
An alternative method for refined
process structure trees (RPST)

Yongsun Choi
Department of Industrial and Management Engineering,

Inje University, Gimhae, Republic of Korea
N. Long Ha

Department of Information and Communication Systems,
Inje University, Gimhae, Republic of Korea

Pauline Kongsuwan
Faculty of Engineering,

Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand, and
Kwan Hee Han

Department of Industrial and Systems Engineering,
Gyeongsang National University, Jinju, Republic of Korea

Abstract
Purpose – The refined process structure tree (RPST), the hierarchy of non-overlapping single-entry
single-exit (SESE) regions of a process model, has been utilized for better comprehension and more efficient
analysis of business process models. Existing RPSTmethods, based on the triconnected components of edges,
fail to identify a certain type of SESE region. The purpose of this paper is to introduce an alternative method
for generating a complete RPST utilizing rather simple techniques.
Design/methodology/approach – The proposed method first focuses on the SESE regions of bonds and
rigids, from the innermost ones to the outermost ones, utilizing dominance and post-dominance relations.
Then, any SESE region of a series nested in a bond or a rigid is identified with a depth-first search variation.
Two-phase algorithms and their completeness proofs, a software tool incorporating visualization of stepwise
outcomes, and the experimental results of the proposed method are provided.
Findings – The proposed method utilizes simple techniques that allow their straightforward
implementation. Visualization of stepwise outcomes helps process analysts to understand the proposed
method and the SESE regions. Experiments with 604 SAP reference models demonstrated the limitation of
the existing RPST methods. The proposed method, however, completely identified all types of SESE regions,
defined with nodes, in less computation time than with the old methods.
Originality/value – Each triconnected component of the undirected version of a process model is associated
with a pair of boundary nodes without discriminating between the entry and the exit. Here, each non-atomic
SESE region is associated with two distinct entry and exit nodes from the original model in the form of a
directed graph. By specifying the properties of SESE regions in more comprehensible ways, this paper
facilitates a deeper understanding of SESE regions rather than relying on the resulting RPST.
Keywords Process model, Dominance, Post-dominance, Single-entry single-exit region, Workflow graph
Paper type Research paper

1. Introduction
As a divide-and-conquer approach, single-entry single-exit (SESE) regions have been
actively utilized recently for better comprehension and more efficient analysis of
business process models. Those cases utilizing SESE regions include process discovery
(Augusto et al., 2018), behavioral relation analysis (Weidlich et al., 2010, 2011), structural
verification (Vanhatalo et al., 2007; Fahland et al., 2011), process similarity analysis
(Klinkmüller and Weber, 2017), clone detection (La Rosa et al., 2015), model-to-text
transformation (Leopold et al., 2014; Fan et al., 2017; Wang et al., 2017), process
model restructuring (Khlif et al., 2017), etc. Most of these studies utilize the so-called

Business Process Management
Journal

Vol. 26 No. 2, 2020
pp. 613-629

© Emerald Publishing Limited
1463-7154

DOI 10.1108/BPMJ-11-2018-0319

Received 10 November 2018
Revised 16 May 2019

9 July 2019
Accepted 11 July 2019

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1463-7154.htm

This work was supported by the 2016 Inje University research grant.

613

An alternative
method for

RPST

refined process structure tree (RPST) (Vanhatalo et al., 2009; Polyvyanyy et al., 2010),
which is based on the triconnected decompositions (Hopcroft and Tarjan, 1973; Tarjan and
Valdes, 1980; Gutwenger and Mutzel, 2001) of a process model.

Triconnected components, defined with edges, are identified from an undirected graph, and
each of them is associated with a pair of boundary nodes. However, a processmodel is in the form
of a directed graph, and each SESE region is associated with two distinct nodes of entry and exit.
Because of this definition gap, a certain type of SESE region are not found by the existing RPST
methods of Vanhatalo et al. (2009) or Polyvyanyy et al. (2010). This paper introduces a simple
alternative method for identifying SESE regions in an arbitrary business process model utilizing
dominance and post-dominance relations (Aho et al., 2006; Cormen et al., 2009) and simple depth-
first search variation. In the proposed method, SESE regions are defined with nodes that
represent activities and gateways, which garner more attention from BPM stakeholders.

The rest of this paper is organized as follows: Section 2 briefly introduces RPST and
provides an example of an SESE region that is not identified by existing RPST methods.
The nature of dominance and post-dominance relations, which are well known in control-
flow analysis (Aho et al., 2006; Gruhn and Laue, 2007; Cormen et al., 2009) are also presented.
Section 3 describes the proposed method and the software tool that incorporates
visualization of stepwise outcomes of the proposed method. Section 4 provides the
experimental results of the proposed method compared to the method of Polyvyanyy et al.
(2010). Section 5 gives the conclusions and suggests future research directions.

2. Backgrounds and preliminaries
2.1 Workflow graphs
Similar to existing RPST methods (Vanhatalo et al., 2009; Polyvyanyy et al., 2010),
process models in this paper are represented as workflow graphs of G ¼ (N, E, Start,
End), where N is a set of nodes, E is a set of edges, and Start and End are distinguished
nodes with no incoming or outgoing edges, respectively. Nodes, including activities and
gateways, are represented in the BPMN style (Figure 1). For each pair of nodes, there is
one edge at most. Gateways that act as a join and a split at the same time are allowed, each
to be split into a join succeeded by a split, called normalization in Polyvyanyy et al. (2010).
For any node n ∈ N, Adj(n) denotes the set of nodes adjacent to n. A workflow graph, with
the control types of its gateways ignored, is a type of control-flow graph. Figure 2 shows

ActivityStart End Split Join Join-and-Split

Figure 1.
Types of nodes and
their representations

6

32

1 2

3 5 11
12

8

18

20

21

30

22232427 2526

15

1710

28

31

9

29

14

16

4

7
13 19

Figure 2.
Example
workflow graph in
normalized form

614

BPMJ
26,2

an example of a workflow graph in normalized from, slightly modified from the one
introduced in Choi et al. (2015).

2.2 Triconnected components, canonical fragments and RPST
Tarjan and Valdes (1980) introduced a flow graph parsing method based on the triconnected
decomposition of a biconnected graph, where multiple edges are allowed for a pair of nodes.
Triconnected components are defined with edges, each associated with a pair of boundary
nodes, and are uniquely configured with undirected graphs (Hopcroft and Tarjan, 1973).
Di Battista and Tamassia (1990, 1996) introduced the data structure of the SPQR-tree to
represent the hierarchy of triconnected components. After decades, linear time implementation
to identify an SPQR tree was presented by Gutwenger and Mutzel (2001). Triconnected
components are classified into four types (Polyvyanyy et al., 2012): a trivial component of a
single edge; a polygon that is a maximal sequence of multiple components where the exit node
of the preceding component is the entry node of the succeeding component; a bond which is a
maximal set of multiple components with the same pair of boundary nodes; and a rigid which
is not a trivial, a polygon or a bond component.

Vanhatalo et al. (2009) proposed a workflow graph parsing technique introducing
the RPST, which requires a fairly complex post-processing of the triconnected
components (Polyvyanyy et al., 2010). The RPST of a workflow graph, G, is the
hierarchy of all non-overlapping canonical fragments of G, where a fragment is a
connected subgraph associated with two distinct entry and exit nodes. For a fragment F,
its entry has no incoming edge contained in F, or all its outgoing edges belong to F; and
its exit has no outgoing edge belonging to F, or all its incoming edges belong to F. All
other nodes, called interior to F, are connected only to nodes in F. Polyvyanyy et al.
(2010) proposed a simpler alternative to computing the RPST. Their step, called
normalization, split nodes first to force every node to have at most one incoming edge or
at most one outgoing edge. Then, the RPST of the original model is derived from the
SPQR-tree (Gutwenger and Mutzel 2001) of the resulting extended model, after
“omitting” additionally introduced components incurred by normalization. Figure 3
shows how their method works for an example process model (Figure 3(a)), which
is simplified from the one introduced in Polyvyanyy et al. (2010). Figure 3(b) is the
undirected version of Figure 3(a). Figure 3(c) shows the polygon, P1, with virtual

a
b

c

d

e

f

h

i

g j

B1
T1

P1

s u

v

w

x y z t
a

b

c

d

e

f

h

i

g j
s u

v

w

x y z t

r

(a) (b)

(c) (d) (e) (f)

a

g

j
s t

r

u

x y

z

l m

b

c

d

e

f

u

v

w

x

l

h

i
y z

m

B1T1

P1

a

b c d f h i

g j

e

Notes: (a) Example process model; (b) Undirected version of Figure 3(a); (c) Polygon P1;
(d) Rigid T1; (e) Bond B1; (f) RPST of (a)

Figure 3.
An example
summarizing

the RPST
method in

Polyvyanyy
et al. (2010)

615

An alternative
method for

RPST

edges l and m, respectively representing the rigid T1 in Figure 3(d) and the bond B1
in Figure 3(e). Nodes in bold represent the pair of boundary nodes for each triconnected
component (Figures 3(c)-(e)). The RPST of this example is shown in Figure 3(f).
Normalization step is not required for this example.

2.3 A counter example: an SESE region not found by existing RPST methods
The RPST of a workflow graph G is the hierarchy of all its canonical fragments, each
associated with two distinct entry and exit nodes. However, triconnected components are
identified from the undirected version of G, each associated with a pair of boundary nodes,
without discriminating the entry and the exit. Due to this definition gap, some canonical
fragments, i.e., SESE regions, are not identified by the existing RPST methods of Vanhatalo
et al. (2009) or Polyvyanyy et al. (2010). For example, according to their methods, two bonds,
B1 and B2, are found for the structure shown in Figure 4(a) utilizing its normalized structure
(Figure 4(b)) with trivial components of edges s1 → s2 and t1 → t2 omitted. However, only
one bond, B1, is found for the structure shown in Figure 4(c), which is already in normalized
form. By definition, the structure, B2, in Figure 4(c) is also a canonical fragment, with t as the
entry and s as the exit.

2.4 The dominator tree and the post-dominator tree of a control-flow graph
In a control-flow graph, node d dominates node n if and only if all paths from
Start to node n pass through node d; and node p post-dominates node n if and only
if all paths from node n to End pass through node p. Every node dominates and
post-dominates itself. The dominance and the post-dominance relations among nodes in a
control-flow graph are represented by a dominator tree and by a post-dominator tree,
with Start and End as the root, respectively. (Sreedhar et al., 1996; Cooper et al., 2001;
Aho et al., 2006):

Definition 1. (a) In the dominator tree, node n plus the set of its descendants (if any) is
called the inverse dominators of n, denoted by Dom−1(n); (b) in the
post-dominator tree, node n plus the set of its descendants (if any) is called
the inverse post-dominators of n, denoted by Pdom−1(n).

Figure 5 shows the dominator tree and the post-dominator tree of the workflow graph in
Figure 2 as an example. For instance, Dom−1(20) ¼ {20,…, 32} in Figure 5(a), and
Pdom−1(32) ¼ {20,…, 32} in Figure 5(b).

3. SESE regions by dominance and post-dominance relations
3.1 SESE regions defined with nodes

Definition 2. A SESE region SESE(s, t) in a normalized workflow graph G is a connected
subgraph spanned by boundary nodes of the entry s and the exit t plus its
interior nodes, which are dominated by s, post-dominated by t, and

s t

B1

B2

s1 t2s2 t1

B1

B2

s t

B1

B2

(a) (b) (c)

Figure 4.
Comparative
examples illustrating
an SESE region not
found by existing
RPST methods

616

BPMJ
26,2

connected only to nodes in SESE(s, t). An SESE(s, t) is canonical if it shares
any of its interior nodes with other canonical SESE regions only when they
are in a nesting relation.

Definition 3. A canonical SESE region in a normalized workflow graph G is one of
the following:

(1) a singleton of an activity node;

(2) a series is a maximal sequence of multiple SESE regions, each connected with a
unique other region via a single edge or a shared boundary node;

(3) a bond is a maximal set of multiple SESE regions or paths, each connected with
others only at the entry and at the exit, where each path contains zero or one SESE
region; and

(4) a rigid is none of the above.

Figure 6 illustrates the four types of canonical SESE regions, defined with nodes in a
normalized workflow graph G. Each singleton is an activity node bounded by itself and is
introduced to define SESE regions in self-referenced form. A series is comparable to but

(a)

(b)

4

32

1 2

3

12

10

5

6

9

20

30

21 22 23

24 25

26 27

14

15

18

31

28

13

11
29

17

16
8

7

19

29

21

22 23

25

1 2

3

12

7

10

4

11

18

16

1724

832

3130

20

28

9

2726

14

15

1913

6

5

Notes: (a) Dominator tree; (b) post-dominator tree

Figure 5.
Dominance and post-
dominance relations

for the workflow
graph of Figure 2

(c)(b)(a)

Notes : (a) A singleton; (b) a series; (c) a bond; (d) a rigid

(d)

SESE
region

SESE
region

SESE
region

SESE
region

SESE
region

SESE
region

Figure 6.
Four types of

SESE regions defined
with nodes

617

An alternative
method for

RPST

different from a polygon of triconnected components, defined with edges. A bond or a rigid
is bounded by gateways, and contains at least one interior node. An SESE region in this
paper is a canonical SESE region, if not specified otherwise.

Considering that the main purposes of identifying SESE regions are for better
comprehension and more efficient further analysis of process models, the proposed method
first focuses on bonds and rigids.

3.2 Bonds and rigids defined with nodes

Definition 4. For a pair of distinct gateways, s and t, in a normalized workflow graph G,
Rg(s, t), is defined as the connected subgraph spanned by s and t plus the set
of interior nodes n satisfying the following conditions:

(1) n ∈ Dom−1(s) ∩ Pdom−1(t);

(2) n is connected only to any other node in Rg(s, t);

(3) | Adj(s) ∩ Rg(s, t) | ⩾ 2 and | Adj(t) ∩ Rg(s, t) | ⩾ 2; and

(4) | Adj(s) ∩ Rg(s, t) | W | Adj(s) ∩ Rg(s, w) | or |Adj(t) ∩ Rg(s, t)| W |Adj(t) ∩ Rg(u, t)| for
any Rg(s, w) and Rg(u, t) nested in Rg(s, t).

Lemma 1. Rg(s, t) of Definition 4 is a bond or a rigid with entry s and exit t.

Proof. Condition (1) assures that s and t, respectively, act as the entry and the exit of Rg(s, t)
of Definition 4. Condition (2) assures that each node n is interior to Rg(s, t) of Definition 4.
Condition (3) is required for Rg(s, t) to be a bond or a rigid. Condition (4) assures that Rg(s, t)
of Definition 4 is not a series. If Rg(s, t) shares any of its interior nodes with Rg(q, r), with s
≠ q and t ≠ r, then that interior node is dominated by both s and q, and post-dominated by
both t and r, by definition. This implies that there exists a dominance relation between s and
q and a post-dominance relation between t and r. It is further implied that Rg(s, t) and Rg(q, r)
are in a nesting relation so as not to violate Condition (2). In a similar manner, Rg(s, t) is in a
nesting relation with any Rg(s, r) or Rg(q, t) if any of its interior nodes is shared with any of
those, respectively. Thus, Rg(s, t) of Definition 4 is a SESE region of a bond or a rigid, by
Definition 2 and Definition 3. ◼

Refinement of Rg(s, t) of Definition 4. Carriage return for any Rg(s, t) of Definition 4,
whether it is a bond or a rigid needs to be clarified. Additionally, as with triconnected
components, the entry-exit pair may be associated with more than one bond or rigid
(Hopcroft and Tarjan, 1973; Gutwenger and Mutzel, 2001). The following notions are used
for a bond, a rigid, or a series, associated with its entry and its exit:

Definition 5. An SESE(s, t) in a normalized workflow graph G, with s ≠ t, is denoted more
specifically as follows according to its type: B(s, t) for a bond, R(s, t) for a
rigid and S(s, t) for a series. For rigids or series nested in B(s, t), with the
same entry s and the same exit t, distinct subscript indices are used for each
type, e.g., Ri(s, t) or Si(s, t).

Given Rg(s, t) of Definition 4, any bond and/or rigid(s) sharing both the entry s and the exit t is
found using Lemma 2 below utilizing the subgraphs of Rg(s, t) defined as follows:

Definition 6. Each connected subgraph of Rg(s, t), denoted by subi(Rg(s, t)), is connected
with others only at the entry s and at the exit t.

Lemma 2. (Refinement of Rg(s, t)):

(1) When Rg(s, t) of Definition 4 has only a single subgraph of Definition 6, then Rg(s, t)
is a rigid, R(s, t).

618

BPMJ
26,2

(2) Otherwise, Rg(s, t) is a bond, B(s, t), and each of its subgraph subi(Rg(s, t)) of
Definition 6 is a rigid if it is not a series.

Proof: Each connected subgraph subi(Rg(s, t)) is of two types: A path containing zero or
one SESE region; or another SESE(s, t) nested in Rg(s, t). The former ones are not
contained in a rigid but in a bond. Any SESE(s, t) nested in Rg(s, t) is not a bond by
Definition 3: it is a series if it is a sequence of multiple SESE regions each connected
with unique other one via a single edge or a shared boundary node; otherwise, it is
a rigid which contains an interior gateway not contained in any bond or rigid nested
in Rg(s, t). ◼

Figure 7 illustrates Lemma 2. Rg(s1, j3) in Figure 7(a), found by Definition 4, has
three subgraphs connected only at the entry s1 and at the exit j3. The edge s1→ j3 is
one of those. The sequence of two nested bonds, B(s1, j1) and B(s2, j3), assumed to have
been previously identified, is a series. Thus, Rg(s1, j3) is a bond, B(s1, j3) nesting a
rigid of R1(s1, j3), with the entry s1 and the exit j3 shared. Note that R1(s1, j3), not
nesting any bond or rigid, contains interior gateways s3 and j4. Figure 7(b) shows
a cyclic structure Rg(h, e), dominated by the single loop-entry h and post-dominated by
the single loop-exit e. It has two subgraphs of Definition 6, each connected only at the
entry h and at the exit e. Thus, it is a bond, B(h, e), and the subgraph of Rg(h, e)\{3} is a
rigid of R1(h, e):

Theorem 1. For a normalized workflow graph G, each subgraph corresponding to a
canonical fragment of a bond or a rigid is identified by Lemma 1 and
Lemma 2.

Proof: A canonical fragment of a bond or a rigid is bounded by a pair of gateways. For a
normalized workflow graph G, any bond or rigid with distinct gateways of entry s and exit t,
is found by Lemma 1. Any rigid Ri(s, t) nested in a bond B(s, t) is found by Lemma 2. ◼

3.3 The algorithm and its illustration
Algorithm 1 summarizes the proposed method that identifies the SESE regions defined with
nodes. The proposed method first identifies bonds and rigids, bounded by gateways, from
the innermost ones to the outermost ones. For that purpose, the proposed method utilizes
two ordered sets of gateways, each respectively sorted in the bottom-up order of the
dominator tree and in the bottom-up order of the post-dominator tree, for a normalized
workflow graph G. Any gateway that dominates or post-dominates only itself is deleted
from each of those two sets, respectively. After all bonds and rigids are identified, each
series nested in a bond or a rigid is identified with a simple depth-first search variation, as

s1

B(s1, j3)

R1(s1, j3)

B(s1, j1) B(s2, j3)

j4

j3

4s3

j1

2

s2

1

3

h

e

1

s1 j1 3

2

R1(h, e)

B(h, e)

(b)(a)

Figure 7.
Examples of nested
rigids sharing the

entry and exit with
the nesting bond

619

An alternative
method for

RPST

described in Appendix. The workflow graph G, with distinguished Start and End, is a series
as itself.

As shown in Figure 4, a bond B(t, s) nested in another bond B(s, t), with their entry and exit
interchanged, is not identified by the existing RPST methods of Vanhatalo et al. (2009) or
Polyvyanyy et al. (2010). Such a phenomenon happens for a cyclic structure when: all its nodes
are dominated by a single loop-entry s and post-dominated by a single loop-exit t; and it has
multiple paths from t to s, with neither t nor s revisited, which are connected only at t and at s. The
proposedmethod identifies such nested bond structures, each prior to its nesting bond, simply by
considering all the entry-exit pairs of gateways in the order as described in Algorithm 1.

Table I summarizes the steps identifying the bonds and rigids, and then series nested in
them, for the workflow graph in Figure 2. Two bonds and three rigids are found represented

Entry s Exit t Type of Rg(s, t) Elements in Rg(s, t) Series in Rg(s, t)

22 32 R(22, 32) {19,…, 29, 32} S(28, 29)
20 32 B(20, 32) {20, 21, 30, 31, R(22, 32)} S(30, 31); S(21, 32)
13 18 R(13, 18) {13,…, 18} –
2 13 R(2, 13) {2,…, 13} S(9, 11)
1 19 B(1, 19) {1, 19, R(2, 13), R(13, 18), B(20, 32)} S(2, 18)
Start End – – S(Start, end)

Table I.
Summary of
steps identifying
SESE regions
for the workflow
graph in Figure 2

620

BPMJ
26,2

in the third column in Table I. Neither of those two bonds nests other rigids sharing each
corresponding entry-exit gateways. The fourth column of Table I shows the elements of
activities, bonds, or rigids, contained in each bond or rigid. The last column shows the
series nested in each bond or rigid. For example, R(22, 32) ¼ {22,…, 29, 32} and it nests
S(28, 29) ¼ {28, 29}. Elements contained in other series are as follows: S(30, 31) ¼ {30, 31},
S(21, 32) ¼ {21, R(22, 32)}, S(9, 11) ¼ {9, 11}, and S(2, 18) ¼ {R(2, 13), R(13, 18)} in Table I.
The workflow graph G itself is a series of S(Start, End) ¼ {Start, B(1, 19), End}.

Figure 8 shows the resulting RPST defined with nodes for the workflow graph in
Figure 2. Bonds and rigids are represented in solid boxes shaded in blue, and series are
represented by dashed boxes. Leaf nodes of the RPST in Figure 8 are singletons of
activities or gateways. In the RPST defined with nodes, boundary gateways shared by
multiple SESE regions are redundantly contained in each of those, only when they are not
in a nesting relation. For instance, gateway 13 is contained in both R(2, 13) and R(13, 18),
whereas gateways 18 and 32 are contained only in each bottommost SESE region,
R(13, 18) and R(22, 32), respectively.

3.4 The software tool incorporating visualization of stepwise outcomes
The proposed method was implemented in Microsoft C# as the SESE region identification
module in the graph-based process analysis tool gProAnalyzer (Choi et al., 2015). The
execution file of this tool, its user guide, and sample input data files of 604 SAP reference
models are available for download at GitHub[1]. Figure 9 shows the selected screenshots of
the visualizations provided by the tool for the example workflow graph in Figure 2. The tool
provides six types of visualizations corresponding to each stepwise outcome of the proposed
method: (1) input model in its original representation (e.g. an EPC model); (2) input model
transformed into a normalized workflow graph; (3) the dominator tree (Figures 9(a)); (4) the
post-dominator tree (Figures 9(b)); (5) the resulting RPST (Figure 9(c)); and (6) the extended
workflow graph model with SESE regions marked (Figure 9(d)). For better visualization of
types (3) to (6), they are represented with the extended workflow graph where each entry (in
yellow-green) and each exit (in pink) of a SESE region is split to have a single external edge
to that SESE region.

4. Experimental results
The proposed method, implemented as a module in the gProAnalyzer (Choi et al., 2015) was
tested with SAP reference models (Curran et al., 1997). For comparison, the method in

6 8

28

23 24 25 26 27

10 13

29

1

2 3 14 1615

20

4 5 21 R(22, 32)

32

R(2, 13) R(13, 18)

B(20, 32)

B(1, 19)Start End

22

S(Start, End)

S(2, 18)

S(30, 31)

30 31

S(21, 32)

S(28, 29)

17 18

9 11

S(9, 11)

19

7 12 13 Figure 8.
The RPST defined
with nodes for the
workflow graph in

Figure 2

621

An alternative
method for

RPST

Polyvyanyy et al. (2010) was also tested utilizing its open-source implementation in Java, as
a module in the jBPT (business process technologies for Java) version 0.2.429 (Polyvyanyy
and Weidlich, 2013). Both methods were tested with a desktop PC with a 3.6 GHz Intel Core
i7 and 16 GB RAM.

S(START. END)

(a)

Notes: (a) The dominator tree; (b) the post-dominator tree; (c) the RPST; (d) the extended
workflow graph with SESE regions marked

(b)
S(START. END)

B(1. 19)

S(2. 18)

R(2. 13_1)

R(13_2. 18)

S(9. 11)

B(20. 32_1)

S(30. 31)
S(21. 32_2)

R(22. 32_2)

S(28. 29)

END

19

18

14 17

12

2

1

7

5

3

20

30

25 27

2624

21

23

22

29

28

(c) S(START, END)

START B(1, 19)

B(20, 32_1)

S(30, 31) S(21, 32_2) 20 32_1

30

22 23 24 25 26 27

28 29

32_2

14 15 16 17 18 13_2 2 3 4 5 6

9 11

7 8 10 12 13_131 21 R(22, 32_2)

S(28, 29)

R(13_2, 18) R(2, 13_1)

S(9, 11)

S(2, 18)

END

1 19

32_2

32_1 START

6

4 8

10 11

9

1613_2

13_1 15

B(20.32_1)

S(30.31)

S(28.29)

S(21.32_2)

R(22.32_2)

START

1

2

3 4

6 7

8 9

11 14

17

15 16 18

19

20

32_13021

22

23

32_224 26

25 27

28

29

(d)
S(START. END)

B(1. 19)

S(2. 18)
R(13_2. 18)

R(2. 13_1)

S(9. 11)

B(20. 32_1)

S(21. 32_2)

R(22. 32_2)

S(28. 29)

S(30. 31)

20

21 22 23

24 25

26

27 28

29

32_2

30

31

32_1

17

14

16

13_2

2

3

1START

5

7

9 11

12

13_1

4

6 8

10

15

18 19 END

31

END

5 10 12

13_1

13_2

B(1.19)

S(2.18)
R(2.13_1)

R(13_2.18)S(9.11)

Figure 9.
Selected screenshots
of the SESE region
module of the tool
gProAnalyzer

622

BPMJ
26,2

First, 604 EPC models were transformed into normalized workflow graphs as follows
correcting some syntactic errors:

• Models with multiple start events and/or multiple end events were transformed
to have a single start and a single end, as in Polyvyanyy et al. (2009). This also fixed
74 models where each of them was composed of multiple disconnected subgraphs.

• Regardless of node types in EPC models, nodes with single incoming and single
outgoing edges were converted into activities; and nodes with multiple incoming
(or outgoing) edges were converted into gateways.

• Each gateway that acts as a join and a split at the same time is split into a join
succeeded by a split.

Figure 10 shows the number of bonds and the number of rigids identified by the proposed
method, plotted by the number of nodes for each model. The following are observed:

• The number of rigids was rather restricted. More specifically, zero for 406 models,
one for 178 models, and a maximum of two for 20 models, and its relation to the
number of nodes is not apparent.

• The number of bonds tended to increase when the number of nodes increases.

• All bonds and rigids found by the method in Polyvyanyy et al. (2010) were identified
by the proposed method.

• Ten cyclic structures each dominated by its single loop-entry and post-dominated
by its single loop-exit were found, all as bonds. From one of those ten bonds,
another bond structure nested in that bond, with their entry and exit
interchanged, was identified by the proposed method but not by the method of
Polyvyanyy et al. (2010).

Figure 11 shows the total computation time of both methods, averaged after 100 runs for
each model, plotted by the number of nodes for each model. The following are observed:

• The computation times did not significantly increase with the number of nodes in the
models, but those fit better with a quadratic increase rather than a linear increase for
both methods.

• Computation time was not our main concern for comparison, which would require a
more elaborate experiment; however, the proposed method required less computation
time for each of the 604 models (Table II).

C
ou

nt

0

5

10

15

20

25

30

0 20

Bonds

Rigids

40
Number of nodes

60 80 100 120 140

Figure 10.
Number of bonds and

rigids identified by
the proposed method

623

An alternative
method for

RPST

5. Conclusions
This paper introduced an alternative method for generating a complete refined process
structure tree (RPST) for arbitrary business process models. It was also shown that an
RPST computed by the existing methods was not complete. The method proposed here
utilizes relatively simple techniques of dominance and post-dominance relations among
nodes, whereas the existing methods are based on the triconnected components of edges
from the undirected version of a process model.

The proposed method first identifies all SESE regions of bonds and rigids, from the
innermost ones to the outermost ones, utilizing dominance and post-dominance relations.
Those structures are crucial for better comprehension and more efficient analysis of a
process model. Then, any SESE region of a series nested in each bond or rigid is identified
utilizing a depth-first search variation. The specific properties for each type of SESE
regions, the two-phase algorithms aligned with those properties, their completeness proofs,
a software tool incorporating visualization of the stepwise outcomes of the process, and the
experimental results of the proposed method were introduced. Experiments with 604 SAP
reference models demonstrated that the existing RPST methods failed to identify a bond
structure nested in another bond with their entry and exit interchanged. However, the
method proposed here completely identified all types of SESE regions, defined with nodes,
in less computation time than with the old method.

In this paper, the properties of SESE regions are specified in more comprehensible ways
utilizing simple techniques. Thus, this paper facilitates a deeper understanding of SESE
regions, especially for business analysts, than relying on the resulting RPST. The
implementation of each of two-phase algorithms is straightforward, and either of those can
be further integrated with additional modules for any specific purpose. In sum, the findings
here should allow further process analysis studies utilizing SESE regions to be more
effectively pursued.

Minimum Average Maximum

No. of bonds 0 3.60 30
No. of rigids 0 0.36 2
No. of bonds and rigids 0 3.96 32
Depth of RPST (bonds and rigids only) 0 2.07 9
Computation time (in milliseconds) 0.016 0.870 19.511

Table II.
Summary of the
empirical analysis
results of the
proposed method

Polyvyanyy et al. (2010)
y=0.00146x2+ 0.09788x + 0.17947

R2=0.97814

Proposed method
y=0.00112x2–0.00345x + 0.06854

R2=0.98169
0

10

20

30

40

0 20 40 60 80 100 120 140

C
om

pu
ta

tio
n

tim
e

(in
 m

ill
is

ec
on

ds
)

Number of nodes

Figure 11.
Computation times of
both methods

624

BPMJ
26,2

Note

1. https://github.com/InjeBPM/Single-Entry-Single-Exit-Identification

References

Aho, A.V., Lam, M.S., Sethi, R. and Ullman, J.D. (2006), Compilers: Principles, Techniques, and Tools,
2nd ed., Addison-Wesley Longman Publishing, Boston, MA.

Augusto, A., Conforti, R., Dumas, M., La Rosa, M. and Bruno, G. (2018), “Automated discovery of
structured process models from event logs: the discover-and-structure approach”, Data &
Knowledge Engineering, Vol. 117, pp. 373-392, doi: 10.1016/j.datak.2018.04.007.

Choi, Y., Kongsuwan, P., Min, C. and Zhao, J.L. (2015), “Stepwise structural verification of cyclic
workflow models with acyclic decomposition and reduction of loops”, Data & Knowledge
Engineering, Vol. 95, pp. 39-65, doi: 10.1016/j.datak.2014.11.003.

Cooper, K., Harvey, T. and Kennedy, K. (2001), “A simple, fast dominance algorithm”, Software:
Practice and Experience, Vol. 4 Nos 1-10, pp. 1-8.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009), Introduction to Algorithms, 3rd ed., MIT Press,
Cambridge, MA.

Curran, T., Keller, G. and Ladd, A. (1997), SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model, Prentice Hall, Upper Saddle River.

Di Battista, G. and Tamassia, R. (1990), “On-line graph algorithms with SPQR-trees”, in Paterson, M.S.
(Ed.), Automata, Languages and Programming. ICALP 1990. Lecture Notes in Computer Science,
Vol. 443, Springer, Berlin, Heidelberg.

Di Battista, G. and Tamassia, R. (1996), “On-line maintenance of triconnected components with
SPQR-trees”, Algorithmica, Vol. 15 No. 4, pp. 302-318, doi: 10.1007/BF01961541.

Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H. and Wolf, K. (2011), “Analysis on demand:
instantaneous soundness checking of industrial business process models”, Data & Knowledge
Engineering, Vol. 70, pp. 448-466, doi: 10.1016/j.datak.2011.01.004.

Fan, J., Wang, J., An, W., Cao, B. and Dong, T. (2017), “Detecting difference between process models based
on the refined process structure tree”,Mobile Information Systems, Vol. 2017, pp. 1-17, doi: 10.1155/
2017/6389567.

Gruhn, V. and Laue, R. (2007), “What business process modelers can learn from programmers”, Science
of Computer Programming, Vol. 65 No. 1, pp. 4-13, doi: 10.1016/j.scico.2006.08.003.

Gutwenger, C. and Mutzel, P. (2001), “A linear time implementation of SPQR-trees”, in Marks, J. (Ed),
Graph Drawing: 8th International Symposium, GD 2000 Colonial Williamsburg, VA, USA,
September 20-23, Springer, Berlin and Heidelberg, pp. 77-90.

Hopcroft, J.E. and Tarjan, R.E. (1973), “Dividing a graph into triconnected components”, SIAM Journal
on Computing, Vol. 2 No. 3, pp. 135-158, doi: 10.1137/0202012.

Khlif, W., Ben-Abdallah, H. and Ben Ayed, N.E. (2017), “A methodology for the semantic and
structural restructuring of BPMN models”, Business Process Management Journal, Vol. 23 No. 1,
pp. 16-46, doi: 10.1108/BPMJ-12-2015-0186.

Klinkmüller, C. and Weber, I. (2017), “Analyzing control flow information to improve the
effectiveness of process model matching techniques”, Decision Support Systems, Vol. 100,
pp. 6-14, doi: 10.1016/j.dss.2017.06.002.

La Rosa, M., Dumas, M., Ekanayake, C.C., García-Bañuelos, L., Recker, J. and Ter Hofstede, A.H.M. (2015),
“Detecting approximate clones in business process model repositories”, Information Systems,
Vol. 49, pp. 102-125, doi: 10.1016/j.is.2014.11.010.

Leopold, H., Mendling, J. and Polyvyanyy, A. (2014), “Supporting process model validation through
natural language generation”, IEEE Transactions on Software Engineering, Vol. 40 No. 8,
pp. 818-840, doi: 10.1109/TSE.2014.2327044.

625

An alternative
method for

RPST

https://github.com/InjeBPM/Single-Entry-Single-Exit-Identification

Polyvyanyy, A., García-Bañuelos, L. and Dumas, M. (2012), “Structuring acyclic process models”,
Information Systems, Vol. 37 No. 6, pp. 518-538, doi: 10.1016/j.is.2011.10.005.

Polyvyanyy, A., Smirnov, S. and Weske, M. (2009), “On application of structural decomposition for
process model abstraction”, 2nd International Conference on Business Process and Services
Computing, pp. 110-122.

Polyvyanyy, A., Vanhatalo, J. and Völzer, H. (2010), “Simplified computation and generalization of the
refined process structure tree”, Web Serv Form Methods 7th Int Work WS-FM 2010, Hoboken,
NJ, Revis Sel Pap 6551 LNCS:25–41, September 16-17, doi:10.1007/978-3-642-19589-1_2.

Polyvyanyy, A. and Weidlich, M. (2013), “Towards a compendium of process technologies the jBPT
library for process model analysis”, Proceedings of the Forum of the 25th International
Conference on Advanced Information Systems Engineering (CAiSE Forum), pp. 106-113.

Sreedhar, V.C., Gao, G.R. and Lee, Y.-F. (1996), “Identifying loops using DJ graphs”,ACMTransactions on
Programming Languages and Systems, Vol. 18 No. 6, pp. 649-658, doi: 10.1145/236114.236115.

Tarjan, R. and Valdes, J. (1980), “Prime subprogram parsing of a program”, Proceedings of the 7th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language, pp. 95-105,
doi: 10.1145/567446.567456.

Vanhatalo, J., Völzer, H. and Koehler, J. (2009), “The refined process structure tree”, Data Knowl Eng,
Vol. 68 No. 9, pp. 793-818, doi: 10.1016/j.datak.2009.02.015.

Vanhatalo, J., Völzer, H. and Leymann, F. (2007), “Faster and more focused control-flow analysis for
business process models through SESE decomposition”, Service-Oriented Computing – ICSOC
2007: Fifth International Conference, Proceedings, Vienna, September 17-20, pp. 43-55.

Wang, J., Cao, B., Fan, J. and Dong, T. (2017), “FB-Diff: a feature based difference detection
algorithm for process models”, 2017 International Conference on Web Services, pp. 604-611,
doi: 10.1109/ICWS.2017.71.

Weidlich, M., Polyvyanyy, A., Mendling, J. and Weske, M. (2010), “Efficient computation of causal
behavioural profiles using structural decomposition”, International Conference on Application
and Theory of Petri Nets and Concurrency, pp. 63-83.

Weidlich, M., Polyvyanyy, A., Mendling, J. and Weske, M. (2011), “Causal behavioural profiles – efficient
computation, applications, and evaluation”, Fundamenta Informaticae, Vol. 113 Nos 3-4, pp. 399-435.

626

BPMJ
26,2

Appendix. Identification of series nested in a bond or a rigid
Each boundary gateway of any bond or rigid could be split to have a single external edge to that
bond or rigid. This helps better visualization of models and further simplifies identifying series
structures. Figure A1 shows the workflow graph extended from the one in Figure 2, where double-
bordered gateways are those split to let each bond or rigid have a single external edge at its entry and
at its exit. Each of those gateways is labeled the same as the original gateway but with a distinct
subscript. Each bond or rigid, as shown in Table I is represented in shaded rectangles. If reduced, each
of them is represented in the form of an activity, i.e., with a single incoming edge and a single outgoing
edge, in the reduced model. Any series nested in a bond or a rigid is found by a simple depth-first
search, with the traversal of any directly nested bond or rigid is limited only to its entry, as a maximal
sequence of multiple activities or directly nested bonds or rigids.

Algorithm 2 demonstrates the steps for identifying any series nested in a bond or a rigid.
Figure A2, as an example, shows the depth-first search tree for each bond or rigid in Figure A1. Shaded
gateways represent the entry of any directly nested bond or rigid which is traversed only for that
entry. Each series found by Algorithm 2 is represented as a dashed box in blue, which returns the
whole structure of the directly nested bond or rigid corresponding to each shaded entry.

Note that existing RPST methods may conclude the incoming edge and the outgoing edge of an
activity node which succeeds and precedes two distinct gateways (e.g. nodes 3, 8, 15, 17 or 24 in
Figures 2 and A1) also as a polygon. Neither visualization nor analysis is enhanced by such polygons;
they just make the RPST more complex. Series structures comparable to such polygons are excluded in
the proposed method.

19

Notes: (a) R(19, 281); (b) B(16, 282); (c) R(102, 151); (d) R(2, 101); (e) B(1, 152)

20

21

22

23

24

25

26

281

16

17

27

282

18

19

102

11

12

151

13

14

2

3

5

7

9

101

6

4

8

1

2

102

152

16
Figure A2.

Series structures
found from the depth-

first search tree of
each bond or rigid in

Figure A1

6

322

1 2
3 5 11 131

8

18

20

21

30

22232427 2526

15

1710

28

31

9

29

14

16
19

321

13212

4

7

Figure A1.
Workflow graph
extended from

Figure 2 marked with
bonds and rigids, each
having single external
edge at the entry and

at the exit

627

An alternative
method for

RPST

About the authors
Dr Yongsun Choi is full Professor in the Department of Industrial and Management Engineering at Inje
University, Korea. He holds PhD and MS Degrees in Industrial Engineering from Korea Advanced
Institute of Science and Technology; and BS Degree in Industrial Engineering from Seoul National
University, Korea. His research interests include process modeling and analysis, process model
generation, decision support systems, ontologies, and information extraction. He has publications in
Data & Knowledge Engineering, International Journal of Technology Management, Information Systems
Frontier, International Journal of Web Services Research, Computers and Operations Research,
International Journal of Advanced Manufacturing Technology, etc. Dr Yongsun Choi is the corresponding
author and can be contacted at: yschoi@inje.edu

628

BPMJ
26,2

N. Long Ha is PhD Candidate in the Department of Information and Communication Systems at
Inje University, Korea. He holds MS Degree in Industrial and Management Engineering from
Inje University, Korea; and BS Degree in Economics Information Systems from Hue University,
Vietnam. His research interests include business process management, process modeling and analysis,
and information systems.

Dr Pauline Kongsuwan is Professor in the Department of Computer Engineering at Rajamangala
University of Technology Thanyaburi, Thailand. She holds PhD and MS Degrees in Systems and
Management Engineering from Inje University, Korea; and BS Degree in Computer Engineering from
Kasetsart University, Thailand. Her research interests include process modeling and analysis,
information system, software engineering, quality engineering and network security. She has
publications in the European Journal of Operational Research, Data & Knowledge Engineering and
Mathematical Problems in Engineering.

Dr Kwan Hee Han is full Professor in the Department of Industrial and Systems Engineering at the
Gyeongsang National University, Korea. He received PhD Degree in Industrial Engineering from
KAIST, Korea and has authored or co-authored numerous papers published in international journals
and conference proceedings. His current research interests include process mining, simulation
modeling and smart factory.

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

629

An alternative
method for

RPST

	An alternative method for refined process structure trees (RPST)
	Appendix. Identification of series nested in a bond or a rigid

