt

f∗π∗
1 ωC − ε1

r∫
1

d t

t

∫
Dt

f∗ΘOP(E)(−1) � K · r2
i . (4.5)

Here is a useful observation

Tf,3ri(ωX) =
3ri∫
1

d t

t

∫
Dt

f∗ωX �
3ri∫

2ri

d t

t

∫
D2ri

f∗ωX = log (3/2) ·
∫

D2ri

f∗ωX . (4.6)

Combining the two estimates above, we conclude that

∫
f∗ωX � K · r2

i . (4.7)

D2ri
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4.3. Bound the area 
∫
Dri/3

f∗ωX from below

By Jensen’s formula and (4.4), we have

ri/3∫
ri/4

d t

t

∫
Dt

f∗ΘOP(E)(−1) = − 1
4π

2π∫
0

log (‖ψ · sm‖2
hm

+ 1)
(ri

3 eiθ
)
d θ + 1

4π

2π∫
0

log (‖ψ · sm‖2
hm

+ 1)
(ri

4 eiθ
)
d θ

[for ri � 1 and (4.2)] = − 1
4π

2π∫
0

log (‖ψ · sm‖2
hm

)
(ri

3 eiθ
)
d θ + 1

4π

2π∫
0

log (‖ψ · sm‖2
hm

)
(ri

4 eiθ
)
d θ + o(1).

(4.8)

By our construction, the holomorphic function ψ is nowhere vanishing on Dri/3 \Dri/4, hence log |ψ|2 is 
harmonic on Dri/3 \Dri/4. Therefore

− 1
4π

2π∫
0

log |ψ|2
(ri

3 eiθ
)
d θ + 1

4π

2π∫
0

log |ψ|2
(ri

4 eiθ
)
d θ = 0.

Hence we can continue to compute (4.8) as

ri/3∫
ri/4

d t

t

∫
Dt

f∗ΘOP(E)(−1) = − 1
4π

2π∫
0

log (‖sm‖2
hm

)(ri3 eiθ) d θ + 1
4π

2π∫
0

log (‖sm‖2
hm

)(ri4 eiθ) d θ + o(1)

[by (2.1)] = − 1
4π

2π∫
0

2mα

∣∣∣∣ri3
∣∣∣∣2 d θ + 1

4π

2π∫
0

2mα

∣∣∣∣ri4
∣∣∣∣2 d θ + o(1)

= −7mα

144 r2
i + o(1).

Thus

ri/3∫
ri/4

d t

t

∫
Dt

f∗ωX =
ri/3∫

ri/4

d t

t

∫
Dt

f∗π∗
1ωC − ε1

ri/3∫
ri/4

d t

t

∫
Dt

f∗ΘOP(E)(−1) = 7
144

(π
2 + ε1mα

)
r2
i + o(1). (4.9)

Noting that

ri/3∫
ri/4

d t

t

∫
Dt

f∗ωX �
ri/3∫

ri/4

d t

t

∫
Dri/3

f∗ωX = log (4/3) ·
∫

Dri/3

f∗ωX ,

we conclude that for ri � 1 there holds

∫
D

f∗ωX � K · r2
i . (4.10)
ri/3
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4.4. Estimates of 
∫
D(λ,ε) f

∗ωX

Mark the curve C0 = C × [0 ⊕ 1] ⊂ X induced by the zero section of Lm. Contrasting to the phenomenon 
in Subsection 4.1, for every λ ∈ Λ, since ψ(λ) = 0, f(λ) must lie in C0, which keeps certain positive distance 
to C∞ = C × [1 ⊕ 0]. Let ε > 0 be a small positive radius. Recall our convention that D([λ], ε) ⊂ C is the disc 
centered at [λ] with the radius ε. Note that the image f

(
D(λ, ε)

)
is contained in the small neighborhood 

π−1
1 (D([λ], ε)) of P 1

[λ] := π−1
1 ([λ]).

By Jensen’s formula, for λ ∈ Λ with |λ| � 1, we have

2ε∫
ε

d t

t

∫
D(λ,t)

f∗ΘOP(E)(−1) = − 1
4π

2π∫
0

log (‖ψ · sm‖2
hm

+ 1)(λ + 2εeiθ) d θ

+ 1
4π

2π∫
0

log (‖ψ2 · sm‖2
hm

+ 1)(λ + εeiθ) d θ

[by (4.2) and |λ| � 1] = − 1
4π

2π∫
0

log (‖ψ · sm‖2
hm

)(λ + 2εeiθ) d θ

+ 1
4π

2π∫
0

log (‖ψ2 · sm‖2
hm

)(λ + εeiθ) d θ + o(1)

=
[
− 1

4π

2π∫
0

log (‖sm‖2
hm

)(λ + 2εeiθ) d θ + 1
4π

2π∫
0

log (‖sm‖2
hm

)(λ + εeiθ) d θ

]
(4.11)

+
[
− 1

4π

2π∫
0

log |ψ|2(λ + 2εeiθ) d θ + 1
4π

2π∫
0

log |ψ|2(λ + εeiθ) d θ

]
+ o(1).

By (2.1), the first bracket [· · · ] in (4.11) can be computed as

− 1
4π

2π∫
0

2mα|λ + 2εeiθ|2 d θ + 1
4π

2π∫
0

2mα|λ + εeiθ|2 d θ = −3mαε2. (4.12)

Recalling (3.2), we can rewrite ψ(z) = (ψ1 ·e
z
λ+ z2

2λ ) · (1 − z
λ ), where the factor ψ2 := ψ1 ·e

z
λ+ z2

2λ is nowhere 
vanishing for z ∈ D(λ, 2ε). Hence log |ψ2|2 is a harmonic function on D(λ, 2ε), and we receive

− 1
4π

2π∫
0

log |ψ2|2(λ + 2εeiθ) d θ + 1
4π

2π∫
0

log |ψ2|2(λ + εeiθ) d θ = 0.

Thus we can calculate the second bracket [· · · ] of (4.11) as

− 1
4π

2π∫
0

log
∣∣∣∣1 − λ + 2εeiθ

λ

∣∣∣∣2 d θ + 1
4π

2π∫
0

log
∣∣∣∣1 − λ + εeiθ

λ

∣∣∣∣2 d θ = −log 2. (4.13)
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Hence it follows from (4.11), (4.12), (4.13) that

2ε∫
ε

d t

t

∫
D(λ,t)

f∗ΘOP(E)(−1) = −3mαε2 − log 2 + o(1) (for |λ| � 1).

Note that 
∫
D(λ,t) f

∗π∗
1ωC = π · t2. Therefore

2ε∫
ε

d t

t

∫
D(λ,t)

f∗ωX = π

2 · 3ε2 + ε1

(
3mαε2 + log 2 + o(1)

)
(for |λ| � 1). (4.14)

By the same trick as (4.6), we have

2ε∫
ε

d t

t

∫
D(λ,t)

f∗ωX �
2ε∫
ε

d t

t

∫
D(λ,ε)

f∗ωX � log 2 ·
∫

D(λ,ε)

f∗ωX .

Combining the above two estimates, we conclude

∫
D(λ,ε)

f∗ωX � 1
log 2

(
π

2 · 3ε2 + ε1

(
3mαε2 + log 2 + o(1)

))
(for |λ| � 1). (4.15)

Next, we provide an lower bound for 
∫
D(λ,ε) f

∗ωX . Substituting ε by ε2 in (4.14), we receive that

ε∫
ε
2

d t

t

∫
D(λ,t)

f∗ωX = π

2 · 3ε2

4 + ε1

(
3mαε2

4 + log 2 + o(1)
)

(for |λ| � 1). (4.16)

Note that

ε∫
ε
2

d t

t

∫
D(λ,t)

f∗ωX �
ε∫

ε
2

d t

t

∫
D(λ,ε)

f∗ωX = log 2 ·
∫

D(λ,ε)

f∗ωX .

Hence it follows from the above two estimates that
∫

D(λ,ε)

f∗ωX � 1
log 2

(
π

2 · 3ε2

4 + ε1

(3mαε2

4 + log 2 + o(1)
))

(for |λ| � 1). (4.17)

Note that the right-hand-sides of (4.15) and (4.17) have the same limit ε1 > 0, as λ ∈ Λ tends to infinity 
and ε tends to zero.

4.5. Area estimates of f(C) near horizontal curves

An irreducible algebraic curve D ⊂ X is said to be vertical if π1(D) is a point; otherwise it is called 
horizontal, in the sense that π1(D) = C.

Firstly, for a vertical curve P 1
[y] = π−1

1 ([y]), by the estimates (4.15) and (4.17), the area of f(Dr) near 
P 1 , as r → ∞, is mostly determined by asymptotic growth of |Dr ∩ Λ|.
[y]
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Next, for the horizontal curve D = C∞, by Subsection 4.1, f(Dr) shall concentrate a large portion of area 
near C∞ as r → ∞.

Lastly, for any other irreducible horizontal curve D �= C∞, we devote this subsection to prove that, 
roughly speaking, every time when f(Dr) intersects with D, it contributes negligible area about there.

To start with, we take a general point d0 ∈ D \ C∞ such that π1|D is regular at d0, i.e., some small open 
neighborhood U ⊂ D of d0 is a graph over π1(U) containing π1(d0) =: c0. By shrinking U we may assume 
that U stays away from C∞, and that π1(U) is a small disc D(c0, 3δ) for some δ > 0, and that the line 
bundle Lm has a local trivialization Lm|D(c0,3δ)

∼= D(c0, 3δ) ×C, which extends to an identification

ϑ : π−1
1 (D(c0, 3δ))

∼=−→ D(c0, 3δ) × P 1(C) (4.18)

by fiberwised compactification C ↪→ P 1(C) sending z �→ [z : 1]. Hence we can read the coordinates of U in 
the chart D(c0, 3δ) ×C as the graph of some holomorphic map u : D(c0, 3δ) → C.

Let p1, p2 be the projections of D(c0, 3δ) × P 1(C) to the two factors. Let ωFS be the Fubini-Study 
form on P 1(C). By compactness argument, the metric p∗1ωC + p∗2ωFS is comparable with (ϑ−1)∗ωX on 
D(c0, 5δ2 ) × P 1(C), namely

K−1
c0,δ,ϑ

· (p∗1ωC + p∗2ωFS) � (ϑ−1)∗ωX � Kc0,δ,ϑ · (p∗1ωC + p∗2ωFS). (4.19)

Fix a positive number ε � δ. Then the neighborhood π−1
1 (D(c0, δ)) ∩D of d0 in the coordinates reads as

U1 := {(z, w) : z ∈ D(c0, δ), w = u(z)},

and it is contained in the small open neighborhood

U ε
1 := {(z, w) : z ∈ D(c0, δ + ε), |w − u(z)| < ε}.

Fix a positive small number δ′ < δ/2. By Subsection 4.1, for |z| � 1 large with dist(z, Λ) > δ′, one sees 
that f(z) is very close to C∞, hence it is outside U ε

1 . Thus for bounding the area of f(Dr) ∩ U ε
1 from above 

by o(1) · r2, we only need to show that, for λ ∈ Λ with |λ| � 1, the area f(D(λ, δ′)) ∩ U ε
1 is negligible o(1).

Observation 4.1. Set f2 := p2 ◦ ϑ ◦ f . For λ ∈ Λ with |λ| � 1 and with [λ] ∈ D(c0, δ + δ′), one has

(ϑ ◦ f)−1(U ε
1) ∩D(λ, δ′) ⊂ f2

−1
(
D
(
u([λ]), 2ε

))
∩D(λ, δ′).

Proof. By continuity of u and by compactness of D(c0, 52δ), there exists some positive number δε < δ′

such that, for any two points x1, x2 ∈ D(c0, 52δ) with |x1 − x2| < δε, there holds |u(x1) − u(x2)| < ε. By 
Subsection 4.1, for all λ ∈ Λ with |λ| � 1, the image of D(λ, δ′) \D(λ, δε) under ϑ ◦f is outside U ε

1 , therefore

(ϑ ◦ f)−1(U ε
1) ∩D(λ, δ′) ⊂ (ϑ ◦ f)−1(U ε

1) ∩D(λ, δε).

By definition, every element z in the right-hand-side satisfies that |f2(z) −u([z])| < ε and |z−λ| < δε. Thus 
|f2(z) − u([λ])| � |f2(z) − u([z])| + |u([z]) − u([λ])| < ε + ε = 2ε, which concludes the proof. �

Now for every v ∈ C having absolute value |v| � R := max{|u(z)| + ε : z ∈ D(c0, 52δ)} < ∞, for λ ∈ Λ
with |λ| � 1 and with [λ] ∈ D(c0, δ + δ′), consider the restricted holomorphic function

f2 : D(λ, δ′) −→ C.
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Since |f2| � 1 (in particular |f2| > R) on ∂D(λ, δ′) by Subsection 4.1, by the Argument Principle, the 
number of solutions of the equation f2(y) = v on the disc D(λ, δ′), counting multiplicities, equals to

1
2π

√
−1

∫
z∈∂D(λ,δ′)

(f2 − v)′

f2 − v
(z) d z.

Noting that the above quantity takes integer value, and that it varies continuously with respect to v ∈ DR, 
it must be a constant for every v ∈ DR. Now checking the special value v = 0, we see that the number 
of solution is just 1. Thus Observation 4.1 implies that, for λ ∈ Λ with |λ| sufficiently large and with 
[λ] ∈ D(c0, δ + δ′), we have

Area
(
(ϑ ◦ f)−1(U ε

1) ∩D(λ, δ′)
)
f∗
2 ωFS

� Area
(
u([λ]), 2ε

)
ωFS

� K · ε2. (4.20)

Also, by Subsection 4.1, for every positive number ε′ > 0, for λ ∈ Λ with sufficiently large |λ|, we have

(ϑ ◦ f)−1(U ε
1) ∩D(λ, δ′) ⊂ D(λ, ε′).

Therefore

Area
(
(ϑ ◦ f)−1(U ε

1) ∩D(λ, δ′)
)
π∗
1ωC

� Area
(
D(λ, ε′)

)
π∗
1ωC

= π · ε′ 2. (4.21)

Summarizing (4.19), (4.20), (4.21), for λ ∈ Λ with |λ| � 1 and [λ] ∈ D(c0, δ + δ′), we have

Area
(
(ϑ ◦ f)−1(U ε

1) ∩D(λ, δ′)
)
f∗ωX

� Kc0,δ,ϑ · (K ε2 + π ε′ 2). (4.22)

4.6. Area of f near λ ∈ Λ revisit

An alternative way to interpret (4.17) is the following

Observation 4.2. Let δ′ > 0 be a small positive number. Let U be an open neighborhood of C∞ such that its 
closure U stays away from C0. Then one has the estimate

Area
(
(X \ U) ∩ f

(
D(λ, δ′)

))
ωX

� KU (∀λ ∈ Λ with |λ| � 1). (4.23)

This strengthens (4.17) in a qualitative sense, and will be helpful for discussing diffuse parts later. Before 
going to the proof of the above result, recall the following special case of Wirtinger’s inequality.

Proposition 4.3 (Cf. [17, page 7]). Let C be a proper holomorphic curve in the ball B(0, ε) ⊂ Cn passing 
through 0. Then with the standard Euclidean metric, one has Area(C) � πε2. �
Proof of Observation 4.2. By compactness, C0 can be covered by finitely many open neighborhoods Ui, 
being disjoint with U , with charts ϑi : Ui → Vi ⊂ C2. By shrinking Ui’s if necessary, we can assume 
that every pull-back by ϑi of the standard Euclidean metric on C2 is comparable with ωX . Again by the 
compactness of C0, for every point c ∈ C0, certain chart Vi of Ui � c contains a sufficiently large ball centered 
at ϑi(c) with a uniform radius r > 0. Now, by Subsection 4.1, for λ ∈ Λ with |λ| � 1, for c = f(λ) ∈ C0, in 
the chart Vi we see that ϑi

(
f(D(λ, δ′)) ∩ Ui

)
contains a proper holomorphic curve in the ball B(ϑi(c), r), 

having positive area � πr2 by Proposition 4.3. The desired conclusion then follows from the comparability 
of metrics. �
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5. Algorithm

First of all, we require that m, c satisfy the condition (4.1).
Next, we choose distinct points in a strip of D

{yi}i∈Z+ ⊂ {x + y
√
−1 : 1/6 � x < 1/3, 0 � y < 1}. (5.1)

A collection of N � 1 points

b1, . . . , bN ∈ DR := {x + y
√
−1 : 1/2 � x < 1, 0 � y < 1}

is said to be distributed sparsely, if for any disc D(a, r), the following cardinality estimate holds

∣∣D(a, r) ∩ {b1, . . . , bN}
∣∣ � max{1,K · r2N}. (5.2)

For instance, this can be reached by choosing distinct points

b1, . . . , bN ∈
{ [

√
N ] + 1 + �1

2[
√
N ] + 2

+ �2

[
√
N ] + 1

√
−1

}
0��1,�2�[

√
N ]
.

A key observation is that, every point b ∈ DR keeps a uniform positive distance to {yi}i∈Z+

dist(b, yi) � 1/6 (∀ i � 1). (5.3)

Let S = {I ⊂ Z+ : I is a finite nonempty set, or I = ∅, or I = Z+}. Then S is countable, i.e., there 
exists some bijection σ : S → Z+. On the other hand, we can decompose Z+ into some infinite disjoint 
union ∪i∈Z+Zi, where each component Zi contains infinitely many integers. For every I ∈ S, write all the 
elements of Zσ(I) in the increasing order as ZI

1 < ZI
2 < ZI

3 < · · · . Thus we can rearrange

Z+ = ∪I∈SZσ(I) = ∪I∈S ∪j�1 {ZI
j }.

For every positive integer i = ZI
j , we now choose all the xμ ∈ D for μ ∈ Ari ∩ cΓ as follows.

• Case I: I = ∅.
We require that all the xμ’s are distributed sparsely in DR.

• Case II: I = {i1, . . . , ik} is some finite set of k � 1 elements, and j � 1 is an odd integer.
We choose all xμ from {yi1 , . . . , yik}, such that, for every � = 1, . . . , k, xμ = yi� for at least [ |Ari

∩cΓ|
k ]

times.
• Case II’: I = {i1, . . . , ik} is some finite set of k � 1 elements, and j � 1 is an even integer.

We choose some xμ = yi� for [ |Ari
∩cΓ|

2k ] times, where � = 1, . . . , k, and we require the remaining xμ’s to 
be distributed sparsely in DR.

• Case III: I = Z+, and j � 1 is odd.
Fix a sequence of positive numbers {αj}∞j=1 with 

∑∞
j=1 αj = 1. We choose all xμ from {y�}∞�=1, such 

that, for every � � 1, xμ = y� for at least [α� · |Ari ∩ cΓ|] times.
• Case III’ I = Z+, and j � 1 is even.

For every � � 1, we choose some xμ = y� for [α�

2 · |Ari ∩ cΓ|] times; and we choose the remaining xμ’s 
to be distributed sparsely in DR.
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6. Proofs

We are now in position to prove the main results. Recall that from a given sequence of discs of increasing 
radii ri ↗ ∞, after a perturbation and passing to some subsequence, we can always receive an Ahlfors 
current for f .

Observation 6.1. From the sequence of radii { ri
3 }i�1, one receives a singular Ahlfors current T of the shape

T = c∞ · [C∞].

Proof. Note that all points in Dri/3 \ Dri−1+2 keep positive distance � 2 −
√

2 to Λ. Thus for any small 
open neighborhood U of C∞, by Subsection 4.1, for i � 1, for every z ∈ Dri/3 \Dri−1+2, we have f(z) ∈ U . 
Note that for i � 1, by (4.7) and (4.10), one sees that the area of f(Dri−1+2) is negligible comparing with 
that of f(Dri/3), namely

∫
Dri−1+2

f∗ωX � K · r2
i−1 = o(1) · r2

i � o(1) ·
∫

Dri/3

f∗ωX .

Thus T charges zero mass outside U . Since this holds true for any open neighborhood U ⊃ C∞, we conclude 
that T must be supported on C∞. �
Observation 6.2. From the sequence of radii {rZ∅

j
}j�1, one gets an Ahlfors current T having the shape

T = a∞ · [C∞] + TDiff ,

where a∞ is some positive number and TDiff is a nontrivial diffuse part.

Proof. Step 1 : T charges positive mass along C∞.
Indeed, for any open neighborhood U of C∞, it follows from the preceding proof and the estimate (4.10)

that, for j � 1 and for i = Z∅

j , we have f(Dri/3 \ Dri−1+2) ⊂ U and 
∫
Dri/3\Dri−1+2

f∗ωX � K · r2
i . On the 

other hand, by (4.7) we know that 
∫
Dri

f∗ωX � K · r2
i . Thus T charges U by positive mass � K > 0. Since 

this holds true for any U , we conclude that T charges positive mass along C∞.
Step 2 : T does not charge any other algebraic curve.
If D �= C∞ is an irreducible horizontal curve, using the same notations as that of Subsection 4.5, by the 

estimate (4.22), and by choosing ε′ � ε, we know that T charges the neighborhood ϑ−1(U ε
1) by a small mass 

� Kc0,δ,ϑ · ε2. Letting ε → 0, we receive that T charges no mass on U1 ⊂ D. Thus T cannot charge positive 
mass on D.

If D = P 1
a is an irreducible vertical curve, for an open neighborhood U of C∞, we claim that T charges 

no mass on D \U . Indeed, for any small ε > 0, by Subsection 4.1, for |z| � 1 with f(z) ∈ π−1
1 (D(a, ε)) \U , 

there must be some λ ∈ Λ such that z ∈ D(λ, ε). Note also that π1(z) = [z], we get [λ] ∈ D(a, 2ε). By (5.2), 
we have

|π−1
0 (D(a, 2ε)) ∩ Λ ∩Dr

Z
∅

j

| � Kε2 · r2
Z∅

j
.

Hence by the estimates (4.15) and (4.10), such points z ∈ Dr
Z

∅

j

with f(z) ∈ π−1
1 (D(a, ε)) \ U constitute 

only small portion of area measured by f∗ωX , thus T charges mass � K · ε2 over π−1
1 (D(a, ε)) \ U . Letting 

ε → 0, we conclude the claim. Since this holds for any open neighborhood U , we receive that T does not 
charge P 1

a , which finishes this step.
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Step 3 : T has positive mass outside C∞.
Take any small open neighborhood U of C∞ such that U ∩C0 is empty. Note that for every λ ∈ Λ ∩Ar

Z
∅

j

where j � 1, by (4.23), the image of f about λ contributes � K area outside U . Moreover, by our construction 
|Λ ∩Ar

Z
∅

j

| � K · r2
Z∅

j

, thus the total area of f(Dr
Z

∅

j

) \ U is � K · r2
Z∅

j

. Lastly, by (4.7), we conclude that T
charges positive mass outside U . �
Observation 6.3. Fix any finite subset I = {i1, . . . , ik} ⊂ Z+ having cardinality k � 1. Then from the 
sequence of radii {rZI

2j−1
}j�1, one receives an Ahlfors current T having the shape

T = a∞ · [C∞] +
k∑

�=1

ai� · [P 1
[yi�

]],

where a∞, ai1 , . . . , aik are some positive numbers.

Proof. For any small open neighborhood U of C∞ ∪ P 1
[yi1 ] ∪ · · · ∪ P 1

[yik
], by Subsection 4.1, for j � 1, for 

all points z ∈ Dr
ZI

2j−1
\ Dr

ZI
2j−1−1+2 we have f(z) ∈ U . Indeed, choose a very small ε > 0 such that U

contains π−1
1 (D([yi� ], ε)) for every � = 1, . . . , k. Then if dist(z, Λ) � ε, we know that f(z) is very close to 

C∞, whence f(z) ∈ U ; otherwise dist(z, Λ) < ε, that is z ∈ D(λ, ε) for some λ ∈ π−1
0 ([yi� ]) (� = 1, . . . , k) by 

our construction of Λ, hence f(z) ∈ π−1
1 (D([yi� ], ε)) ⊂ U .

Therefore, by the same argument as that of Observation 6.1, one sees that T is supported in C∞∪P 1
[yi1 ]∪

· · · ∪ P 1
[yik

]. It remains to check that T charges positive mass in each of these components.
Indeed, first of all, our algorithm guarantees that

|Λ ∩ Ar
ZI

2j−1
∩ π−1

0 ([yi� ])| � K · r2
ZI

2j−1
(� = 1, . . . , k).

By (4.17), for any fixed small ε > 0, for large j � 1 and i = rZI
2j−1

, for any λ ∈ Λ ∩ Ari ∩ π−1
0 ([yi� ]), the 

holomorphic disc f(D(λ, ε)) is contained in π−1
1 (D([yi� ], ε)) with area 

∫
D(λ,ε) f

∗ωX � K bounded from below 
by some uniformly positively constant independent of ε. Thus the total area of such discs is � K · r2

i . Noting 
that (4.7) implies 

∫
D(ri) � K · r2

i , thus T charges mass � K on π−1
1 (D([yi� ], ε)). Letting ε → 0, we conclude 

that T charges positive mass on P 1
[yi�

]. Lastly, by the same argument as the Step 1 of Observation 6.2, we 
see that T charges positive mass on C∞. Thus we conclude the proof. �
Observation 6.4. Fix any finite subset I = {i1, . . . , ik} ⊂ Z+ having cardinality k � 1. Then from the 
sequence of radii {rZI

2j
}j�1, one receives an Ahlfors current T having the shape

T = a∞ · [C∞] +
k∑

�=1

ai� · [P 1
[yi�

]] + TDiff ,

where a∞, ai� (1 � � � k) are some positive constants and where TDiff is a nontrivial diffuse part.

Proof. Step 1 : T charges positive mass along C∞, P 1
[yi1 ], · · · , P 1

[yik
].

This follows from the same arguments as in the preceding proof.
Step 2 : T does not charge any other algebraic curve.
We can check it by using the same arguments as in the Step 2 of Observation 6.2.
Step 3 : T has positive mass outside C∞ ∪ P 1

[yi1 ] ∪ · · · ∪ P 1
[yik

].
The argument is similar to the Step 3 of Observation 6.2. The key point is that, by our algorithm

|(DR + Γ) ∩ Λ ∩Dr I | � K · r2
ZI ,
Z2j 2j
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and for every λ ∈ (DR +Γ) ∩Λ ∩Dr
ZI

2j
, [λ] keeps uniform distances � 1

6 = ε > 0 to [yi1 ], . . . , [yik ]. Assuming 

moreover that j � 1, in the same notation as Observation 4.2 we receive

Area
(
(X \ U) ∩ f

(
D(λ, ε/2)

))
ωX

� KU .

Note that f
(
D(λ, ε/2)

)
stays away from π−1

1 (D([yi� ], ε/2)) for all � = 1, . . . , k. Thus by the same argument 
as the preceding proof, we see that T charges positive mass outside U ∪

(
∪k
�=1 π

−1
1 (D([yi� ], ε/2))

)
. �

By much the same arguments, we have the following two results.

Observation 6.5. From the sequence of radii {r
Z

Z+
2j−1

}j�1, one receives an Ahlfors current T having the shape

T = a∞ · [C∞] +
∞∑
�=1

a� · [P 1
[y�]],

where a∞, a� (� � 1) are positive numbers. �
Observation 6.6. From the sequence of radii {r

Z
Z+
2j

}j�1, one receives an Ahlfors current T having the shape

T = a∞ · [C∞] +
∞∑
�=1

a� · [P 1
[y�]] + TDiff ,

where a∞, a� (� � 1) are positive numbers, and where TDiff is a nontrivial diffuse part. �
Thus we prove Theorems 1.3, 1.4.

7. Examples

7.1. Diffuse Ahlfors currents

Let A = C/Λ × C/Λ be the surface obtained as the product of two elliptic curves where Λ is a lattice. 
Fix a reference metric ωA := d dc |z1|2 + d dc |z2|2 on A. Choose an irrational number λ ∈ R \Q. Consider 
the holomorphic curve f : C −→ A given by f(z) = ([z], [λz]).

Proposition 7.1. Any Ahlfors current T of f is diffuse.

Proof. Since there is no nonconstant holomorphic map from P 1(C) to an elliptic curve, A contains no 
rational curve. Hence by a theorem of Duval [11], it suffices to check that T charges zero mass along any 
elliptic curve in A.

Fact (Cf. [18, Prop. 1.3.2]). Let Φ : C/Γ1 −→ C/Γ2 be a holomorphic map between complex tori. Then 
there exist complex numbers m, b with mΓ1 ⊂ Γ2, such that Φ([z]) = [mz + b].

Therefore, any nonconstant holomorphic map ι : C/Γ3 → C/Λ × C/Λ from an elliptic curve to A can 
be written explicitly as ι([z]) = ([m1z + b1], [m2z + b2]) for some complex numbers m1, m2, b1, b2, such that 
(m1, m2) �= (0, 0) and m1Γ3, m2Γ3 ⊂ Γ. Hence m2 − λm1 �= 0. We claim that the intersection numbers

|ι(C/Γ3) ∩ f(Dr)| � K · r2 (7.1)
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for r � 1. Indeed, we can find a large disc DR containing a fundamental domain of Γ3. Then for z ∈ Dr, y ∈
DR with ([z], [λz]) = ([m1y + b1], [m2y + b2]), we receive that

z − (m1y + b1) = λ1, λz − (m2y + b2) = λ2 (7.2)

for some λ1, λ2 ∈ Λ having absolute values less than r + K, |λ| · r + K respectively.
Since m2 − λm1 �= 0, we can solve the linear equation (7.2) as

z = m2(λ1 + b1) −m1(λ2 + b2)
m2 − λm1

, y = λ(λ1 + b1) − (λ2 + b2)
m2 − λm1

.

Noting that y ∈ DR, for any fixed λ1, the cardinality of possible choices of

λ2 ∈
(
(−m2 + λm1) ·DR + λ(λ1 + b1) − b2

)
∩ Λ

is � K. Thus the cardinality of possible choices of such (λ1, λ2) ∈ Λ ×Λ is � K · (r + K)2 ·K � K · r2. Hence 
the estimate (7.1) is proved.

By the compactness of ι(C/Γ3), and by shrinking neighborhood U of ι(C/Γ3) if necessary, each inter-
section point corresponds to a small area o(1) component of f(Dr) ∩ U , thus the total area of f(Dr) ∩ U is 
� o(1)K · r2. However, the area growth of f(Dr) is Kλ · r2. Thus any obtained Ahlfors current of f charges 
mass � o(1)K on U . By shrinking U , we know that T charges zero mass along ι(C/Γ3). Hence we conclude 
the proof. �

Take a holomorphic surjective map π2 : A −→ P 2(C), which induces an entire curve

f2 := π2 ◦ f : C −→ P 2(C).

Since π∗
2ωFS � 0 is closed, by the geometry of A, in the cohomology class [π∗

2ωFS] we can find a harmonic 
representative

ω = a1
√
−1 d z1 ∧ d z1 + a2

√
−1 d z2 ∧ d z2 + a3

√
−1 d z1 ∧ d z2 + a4

√
−1 d z2 ∧ d z1 � 0

for some constants a1, a2, a3, a4. Thus f∗ω = K
√
−1 d z ∧ d z � 0 where

K = a1 + a2λ
2 + λ(a3 + a4) � 0.

Since a1, a2, a3 + a4 cannot vanish simultaneously, at most one λ in R \Q can make K = 0. Now we only 
choose λ ∈ R \Q such that K > 0.

Proposition 7.2. Any Ahlfors current T2 of f2 is diffuse.

It is interesting to see that f2 is tangent to a multi-valued vector field induced by the push-forward of 
the constant vector field (1, λ) on A.

Proof. Assume that T2 is obtained by an increasing radii {ri}i�1 ↗ ∞. By our chosen metric ωA, the 
“Length-Area” condition of Ahlfors’ lemma is automatically satisfied, thus by passing to some subsequence 
{rik}k�1 we can receive an Ahlfors current T of f .

Noting that f∗ω = K
√
−1 d z ∧ d z > 0, by closedness of T and by Area(f(Dr))ωA = K · r2, we receive

T (π∗
2ωFS) = T (ω) � K > 0.
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By the construction of T , we receive that

Area
(
f2(Drik

)
)
ωFS

� K · r2
ik

(k � 1).

Fix some K such that π∗
2ωFS � K · ωA. For any irreducible curve C ⊂ P 2(C), for any open neighborhood 

U of C, we have

Area
(
f2(Drik

) ∩ U
)
ωFS

= Area
(
f(Drik

) ∩ π−1
2 (U)

)
π∗
2ωFS

� K · Area
(
f(Drrik

) ∩ π−1
2 (U)

)
ωA

.

Since T charges no mass along π−1
2 (C) by Proposition 7.1, by shrinking U , the right-hand-side above is 

� o(1) · r2
ik

. Thus T2 charges no mass along C. Since C is arbitrary, we conclude the proof. �
7.2. Singular Nevanlinna currents on X

Replacing “Ahlfors currents” by “Nevanlinna currents” in Observations 6.1–6.6, the same statements still 
hold true by much the same arguments. Indeed, every upper or lower bound about 

∫
D(λ,ε) f

∗ωX or 
∫
Dri

f∗ωX

has a corresponding one about order function. A remaining technical detail we would like to mention is the 
following

Observation 7.3. For every � � 1, there exists some positive β� < 1 such that, for j � 1 and i = Z
Z+
j ,

|Λ ∩ Ari ∩Dβ�ri ∩ π−1
0 ([y�])| � K� · r2

i .

It will be helpful to show that certain Nevanlinna currents of f charge positive mass along P 1
[y�].

Proof. Note that for j � 1 we have |Λ ∩ Ari ∩ π−1
0 ([y�])| > α�

3 · K · r2
i . Moreover, for any fixed β < 1, for 

j � 1, we have |Λ ∩Ari \Dβri)| � K · (1 − β)r2
i . By these two estimates, we can conclude the proof. �

Therefore we can replace “Ahlfors currents” by “Nevanlinna currents” in the statements of Theo-
rems 1.3, 1.4. Also, by much the same proofs, Propositions 7.1, 7.2 also hold true for Nevanlinna currents.

7.3. Singular Ahlfors currents on blow-ups of X

We sketch a construction of elaborate (in the sense of cohomology classes) singular Ahlfors currents, on 
the blow-ups of X having Picard numbers � 3.

For any given positive integer n � 1, recall the collection of points y1, . . . , yn given in (5.1), let X be the 
blow-up of X at these points with the corresponding exceptional divisors E1, . . . , En. Let p : X → X be the 
projection. We now use the section ψ2 ·sm instead of ψ ·sm to induce an entire curve f : C −→ X. By lifting 
we thus receive an entire curve ζ : C −→ X . We strengthen our choices of m, c in (4.1) by the condition 
m · α − 2K/c2 > 0, to make sure that the same clustering phenomenon as in Subsection 4.1 holds true for 
f and C∞. Let ei be the intersection point of the strict transformation C̃0 of C0 with Ei (i = 1, . . . , n). The 
purpose of using ψ2 instead of ψ is to make sure that, for λ ∈ Λ with [λ] = [yi], we have the certain value 
ζ(λ) = ei.

It is well-known that, there exist some hermitian metrics hi of the line bundles O(−Ei) and some 
small positive constant ε2 � 1 such that ωX := p∗ωX + ε2

∑n
�=1 Θh�

is a Kähler form on X (cf. [19, 
Proposition 3.24]). Moreover, comparing the lifting ζ : C −→ X with f : C −→ X, we have

Tζ,r(ωX ) :=
r∫ d t

t

∫
ζ∗ωX � Tf,r(ωX) + O(1),
1 Dt
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(cf. [14, page 64, Observation 2.5.1]). Thus we can use the same arguments for (4.7) to conclude that
∫

D2ri

ζ∗ωX � K · r2
i .

For λ ∈ Λ with [λ] = [yi], computing in local coordinates around ei, for any small ε > 0, for any open 
neighborhood U of Ei, assuming further that |λ| � 1, then the area of ζ(D(λ, ε)) ∩U is uniformly positively 
bounded (independent of U and ε) from below by using Propositions 3.4 and 4.3.

Therefore, as an analogue of Observation 6.3, for the finite subset I = {1, . . . , n}, from the sequence of 
radii {rZI

2j−1
}j�1, after a perturbation and passing to a subsequence, we can receive an Ahlfors current

T = a∞ · [C̃∞] +
n∑

�=1

a� · [P̃ 1
[y�]] +

n∑
�=1

b� · [Ei],

where C̃∞, P̃ 1
[y�] stand for the strict transformations of C∞, P 1

[y�], and where a∞, a�, b� > 0 (� = 1, . . . , n) are 
some positive numbers.

Similarly, we have the counterparts of other Observations 6.1–6.6.
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