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A B S T R A C T   

The quantisation of electronic energy into subbands in low-dimensional structures originates 
many interesting physical effects, one of which is the electrophonon resonance effect. In this 
work, we investigate the electrophonon resonance by theoretically calculating the optical ab-
sorption power in n − i − p − i superlattices (SLs) subjected to a high frequency electromagnetic 
wave. The absorption power is calculated up to the first-order nonlinear term using the projection 
operator technique taking account of the effect of electron – optical phonon interaction. Nu-
merical results are obtained and discussed for the GaAs:Si/GaAs:Be SL. The linear and nonlinear 
optically detected electrophonon resonance (ODEPR) peaks are observed in the absorbance. The 
full width at half maximum (FWHM) of ODEPR peaks increases with increasing the doping 
concentration as well as temperature. In particular, the results show that the two-photon ab-
sorption is of great importance and should be considered in nonlinear optics. This investigation 
provides a theoretical basis for potential applications of n − i − p − i SLs in optoelectronic 
devices.   

1. Introduction 

Quasi-two-dimensional semiconductor superlattices (SLs) are the artificial structures in which charged carriers are confined in one 
direction by a superlattice potential with the period being longer than the lattice constant and shorter than the mean free path of 
electrons. This superlattice potential was first proposed by Esaki and Tsu [1] by alternatively arranging, in a periodic sequence, ul-
trathin layers of semiconductors of different types or by alternatively doping impurities into a intrinsic semiconductor, or by a 
combination of alternating composition and alternating doping. The first and the second technique give us, respectively, the so-called 
compositional and n − i − p − i (or doping) superlattice. While the former requires a close lattice match of the component materials, the 
relatively small amount of doping in the latter results to only a minor distortion of the lattice of the host material. Practically, the SL 
potential and SL period are tuneable by changing the compositions or the doping concentration. In addition, the splitting of the valence 
and conduction bands into subbands (minibands) in SLs makes their energy dispersion completely different in comparison with the 
doped monolayer materials [2–5]. It is also the origin of many interesting physical properties in SLs [6–8], one of them is the 
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electrophonon resonance effect. In addition, it was shown that n − i − p − i superlattices exhibit very unusual nonlinear optical 
properties [6] and their optical properties are expected to be fairly different from those in monolayer 2D materials [9–18]. 

Electrophonon resonance effect occurs in a low-dimensional electron system when electrons move between energy subbands by 
absorbing/emitting optical phonons whose energy is equal to the energy difference of the two subbands [19–22]. When an additional 
electromagnetic wave (EMW) propagates in the system, we can observe the so-called optically detected electrophonon resonance 
(ODEPR) effect when electron transitions via absorbing and/or emitting phonons and photons satisfy the selection rules ℏω =
ΔEsubbands ± ℏωoph, where ℏω, ℏωoph, and ΔEsubbands are, respectively, the photon energy, the optical phonon energy, and the energy 
difference between two electronic subbands. Based on the absorption spectrum, many applications could be proposed such as probing 
the carrier effective mass, the phonon energy, the distance between energy subbands, and so on. Up to date, there have been numerous 
researches dealing with the optical transport properties as well as electrophonon resonance in low-dimensional structures [23–26]. To 
our knowledge, the optical transport properties in n − i − p − i SLs, taking account of the carrier – phonon interaction still remain 
problems to study. In SLs the interesting quantisation of electronic energy into subbands which can be adjusted by the SL’s parameters, 
is expected to result in fascinating behaviours of the optical tranport. In this work, we theoretically investigate the optical absorption in 
a GaAs based n − i − p − i semiconductor SL stimulated by a high frequency EMW. Within this work, we only consider high temperature 
range when the electron – optical phonon interaction is dominant and taken into account. We derive an analytical expression for the 
absorption power (AP) including linear and nonlinear terms. The analytical result is numerically evaluated and analysed for the GaAs: 
Si/GaAs:Be SL. The dependence of the absorption characteristics on the external fields, temperature of the system, and the doping 
concentration is shown clearly. The paper is structured as follows. In the next section (Sec. 2), we present briefly the theoretical model 
and the derivation of the AP. Numerical results and discussion are given in Sec. 3. Finally, important conclusions are given in Sec. 4. 

2. Theoretical model and analytical results 

We consider a n − i − p − i superlattice (SL) in which the intrinsic, n-doped, and p-doped semiconductor layers are grown alter-
natively and periodically in the z-direction by the order shown in Fig. 1. Charged carriers in the structure are then free in the (x, y) 
plane and their motion in the z-direction is governed by the superlattice potential of period d. In a simple model suggested by K. Ploog 
and G. H. Dohler [27], the SL can be considered as a multiple-quantum well structure in which the confinement potential in each 
individual well is idealised to be parabolic. In most cases of interest it is justified to neglect the interaction between neighbouring 
potential wells. Then, the one-particle wave function and corresponding energy of an electron in an individual potential well are, 
respectively, given by [27]. 

Ψ( r→) ≡ |α〉 =
1
̅̅̅̅̅̅̅̅̅
LxLy

√ e r→⊥ k
→

⊥φnα (z), (1)  

Enα (k⊥) ≡ Eα =
ℏ2( k

→α
⊥)

2

2m⋆ +

(

nα +
1
2

)

ωp, (2)  

where k
→

⊥ = (kx, ky) is the electron wave vector in the (x, y) plane; Lx and Ly are the normalisation length in the x- and y-direction, 

respectively; φnα (z) (nα = 0, 1, 2, …) is the eigenfunction of an electron in a potential well; m⋆ is the electron effective mass; ωp =

(
4πe2nD

εm⋆

)1/2 

is the plasma frequency characterising for the superlattice confinement potential with e being the electronic charge; nD the 

doping concentration and ε the dielectric constant. 
When an intense EMW (optical field) of amplitude E0 and frequency ω propagates in the SL, the optical transport property in the 

system can be investigated via the AP. The total AP, P(ω), is determined by the direct relation with the optical conductivity, σ(ω), as 
[28,29]. 

Fig. 1. (Color online) An illustration of a n − i − p − i SL in which a sample of intrinsic semiconductor (i) is doped alternatively and periodically by 
negative charged (n) and positive charged (p) impurities in one direction (the growth direction). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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P(ω) = E2
0

2
ℛe{σ(ω)}, (3)  

where ”ℛe” denotes ”the real part of”. In this calculation, we consider the optical conductivity up to two-photon absorption processes. 
The optical conductivity can be deduced using the technique introduced by Lee et al. [30] from the ensemble average of the current 
density operator [31]. 

〈Ji〉ens =
∑3

j=1 σij(ω)Ej(ω) +
∑3

j,k=1
σijk(ω1,ω2)Ej(ω1)Ek(ω2)

=

[
∑3

j=1 σij(ω) +
∑3

j,k=1
σijk(ω1,ω2)Ek(ω2)

]

Ej(ω),
(4)  

where Ji is the ith current component, i, j, k ≡ x, y, z. The first and the second term in the square bracket of Eq. (4) are referred, 
respectively, as the linear and the lowest-order nonlinear conductivity tensor where the nonlinear one includes the processes of the 
absorption of two photons with frequencies ω1 and ω2. In this investigation, we consider only one EMW of frequency ω. Therefore the 
two absorbed photons have the same frequencies, i. e. ω1 = ω2 = ω, followed by the expression for the total optical conductivity 
deduced from Eq. (4) 

σ(ω) = σij(ω) +
∑3

k=1
σijk(ω)Ek(ω). (5) 

Assuming that the electromagnetic wave polarises in the z-direction, i.e. Ez(ω) = E0eiωt, the AP delivered to the system of electrons 
interacting with phonons in the SL is then given by 

P(ω) =
E2

0

2
ℛe{σzz(ω)} +

E2
0

2
ℛe{σzzz(ω)Ez(ω)}

≡ P(0)(ω) + P(1)(ω),
(6)  

where we have set P(0)(ω) = (E2
0 /2)ℛe{σzz(ω)} and P(1)(ω) = (E2

0 /2) ℛe{σzzz(ω)Ez(ω)} which are referred as the linear and nonlinear 
term of the total AP, respectively. To obtain the explicit expression of the AP, one need to calculate the conductivities σzz(ω) and σzzz(ω) 
which are presented as follows for the case of electron – optical phonon interaction. 

2.1. The linear conductivity 

Utilizing the general expression for the conductivity presented by Lee et al. [30] and Kang el al. [31], the linear conductivity in the 
SL is given by 

Re{σzz(ω)} = e
∑

α,β
(zα,β)(jα,β

z )
(fβ − fα)Bα,β

0 (ω)
[ℏω − Eβ,α]

2
+ [Bα,β

0 (ω)]2
. (7)  

Here, Eβ,α = Eβ − Eα; Eα and Eβ is the energy of the electron in the initial and final state, respectively; fα is the Fermi-Dirac distribution 
function of electron with energy Eα; zα,β, jα,βz , and Bα,β

0 (ω) [30,31] are the component of the electron position vector, the matrix element 
of the current operator, and the linewidth function, respectively, which are calculated as 

zα,β =
ℓz
̅̅̅
2

√
( ̅̅̅̅̅̅̅̅̅

nα+1
√

δnβ ,nα+1 +
̅̅̅̅̅
nα

√
δnβ ,nα − 1

)
δkα

⊥
,kβ
⊥

; ℓz = ℏ1/2(m⋆ωp)
− 1/2

, (8)  

jα,β
z =

⎧
⎪⎨

⎪⎩

(
eℏnβ

m⋆Lz

)1/2[
(− 1)nα+nβ − 1

nα + nβ
+
(− 1)nα − nβ − 1

nα − nβ

]

δkα
⊥
,kβ
⊥

, nβ ∕= nα,

0, nβ = nα,

Bα,β
0 (ω) =

π
(fβ − fα)

∑

q,ν
|Cβν(q)|2

{[(
1 + Nq)fα(1 − fν) − Nqfν(1 − fα)

]
δ(Y −

1 )

+
[
Nqfα(1 − fν) − (1 + Nq)fν(1 − fα)

]
δ(Y+

1 )
}

+
π

(fβ − fα)

∑

q,ν
|Cαν(q)|2

{[(
1 + Nq)fν(1 − fβ) − Nqfβ(1 − fν)

]
δ(Y −

2 )

+
[
Nqfν(1 − fβ) − (1 + Nq)fβ(1 − fν)

]
δ(Y+

2 )
}
,

(9)  

where δ is the delta function, Nq is the Plank distribution for a phonon in the state |q〉, and 

Y±
1 = ℏω − Eν,α ± ℏωq, Y±

2 = ℏω − Eβ,ν ± ℏωq. (10) 
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The physical interpretation is clear. The first term in Eq. (9) represents the transition of an electron from state |α〉 to state |ν〉 with a 
phonon emission. The rest terms can be explained in a similar manner. The electron – phonon interaction matrix element Cαν(q) is 
given by [32,33]. 

|Cαν(q)|2 = |V(q)|2|Inα ,nν (qz)|
2δkα

⊥
,kν
⊥
+q⊥ , (11)  

where Inα ,nν (qz) is the form factor or the overlap integral given by 

Inα ,nν (±qz) =
∑s0

j=1

∫ d

0
exp(±iqzd)φnα (z − jd)φnν (z − jd)dz, (12)  

with s0 being the number of periods of the SL and qz the wave number of phonon in the z-direction. The real and imaginary parts of In, 

n′(qz) are demonstrated in Fig. 2 for several values of quantum numbers n and n′. The electron – phonon interacting potential, Vq, for 
polar optical phonon with energy ℏω0 has the form 

|V(q)|2 =
Θ

Ωq2, (13)  

where Θ = 2πe2ℏω0(χ− 1
∞ − χ− 1

0 )/ϵ0; ϵ0 is the permittivity of free space; χ∞ and χ0 are, respectively, the high-frequency and static 
dielectric constants; and Ω is the volume of the material. 

To calculate explicitly Re{σzz(ω)}, we need to calculate Bα,β
0 (ω) given by Eq. (9) by transforming the summations over q and |ν〉 into 

integrals. After some straight-forward manipulation, we have 

Bα,β
0 (ω) =

m⋆Θ
8ℏ2π2(fβ − fα)

∑

nν

Anβ ,nν

×

{
k1(− )

|k1(− )|(kβ
⊥ − k1(− ))

[(
1 + Nq)fα(1 − fnν ,k1(− )

) − Nqfnν ,k1(− )
(1 − fα)

]

+
k1(+)

|k1(+)|(kβ
⊥ − k1(+))

[
Nqfα(1 − fnν ,k1(+)

) − (1 + Nq)fnν ,k1(+)
(1 − fα)

]
}

+
m⋆Θ

8ℏ2π2(fβ − fα)

∑

nν

Anα ,nν

×

{
k2(− )

|k2(− )|(kα
⊥ − k2(− ))

[(
1 + Nq)fnν ,k2(− )

(1 − fβ) − Nqfβ(1 − fnν ,k2(− )
)
]

+
k2(+)

|k2(+)|(kα
⊥ − k2(+))

[
Nqfnν ,k2(+)

(1 − fβ) − (1 + Nq)fβ(1 − fnν ,k2(+)
)
]}

(14)  

where 

k1(±) =

{

(kα
⊥)

2
+

2m
ℏ2

[
ℏ(ω ± ω0) − ΔEnν ,nα

]
}1/2

,

k2(±) =

{

(kβ
⊥)

2
−

2m
ℏ2

[
ℏ(ω ± ω0) − ΔEnβ ,nν

]
}1/2

,

Fig. 2. The real part and imaginary part of the form factor for several subband indices. Here, d = 50 nm and s0 = 100.  
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ΔEnν ,nα = (nν − nα)ℏωp and Anα ,nν =
∫∞

0 |Inα ,nν (±qz)|
2dqz, which can be numerically evaluated. 

2.2. The nonlinear conductivity 

The nonlinear conductivity component, σzzz(ω), can be derived using the general formula obtained by Lee et al. in Ref. [30] [see Eq. 
(4.19) therein] and given as 

Re{σzzz(ω)} = e2
∑

α,β
zα,β (fβ − fα)

[ℏω − Eβ,α]
2
+ [Bα,β

0 (ω)]2

×

{
∑

ν

zν,αj′β,νz

[2ℏω − Eβ,ν]
2
+ [Bα,β,ν

1 (ω)]2
[(

ℏω − Eβ,α)Bα,β,ν
1 (ω) + (2ℏω − Eβ,ν)Bα,β

0 (ω)
]

+
∑

δ

zβ,δj
′δ,α
z

[2ℏω − Eδ,α]
2
+ [Bα,β,δ

2 (ω)]
2

[(
ℏω − Eβ,α)Bα,β,δ

2 (ω) + (2ℏω − Eδ,α)Bα,β
0 (ω)

]
}

,

(15)  

where 

Bα,β,ν
1 (ω) =

π
(fβ − fα)

∑

q,μ
|Cνμ(q)|2

{[(
1 + Nq)fβ(1 − fμ) − Nqfμ(1 − fβ)

]
δ(Y+

3 )

+
[
Nqfβ(1 − fμ) − (1 + Nq)fμ(1 − fβ)

]
δ(Y −

3 )
}

+
[(

1 + Nq)fμ(1 − fα) − Nqfα(1 − fμ)
]
δ(Y −

4 )

+
[
Nqfμ(1 − fα) − (1 + Nq)fα(1 − fμ)

]
δ(Y+

4 )
}

+
π

(fβ − fα)

∑

q,μ
|Cμβ(q)|2

{[(
1 + Nq)fμ(1 − fα) − Nqfα(1 − fμ)

]
δ(Y+

5 )

+
[
Nqfμ(1 − fα) − (1 + Nq)fα(1 − fμ)

]
δ(Y −

5 )
}
,

(16)  

with 

Y±
3 = 2ℏω − Eβ,μ ± ℏωq, Y±

4 = 2ℏω − Eα,μ ± ℏωq, Y±
5 = 2ℏω − Eμ,α ± ℏωq. (17)  

The term Bα,β,δ
2 (ω) can be obtained from Bα,β,ν

1 (ω) by replacing the state index ν by δ. 
It is seen that the first-order nonlinear conductivity is much more complicated than the linear one. The physical interpretation of 

each term in the above expressions has been analysed in detail in Refs. [30,31]. To obtain the explicit expression of σzzz(ω) and 
accordingly the AP, we need to perform the same calculations for Bα,β,ν

1 (ω) and Bα,β,δ
2 (ω) like we have done for Bα,β

0 (ω) above. For 
instance, for Bα,β,ν

1 (ω) one has 

Bα,β,ν
1 (ω) =

Θm⋆

8ℏ2π2(fβ − fα)

∑

nμ

Anν ,nμ

×

{
k3(+)

|k3(+)|(kν
⊥ − k3(+))

[(
1 + Nq)fβ(1 − fnμ ,k3(+)

) − Nqfnμ ,k3(+)
(1 − fβ)

]

+
k3(− )

|k3(− )|(kν
⊥ − k3(− ))

[
Nqfβ(1 − fnμ ,k3(− )

) − (1 + Nq)fnμ ,k3(− )
(1 − fβ)

]

+
k4(− )

|k4(− )|(kν
⊥ − k4(− ))

[(
1 + Nq)fnμ ,k4(− )

(1 − fα) − Nqfα(1 − fnμ ,k4(− )
)
]

+
k4(+)

|k4(+)|(kν
⊥ − k4(+))

[
Nqfnμ ,k4(+)

(1 − fα) − (1 + Nq)fα(1 − fnμ ,k4(+)
)
]}

+
m⋆Θ

8ℏ2π2(fβ − fα)

∑

nμ

Anμ ,nβ

×

{
k5(+)

|k5(+)|(kβ
⊥ − k5(+))

[(
1 + Nq)fnμ ,k5(+)

(1 − fα) − Nqfα(1 − fnμ ,k5(+)
)
]

+
k5(− )

|k5(− )|(kβ
⊥ − k5(− ))

[
Nqfnμ ,k3(− )

(1 − fα) − (1 + Nq)fα(1 − fnμ ,k5(− )
)
]
}

,

(18) 
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where 

k3(±) =

{

(kβ
⊥)

2
+

2m
ℏ2

[
ℏ(2ω ± ω0) − ΔEnβ ,nμ

]
}1/2

,

k4(±) =

{

(kα
⊥)

2
−

2m
ℏ2

[
ℏ(2ω ± ω0) − ΔEnα ,nμ

]
}1/2

,

k5(±) =

{

(kα
⊥)

2
+

2m
ℏ2

[
ℏ(2ω ± ω0) − ΔEnμ ,nα

]
}1/2

.

The above obtained results have a relatively verbose form. However, physical meanings can be derived from them by performing the 
numerical computation which we will carry out in the next section. 

3. Numerical results and discussion 

This session aims to clarify the behaviours of the absorption spectrum with the variation of the external EMW, the temperature, and 
the doping concentration. To do this, we consider the GaAs:Si/GaAs:Be n − i − p − i SL with the following parameters [27,34,35]: m⋆ =

0.067m0 (m0 is the mass of free electron), ℏω0 = 36.25 meV, χ∞ = 10.9, χ0 = 12.9, s0 = 100, and d = 50 nm. The doping concentration 
will be varied to show its effect on the absorbance. 

In Fig. 3 we show the linear term of the total AP as a function of the photon energy at two values of the doping concentration. We 
can see clearly in the figure the appearance of absorption peaks at some certain values of the photon energy. The physical significance 
of these peaks can be analysed as follows. On the solid curve, the first peak is located at the photon energy of 36.25 meV, satisfying the 
condition ℏω = ℏω0. This peak describes the intra-subband transition of an electron by absorbing/emitting an optical phonon 
accompanied by emitting/absorbing an electromagnetic wave photon with energy being equal to the optical phonon energy. The 
second and the fourth peaks, respectively, arise at the photon energy of 124.507 meV and 197.007 meV. These peaks correspond to the 
resonance conditions ℏω = ΔE2,1 − ℏω0 and ℏω = ΔE2,1 + ℏω0, respectively, where ΔE2,1 = 160.757 meV. Thus, they are the optically 
detected electron-phonon resonance peaks in which an electron transit between two different subbands by absorbing/emitting an 
optical phonon while simultaneously emitting/absorbing a photon. The third peak appears at the photon energy of 160.757 meV 
satisfying ℏω = ΔE2,1. The meaning of the peaks on the dashed curve can be explained similarly. It should be noted that for the inter- 
subband transitions, since the energy difference between the two subbands depends on the doping concentration through the plasma 
frequency, i.e. ΔEnβ ,nα = (nβ − nα)ℏωp, when the doping concentration changes, the photon energy satisfying the resonance condition 
also changes. This is shown by the shifting of the second, the third and the fourth resonance peaks as varying the doping concentration. 
On the contrary, because the electron subbands are identical for intra-subband transitions, the resonance energy corresponding to 
these transitions does not change with the change of the doping concentration as proven by the first peak of the curves in Fig. 3. 

The nonlinear term of the AP is also plotted and shown in Fig. 4. We also see the appearance of resonance peaks, similar to that for 
the linear term. However, in this case there are more in number of resonance peaks in the same photon energy range. Besides the 
resonance peaks appearing at the photon energy values as in the linear case, there are additional resonance peaks at other values of the 
photon energy. This can be explained as follows. The resonance peaks arise from the resonance scattering of electrons with photon and 
phonon satisfying the energy conservation law, which is guaranteed by the delta functions in the expressions of the conductivities in 
Eqs. (7) and (15). It is seen that for the nonlinear conductivity, and followed by the nonlinear AP term, there are more delta functions 
than for linear term, so the nonlinear term has more resonance peaks. A special point to note is that in the nonlinear term in Fig. 4, there 
are resonance peaks coming from the two-photon absorption processes in addition. They are the first and the third peaks in the ab-
sorption spectrum that locate, respectively, at the photon energies of 18.125 meV and 80.3786 meV and satisfy the conditions 2ℏω =

Fig. 3. The linear part of the absorption power as a function of the photon energy. Here, T = 200K.  

N.T. Dung et al.                                                                                                                                                                                                        



Micro and Nanostructures 165 (2022) 207201

7

ℏω0 and 2ℏω = ΔE2,1. It is clear that the two-photon absorption process has a minor contribution to the absorption spectrum but is 
observable and cannot be ignored when investigating nonlinear optical effects. 

It is well known that the full width at half maximum (FWHM) of resonance peaks has an important role in spectroscopy. Thus, from 
the graphs for the AP we will computationally extract the FWHM of some resonance peaks and examine its variation with the doping 
concentration and temperature. The dependence of FWHM on the doping concentration is obtained and shown in Fig. 5 for both one- 
photon and two-photon absorption precesses. It is seen that the FWHM increases as increasing the doping concentration. The best fit 
gives us the laws FWHM[meV] = 0.70nD[m− 3] and FWHM[meV] = 0.51nD[m− 3] for the one-photon and two-photon case, respec-
tively. The increase of the FWHM with the doping concentration is reasonable because the plasma frequency characterising the carrier 
confinement increases as the doping concentration increases. This behaviour is in agreement with those observed in low-dimensional 
electron systems such as quantum wells [25,29] and quantum wires [23,24,26] when the carrier confinement potential is enhanced by 
reducing the confinement length (the well’s width or the wire’s radius). The temperature-dependent FWHM is also obtained and 
shown in Fig. 6(a) and (b) for one-photon and two-photon absorption, respectively. Because the electron – optical phonon interaction is 
dominant at relatively high temperatures so here we consider the temperature range from 120 K to 350 K. From Fig. 6(a) we can see 
that the FWHM depends strongly on the temperature. The fitting result gives the dependence as FWHM[meV] = 0.246 + 0.00076T +
7.04545 × 10− 6T2 where T is measured in Kelvin. For the case of two-photon absorption, the FWHM depends rather weakly on T. The 
evolution of the FWHM can be viewed in two regions of temperature. In the temperature range from 120 K to approximately 235 K, the 
FWHM increases linearly by the law FWHM[meV] = 0.422 + 0.000223T. For the temperature range above 250 K, the FWHM depends 
very weakly on temperature by the law FWHM[meV] = 0.455 + 0.00009T. Qualitatively, the increase of FWHM with temperature is 
consistent with previous observations in low-dimensional systems such as semiconductor quantum wells [25,29] and quantum wires 
[23,24,26]. However, unfortunately there have been no experiments on this subject in the n − i − p − i structure to date, further 
experimental measurements are needed for a quantitative comparison with the our present result. 

4. Conclusions 

So far, we have calculated the nonlinear optical absorption power in GaAs based n − i − p − i SL taking account of the electron – 
optical phonon interaction. Numerical results have been obtained for the GaAs:Si/GaAs:Be SL. The linear and nonlinear ODEPR peaks 
have been observed in the absorbance as expected. The FWHM of ODEPR peaks increases with increasing the doping concentration, i.e. 
the carrier confinement strength. This behaviour is reasonable and in accordance with those observed before in some low-dimensional 
structures such as quantum wells and quantum wires in which the FWHM also increases with enhancing the carrier confinement. Also, 
it can be inferred from this feature that the stronger the confinement, the stronger the electron – phonon interaction. Besides, the 
FWHM has been found to increase with increasing the temperature in both linear and nonlinear cases. Importantly, the results show 
that the two-photon absorption plays a considerable role in the absorbance. The obtained results are the basis for further applications 
in optoelectronic devices. In addition, one can do similar investigations for different kinds of electron – phonon interaction as well as 
considering the phonon confinement effect. 

Author contributions 

N.T. Dung: Investigation, Formal analysis, Writing and Editing, Conceptualization. V.T.T. Vi: Software, Formal analysis, Writing 
and Editing. L.T.T. Phuong: Conceptualization, Methodology, Investigation, Formal analysis, Writing and Editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Fig. 4. The nonlinear part of the absorption power versus photon energy. The parameters used in this figure are the same as in Fig. 3.  
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