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Abstract
For derived curves intersecting a family of decomposable hyperplanes in subgeneral position,
we obtain an analog of the Cartan–Nochka Second Main Theorem, generalizing a classical
result of Fujimoto about decomposable hyperplanes in general position.
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1 Introduction

Value distribution theory was started by Nevanlinna [7] by relating the intersection frequency
of a holomorphic map f : C → P

1(C) with q ≥ 3 distinct points in P
1(C), and the

growth rate of f . This quantifies the classical little Picard theorem, and also generalizes the
fundamental theorem of algebra from polynomials to meromorphic functions.

In higher dimension, Cartan [2] explored Nevanlinna theory in the setting of a linearly
nondegenerate entire curve f : C → P

n(C) together with a family of q ≥ n+2 hyperplanes
{Hi }i = 1,..., q in general position, and he obtained a Second Main Theorem:

(q − n − 1) T f (r) ≤
q∑

i=1

N [n]
f (r , Hi ) + S f (r), (1)
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476 D. T. Huynh, S.-Y. Xie

(see Sect. 2 for meanings of these notations) by introducing aWronskian technique, which is
indispensable in the subject [10,11]. For hyperplanes {Hi }i = 1,..., q in N -subgeneral position,
i.e., there exists some embeddingPn(C) ↪→ P

N (C) such that {Hi = H ′
i ∩P

n(C)}i = 1,..., q are
the restrictions of hyperplanes {H ′

i ⊂ P
N (C)}i = 1,..., q in general position, Cartan anticipated

that there shall be

(q − 2N + n − 1) T f (r) ≤
q∑

i=1

N [n]
f (r , Hi ) + S f (r), (2)

and this conjecture was proved by Nochka [8] by means of the so-called Nochka weights.
Meanwhile, independently,Weyl’s [15,16] restarted the studyof value distribution of entire

curves in P
N (C) with respect to high codimension projective subspaces, by introducing the

associated derived curves which assign every point f (z) with the osculating kth-planes pass-
ing through that point (see Sect. 2.3). In the same vein, Ahlfors [1] successfully established
a Second Main Theorem type estimate for derived curves, which embraces the inequality (1)
of Cartan when k = 0 and the targets are hyperplanes. The reader is referred to [12,17] for
expositions about Weyl–Ahlfors’ theory.

Since then Weyl–Ahlfors theory has much progress. Notably, Stoll [13,14] studied mero-
morphic maps from parabolic spaces to projective spaces; Cowen–Griffiths [4] gave a
simplified proof of Ahlfors’ result using negative curvature; Fujimoto [5,6] established a
second main theorem for derived curves of linearly nondegenerate entire curves with optimal
truncation level; Chen [3] generalized the Ahlfors’ result for degenerated entire curves.

Inspiring by the works [3,5], it would be natural to seek a secondmain theorem for derived
curves, having optimal truncation level, without assuming the nondegeneracy of the entire
curves. Here is our result in this direction, which is a generalization of Cartan–Nochka’s
Second Main Theorem.

Theorem 1.1 Let f : C → P
N (C) be an entire holomorphic curve, and let Pn(C) ⊂

P
N (C) be the smallest linear projective subspace containing f (C). For a fixed integer

k = 0, 1, . . . , n, let A1, . . . , Aq be q decomposable hyperplanes of P
(
�k+1(CN+1)

)
in gen-

eral position such that none of them contains the induced Plücker subset P
(
�k+1(Cn+1)

) ⊂
P
(
�k+1(CN+1)

)
. Then the k-th derived curve Fk of f satisfies

(
q − 2

(
N + 1
k + 1

)
+

(
n + 1
k + 1

) )
TFk (r) ≤

q∑

i=1

N [(k+1)(n−k)]
Fk

(r , Ai ) + SFk (r).

In fact, this result follows directly from the following stronger statement (see Remark 2.1).
MainTheorem. Let f : C → P

n(C) be a linearly nondegenerate entire holomorphic curve.
For a fixed integer k = 0, 1, . . . , n, let A1, . . . , Aq ⊂ P

(
�k+1(Cn+1)

)
be q decomposable

hyperplanes such that any N of them have empty intersection. Then the k-th derived curve
Fk of f satisfies

(q − 2N + n) TFk (r) ≤
q∑

i=1

N [(k+1)(n−k)]
Fk

(r , Ai ) + SFk (r), (3)

where n := dimC �k+1(Cn+1) = (
n+1
k+1

)
.

Terminologies and notation will be explained in Sect. 2, while a complete proof will
be reached in Sect. 3, which depends on classical techniques of Cartan’s Wronskian [2],
Nochka’s weight [8] and Fujimoto’s vanishing order estimates [5]. Whence a defect rela-
tion (42) can be concluded in Sect. 4. Theorem 1.1 improves a previous result of Chen [3]
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On the Weyl–Ahlfors theory of derived curves 477

by providing an effective truncation level (k + 1)(n − k), which is optimal as shown by
an example of Fujimoto [5]. For k = 0, we recover the celebrated Cartan–Nochka’s Theo-
rem [8]. When n = N, our defect relation (42) coincides with a result of Fujimoto [5] for
decomposable hyperplanes in general position.

2 Preliminaries

2.1 Nevanlinna theory

We denote by �r ⊂ C the disk of radius r > 0 centered at the origin. Fix a truncation
level m ∈ N ∪ {∞}, for an effective divisor E = ∑

i αi ai on C where αi ≥ 0, ai ∈ C, the
m-truncated degree of the divisor E on the disk �r is given by

n[m](r , E) :=
∑

ai∈�r

min {m, αi },

the truncated counting function at level m of E is then defined by taking the logarithmic
average

N [m](r , E) :=
∫ r

1

n[m](t, E)

t
dt ((r > 1).)

When m = ∞, for abbreviation we write n(t, E), N (r , E) for n[∞](t, E), N [∞](r , E).
Let f : C → P

n(C) be an entire holomorphic curve having a reduced representation f =
[ f0 : · · · : fn] in the homogeneous coordinates [z0 : · · · : zn] of Pn(C). Let D = {Q = 0}
be a divisor in P

n(C) defined by a homogeneous polynomial Q ∈ C[z0, . . . , zn] of degree
d ≥ 1. If f (C) �⊂ D, then f ∗D = ∑

a∈C orda f ∗Q is a divisor on C. We then define the
truncated counting function of f with respect to D as

N [m]
f (r , D) := N [m](r , f ∗D

)
,

which measures the intersection frequency of f (C) with D. If f ∗D = ∑
i μi ai , where

μi > 0 and μ = min{μi }, then we say that f is completely μ–ramified over D, with the
convention that μ = ∞ if f (C)∩ supp D = ∅. Next, the proximity function of f associated
to the divisor D is given by

m f (r , D) :=
∫ 2π

0
log

∥∥ f (reiθ )
∥∥d
max ‖Q‖max∣∣Q( f )(reiθ )

∣∣
dθ

2π
,

where ‖Q‖max is the maximum absolute value of the coefficients of Q and where
∥∥ f (z)

∥∥
max := max{| f0(z)|, . . . , | fn(z)|}. (4)

Since
∣∣Q( f )

∣∣ ≤ (
d+n
n

) ‖Q‖max · ‖ f ‖dmax, we see that m f (r , D) ≥ O(1) is bounded from
below by some constant. Lastly, the Cartan order function of f is defined by

T f (r) := 1

2π

∫ 2π

0
log

∥∥ f (reiθ )
∥∥
max dθ.

The Nevanlinna theory is then established by comparing the above three functions.
It consists of two fundamental theorems (for a comprehensive exposition, see Noguchi–
Winkelmann [9]).
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First Main Theorem. Let f : C → P
n(C) be a holomorphic curve and let D be a hyper-

surface of degree d in P
n(C) such that f (C) �⊂ D. Then one has the estimate

m f (r , D) + N f (r , D) = d T f (r) + O(1)

for every r > 1, whence

N f (r , D) ≤ d T f (r) + O(1). (5)

Hence the counting function is bounded fromabove by somemultiple of the order function.
The reverse direction is usually much harder, and one often needs to take the sum of the
counting functions of many divisors. Such types of estimates are so-called second main
theorems.

Throughout this paper, for an entire curve f , the notation S f (r) means a real function of
r ∈ R

+ such that

S f (r) ≤ O(log(T f (r))) + ε log r

for every positive constant ε and every r outside of a subset (depending on ε) of finite
Lebesgue measure ofR+. In the case where f is rational, we understand that S f (r) = O(1).
In any case we always have

lim inf
r→∞

S f (r)

T f (r)
= 0.

2.2 Grassmann algebra

Let E be a C-vector space of dimension M + 1. The graded exterior algebra �•E =
⊕M

k=0 �k E , equipped with the exterior wedge product, is called a Grassmann algebra. Every
element in �k E is called a k-vector, and it is said to be decomposable if it can be written
neatly as a1 ∧ · · · ∧ ak for some k vectors a1, . . . , ak ∈ E .

Given abasis {e0, . . . , eM }of E , then�k+1E has thebasis {ei0∧· · ·∧eik }0≤ i0 < i1 < ··· < ik≤ M .
In this coordinate system, for k + 1 vectors ai = ∑M

j=0 ai, j e j where i = 0, . . . , k, direct
computation shows:

a0 ∧ · · · ∧ ak =
∑

0≤ i0 < i1 < ···< ik ≤ M

a(i0, . . . , ik) ei0 ∧ · · · ∧ eik , (6)

where a(i0, . . . , ik) := det
(
(aα,iβ )0≤α, β ≤ k

)
.

2.3 Derived curves

Let f : C → P
n(C) be a linearly nondegenerate entire holomorphic curve with a reduced

representation f = [ f0 : · · · : fn] in the homogeneous coordinates. Note that

f̃ := ( f0, . . . , fn) : C → C
n+1\{0} (7)

provides a lifting of f along the natural projectionπ : Cn+1\{0} → P
n(C). For k = 1, . . . , n,

to construct a kth-derived curve we first collect all the derivatives

f̃ (
) = ( f (
)
0 , . . . , f (
)

n ) : C −→ C
n+1

(0≤ 
≤ k), (8)
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On the Weyl–Ahlfors theory of derived curves 479

up to order k, and then take their wedge product

F̃k := f̃ (0) ∧ · · · ∧ f̃ (k) : C −→ �k+1(Cn+1).

Relating to the standard basis {ei }i = 0,..., n of Cn+1, by (6) there holds

F̃k =
∑

0≤ i0 < i1 < ···< ik ≤ n

W ( fi0 , . . . , fik ) ei0 ∧ · · · ∧ eik (9)

in Plücker coordinates, whereW ( fi0 , . . . , fik ) := det
(
( f (α)

iβ
)α, β = 0,..., k

)
is a standardWron-

skian. For the purpose of descending the image of F̃k along the natural projection

π : �k+1(Cn+1)\{0} → P

(
�k+1(Cn+1)

)
,

we now cancel the common zeros of all the obtainedWronskians by an auxiliary holomorphic
function g satisfying

(g)0 = min
0≤ i0 < i1 < ··· < ik ≤ n

(
W ( fi0 , . . . , fik )

)

0
.

Hence the quotient succeeds

Fk := F̃k/g : C −→ �k+1(Cn+1)\{0}.
Definition 2.1 The kth-derived curve of f is

Fk := π ◦ Fk : C −→ P

(
�k+1(Cn+1)

)
.

Recall that the Cartan’s order function of Fk is given by

TFk (r) = 1

2π

∫ 2π

0
log ‖Fk(reiθ )‖max d θ

= 1

2π

∫ 2π

0
log max

0≤ i0 < i1 < ··· < ik ≤ n

∣∣∣∣
W ( fi0 , . . . , fik )

g
(reiθ )

∣∣∣∣ d θ.

It is known that all the derived curves have the same growth rate (see e.g. [6]):

TFk = O(TF

) ( 0≤ k, 
≤ n ). (10)

A decomposable hyperplane

A := π {Z ∈ �k+1(Cn+1) : A∗(Z) = 0} ⊂ P
(
�k+1(Cn+1)

)

is the dual of a nonzero decomposable (k + 1)-vector

A∗ = a0 ∧ · · · ∧ ak ∈ �k+1(Cn+1)∨ ∼= (�k+1
C
n+1)∨ ( a0, ..., ak ∈ (Cn+1)∨ ).

We claim that the image of the derived curve Fk(C) is not contained in any decomposable
hyperplane. Indeed, for any A∗ above, writing each ai in the standard dual basis {e∗

j } j = 0,..., n

of (Cn+1)∨ as ai = ∑n
j=0 ai, j e

∗
j , by formula (6) we have

A∗(F̃k) =
∑

0≤ i0 < i1 < ··· < ik ≤ n

det
(
(aα, iβ )0≤α, β ≤ k

)
e∗
i0 ∧ · · · ∧ e∗

ik (F̃k)

[recall (9)] =
∑

0≤ i0 < i1 < ··· < ik ≤ n

det
(
(aα, iβ )0≤α, β ≤ k

)
det

(
( f (α)

iβ
)0≤ α, β ≤ k

)
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480 D. T. Huynh, S.-Y. Xie

[by Cauchy-Binet Formula] = det
(
(h(α)

β )0≤ α, β ≤ k
)
, (11)

where each hi = ∑n
j=0 ai, j f j = ai ◦ f̃ for i = 0, . . . , k. The linearly independence of

f0, . . . , fn as well as that of a0, . . . , ak guarantee that h0, . . . , hk are also linearly indepen-
dent, whence the Wronskian

det
(
(h(α)

β )0≤ α, β ≤ k
) �≡ 0,

i.e., Fk(C) is not contained in the decomposable hyperplane A defined by A∗.
Therefore, we define the m-truncated counting function of Fk with respect to A as

N [m]
Fk

(r , A) := N [m](r , (A∗ ◦ Fk)0).

The m-defect of Fk with respect to A is then defined by

δ
[m]
Fk

(A) := lim inf
r→∞

(
1 − N [m]

Fk
(r , A)

TFk (r)

)
,

which according to the First Main Theorem satisfies 0 ≤ δ
[m]
Fk

(A) ≤ 1.

2.4 Nochka’s weights

Let N ≥ n be two positive integers. Let H1, . . . , Hq ⊂ P
n(C) be q ≥ N + 1 hyperplanes

defined by the linear forms h∗
1, . . . , h

∗
q ∈ (Cn+1)∨, respectively.

Conventions. Denote by Q the index set {1, . . . , q}. For a subset R ⊂ Q, denote by |R| its
cardinality and by rank(R) the dimension of the linear subspace of (Cn+1)∨ generated by
{hi }i∈R .

Definition 2.2 The family {Hi }i = 1,..., q is said to be in N -subgeneral position if any N + 1
hyperplanes in this family have empty intersection. When N = n, this family is said to be in
general position.

Remark 2.1 Keeping the assumptions as in the statement of Theorem 1.1, we may regard f
as a linearly non-degenerate curve f : C → P

n(C) ↪→ P
N (C), which induces the derived

curve

Fk : C → P
n−1(C) ↪→ P

N−1(C),

whereN =
(
N + 1
k + 1

)
and n =

(
n + 1
k + 1

)
. Still using Ai to denote the cut loci Ai ∩P

n−1(C),

then {Ai }i∈Q is a family of q hyperplanes in
(
N−1

)
-subgeneral position of Pn−1(C). Hence

Theorem 1.1 is a direct consequence of the Main Theorem.

Here is the main tool in Nochka’s resolution [8] of Cartan’s conjecture.

Theorem 2.1 Let {Hi }i = 1,..., q be a family of q ≥ 2N − n + 1 hyperplanes in N-subgeneral
position of Pn(C). Then there exists a family of rational constants {ω(i)}i = 1,..., q satisfying
the following conditions:

(i) 0 ≤ ω(i) ≤ 1 for all i = 1, . . . , q;
(ii) set ω̃ := max1≤ i ≤ q ω(i), then

q∑

i=1

ω(i) = ω̃(q − 2N + n − 1) + n + 1;
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On the Weyl–Ahlfors theory of derived curves 481

(iii) n+1
2N−n+1 ≤ ω̃ ≤ n

N ;
(iv) if R is a subset of Q with 0 < |R| ≤ N + 1, then

∑

i∈R

ω(i) ≤ rank(R). (12)

The constants ω( j) are called Nochka’s weights and ω̃ is called Nochka’s constant of the
family {Hi }i = 1,..., q . They satisfy the following key property (c.f. [9, Lem. 4.1.17]).

Proposition 2.1 Let {Hi }1≤i≤q be a family of q ≥ 2N − n + 1 hyperplanes in N-subgeneral
position of Pn(C). Let a1, . . . , aq ≥ 1 be arbitrary constants. If R is a subset of Q having
cardinality

0 < |R| ≤ N + 1,

then there exist distinct indices i1, . . . , irank(R) ∈ R such that

rank({i1, . . . , irank(R)}) = rank(R) and
∏

i∈R

α
ω(i)
i ≤

rank(R)∏

k=1

αik .

3 Proof of themain theorem

3.1 Notation and conventions

Fix a reduced representation [ f0 : · · · : fn] of f . Denote by Q = {1, . . . , q}. Assume that
the decomposable hyperplanes A1, . . . , Aq are defined by A∗

1, . . . , A
∗
q ∈ �k+1(Cn+1)∨,

respectively. Let S be the set consisting of all subsets of {0, . . . , n} having cardinality k + 1,
which in the lexicography order writes as S = {I0, I1, . . . , In−1}. For every I ∈ S, denote
by ‖I‖ its number of ranking, so that ‖Ii‖ = i +1 for 0 ≤ i ≤ n−1. For I , J ∈ S, denote by
W (I , J ) the determinant of the matrix

(
f (i)
j

)
i ∈ I , j ∈ J . Hence W (I0, J ) coincides with the

usual WronskianW ({ f j } j∈J ). LetW = (
W (Ir , Is)

)
0≤ r , s ≤n−1 be the (k + 1)th-compound

matrix of
(
f (i)
j

)
0≤ i, j ≤ n . Then the Sylvester–Franke theorem states that

detW = W ( f0, . . . , fn)
(n
k
)
. (13)

Hence the zero order of detW is well-defined, invariant under coordinate changes. In fact, its
estimation will be a major challenge in this paper, and we will use some elaborate coordinate
system.

3.2 An a priori estimate

From now on, we assume that q − 2N + n > 0, otherwise there is nothing to prove in the
Main Theorem.

Let {ω(i)}i∈Q be the Nochka’s weights and let ω̃ be the Nochka’s constant of the family
{Ai }i∈Q . Recalling the construction of the derived curve Fk , we first find some holomorphic
function g whose zero divisor is

Dk := min
J∈S(W (I0, J ))0. (14)
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482 D. T. Huynh, S.-Y. Xie

Here is an implement of Cartan’sWronskian technique and Nochka’s estimate for derived
curves.

Proposition 3.1 There exists some constant C > 0 depending only on the family {Ai }i∈Q
such that

‖Fk(z)‖ω̃
(
q−2N+n

)
max ≤ C ·

( |g(z)|n ∏
i∈Q |A∗

i ◦ Fk(z)|ω(i)

| det(W(z))|
)

×
∑

R⊂Q, rank(R)=|R|=n

| det(W(z))|
∏

i∈R |A∗
i ◦ F̃k(z)|

. (15)

Proof The arguments follow closely to that of [9, page 125, Lem. 4.2.3]. Without loss of
generality, we always assume that each hyperplane Ai is defined by a linear form A∗

i having
unit norm ‖A∗

i ‖ = 1. Since {Ai }i∈Q is in (N − 1)-subgeneral position, for any point [Z ] ∈
P
n−1(C), where Z ∈ C

n\{0}, there is some index subset S ⊂ Q with cardinality |S| = q−N

such that all the corresponding hyperplanes miss [Z ], namely
∏

i∈S
A∗
i (Z)

‖Z‖ �= 0. Noting that
A∗
i (Z)/‖Z‖ is well-defined for [Z ], by compactness argument, there exists some constant

C1 > 0 depending only on {Ai }i∈Q such that

1

C1
<

∑

S⊂Q, |S|=q−N

∏

i∈S

( |A∗
i (Z)|
‖Z‖

)ω(i)

< C1 (∀ Z ∈P
n−1(C)). (16)

Denote by C(S) the complement of S in Q. Now we can rewrite each term in the middle of
the above inequality as

∏

i∈S

( |A∗
i (Z)|
‖Z‖

)ω(i)

=
∏

i∈Q |A∗
i (Z)|ω(i)

‖Z‖
∑

i∈Q ω(i)
·

∏

i∈C(S)

( ‖Z‖
|A∗

i (Z)|
)ω(i)

. (17)

Since ‖A∗
i ‖ = 1, we have ‖Z‖

|A∗
i (Z)| ≥ 1. Noting that C(S) has cardinality N, by the (N − 1)-

subgeneral assumption of {Ai }i∈Q , we see that rank(C(S)) = n. Hence by Proposition 2.1,
there exists an index subset C0(S) ⊂ C(S) having cardinality n such that

∏

i∈C(S)

( ‖Z‖
|A∗

i (Z)|
)ω(i)

≤
∏

i∈C0(S)

‖Z‖
|A∗

i (Z)| .

Remembering that
∑

i∈Q ω(i) = ω̃(q − 2N+ n)+ n by Theorem 2.1, we can estimate (17)
as

∏

i∈S

( |A∗
i (Z)|
‖Z‖

)ω(i)

≤
∏

i∈Q |A∗
i (Z)|ω(i)

‖Z‖ω̃
(
q−2N+n

)
+n

·
∏

i∈C0(S)

‖Z‖
|A∗

i (Z)|

=
∏

i∈Q |A∗
i (Z)|ω(i)

‖Z‖ω̃
(
q−2N+n

) · 1∏
i∈C0(S) |A∗

i (Z)| .

Taking the sum on both sides of the above inequality for all S and using the lower bound
of (16), we receive

‖Z‖ω̃
(
q−2N+n

)
≤ C1 ·

( ∏

i∈Q
|A∗

i (Z)|ω(i)
)

·
∑

S⊂Q, |S|=q−N

1∏
i∈C0(S) |A∗

i (Z)| .
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On the Weyl–Ahlfors theory of derived curves 483

Substituting Z by Fk(z) in the above inequality and noting that ‖Fk‖max ≤ ‖Fk‖, we receive

‖Fk(z)‖ω̃
(
q−2N+n

)
max ≤ C1 ·

( ∏

i∈Q
|A∗

i ◦ Fk(z)|ω(i)
)

·
∑

S⊂Q, |S|=q−N

1
∏

i∈C0(S) |A∗
i ◦ Fk(z)|

= C1 ·
(∏

i∈Q |A∗
i ◦ Fk(z)|ω(i)

| det(W(z))|
)

×
∑

S⊂Q, |S|=q−N

| det(W(z))| |g(z)|n
∏

i∈C0(S) |A∗
i ◦ F̃k(z)|

≤ C ·
( |g(z)|n ∏

i∈Q |A∗
i ◦ Fk(z)|ω(i)

| det(W(z))|
)

×
∑

R⊂Q, |R|=rank(R)=n

| det(W(z))|
∏

i∈R |A∗
i ◦ F̃k(z)|

,

whence concludes the proof. ��

3.3 Fujimoto’s vanishing order estimates

In order to estimate the vanishing order of detW effectively, Fujimoto [5, Sect. 5] employed
the following nice coordinate system. The existence is essentially guaranteed by Gaussian
elimination.

Lemma 3.1 Let f : C → P
n(C) be a linearly nondegenerate entire holomorphic curve.

For a given point z0 ∈ C, there exist some homogeneous coordinates of Pn(C), a reduced
representation of f , and a local coordinate z in a small neighborhood U of z0 such that f
can be written as f = [ f0 : · · · : fn], where

fi = zαi +
∑

j>αi

bi j z
j

(bi j ∈C; 0≤ i ≤ n) (18)

on U and α0 = 0 < α1 < · · · < αn. ��
Thus, he received the following estimates, assuming a nice coordinate system for (18).

Corollary 3.1 One has Dk(z0) = ∑k
i=0(αi − i).

Definition 3.1 Theweightw(I ) of a set I = {i0, . . . , ik}where 0 ≤ i0 < i1 < · · · < ik < ∞
is defined to be

w(I ) := (i0 − 0) + · · · + (ik − k).

Remark 3.1 If moreover I ⊂ {0, 1, . . . , n}, then one has
w(I ) ≤ w({n − k, n − k + 1, . . . , n}) = (n − k)(k + 1).

Corollary 3.2 For every I , J ∈ S, one has

(W (I , J ))0 ≥
∑

a∈C

(Dk(a) − w(I ) + w(J )
)+{a}.

Running I , J through S, the summation of−w(I ) andw(J ) just cancel each other. Hence
we obtain the following

Proposition 3.2 One has

(det(W))0 ≥ nDk . (19)

Since both sides of the above inequality is independent of coordinates, it is in fact a general
estimate.
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484 D. T. Huynh, S.-Y. Xie

3.4 Fujimoto’s trick

Here is an essential ingredient in the proof of the key estimate (33) below.

Proposition 3.3 (Fujimoto) [5, Lem. 4.2] Let h0, . . . , hk be linearly independent meromor-
phic functions. Let 0 ≤ i0 < i1 < · · · < ik be integers. Then the meromorphic function

det(h
(i j )

 ) j, 
= 0,..., k

det(h(i)

 )i, 
= 0,..., k

can be written as a polynomial whose variables are of the form

((
det(h( j)


i
)i, j = 0,..., r

)′

det (h( j)

i

)i, j = 0,..., r

)(λ−1)

(0≤ r ≤ k; λ≥ 1; 0≤ 
0 <
1 < ···< 
r ≤ k).

Furthermore, if one associates weight λ with the above variable, then this polynomial can
be chosen to be isobaric of weight w(I ) where I = {i0, . . . , ik}.
Corollary 3.3 For any point a ∈ C, one has

orda det(h
(i j )

 ) j, 
= 0,..., k ≥ orda det(h(i)


 )i, 
= 0,..., k − w(I ). (20)

3.5 A vanishing order estimate

Proposition 3.4 The following inequality holds:
∑

i∈Q
ω(i)(A∗

i ◦ Fk)0 − (det(W))0 + nDk ≤
∑

i∈Q
ω(i)

∑

a∈C
min{orda A∗

i ◦ Fk , (k + 1)(n − k)}{a}.

(21)

Proof The idea of the proof is to implement Nochka’s weight technique [8] in the course of
Fujimoto’s vanishing order estimates [5, Prop. 5.3]. Since

orda A∗
i ◦ Fk = min{orda A∗

i ◦ Fk, (k + 1)(n − k)} + (
orda A∗

i ◦ Fk − (k + 1)(n − k)
)+

,

we can restate the inequality (21) as

(det(W))0 ≥ nDk +
∑

i∈Q
ω(i)

∑

a∈C

(
orda A∗

i ◦ Fk − (k + 1)(n − k)
)+ · {a}. (22)

It is a pointwise inequality, hence for every fixed a ∈ C we focus on the indices

S := {i ∈ Q : orda A∗
i ◦ Fk ≥ (k + 1)(n − k) + 1},

having nonzero contribution to the right hand side of (22). By Corollary 19, we only need
to consider the case that S �= ∅. Moreover, we claim that |S| < N. Indeed, suppose on
the contrary that S contains N indices, say 1, . . . ,N. By the assumption of subgeneral
position, the corresponding hyperplanes A1, . . . , AN have empty intersection, hence at least
one A∗

i ◦ Fk(a) �= 0, contradicting to the selection of S.
Now we exhibit the distinct values {orda A∗

i ◦ Fk}i∈S from high to low

m1 > m2 > · · · > · · · > mt ,

123



On the Weyl–Ahlfors theory of derived curves 485

and then set a filtration of S accordingly S0 := ∅ ⊂ S1 ⊂ · · · ⊂ St = S, where for
every i ∈ S
\S
−1, there holds orda A∗

i ◦ Fk = m
, respectively for 
 = 1, . . . , t . Let
{T
 ⊂ S
}
= 1,..., t be a family of increasing subsets T1 ⊂ · · · ⊂ Tt constructed subsequently
by the law |T
| = rank(T
) = rank(S
). Set m̃
 = m
 − (k+1)(n−k). Nowwe can estimate

∑

i∈Q
ω(i)

(
orda A∗

i ◦ Fk − (k + 1)(n − k)
)+

=
∑

i∈S
ω(i)

(
orda A∗

i ◦ Fk − (k + 1)(n − k)
)

=
t∑


=1

∑

i∈S
\S
−1

ω(i) m̃


=
t∑


=1

( ∑

i∈S


ω(i) m̃
 −
∑

j∈S
−1

ω( j) m̃


)

= (m̃1 − m̃2)
∑

i∈S1
ω(i) + (m̃2 − m̃3)

∑

i∈S2
ω(i) + · · · + m̃t

∑

i∈St
ω(i)

[by (12)] ≤ (m̃1 − m̃2) rank(S1) + (m̃2 − m̃3) rank(S2) + · · · + m̃t rank(St )

= rank(S1)m̃1 + (
rank(S2) − rank(S1)

)
m̃2 + · · · + (

rank(St ) − rank(St−1)
)
m̃t

= |T1|m̃1 + (|T2| − |T1|)m̃2 + · · · + (|Tt | − Tt−1|)m̃t

= |T1|m̃1 + |T2\T1|m̃2 + · · · + |Tt\Tt−1|m̃t . (23)

Changing the indices of hyperplanes {Ai }i∈Q if necessary, we may assume that Tt =
{1, . . . , |Tt |}. Set m∗

s = orda A∗
s ◦ Fk for s = 1, . . . , |Tt |. Then (23) reads as

∑

i∈Q
ω(i)

(
orda A∗

i ◦ Fk − (k + 1)(n − k)
)+ ≤

|Tt |∑

s=1

(
m∗

s − (k + 1)(n − k)
)
. (24)

Hence the desired inequality (22) can be established by showing a stronger estimate

orda det(W) ≥ nDk(a) +
|Tt |∑

s=1

(
m∗

s − (k + 1)(n − k)
)
. (25)

We first recall that a similar a priori estimate (19) can be achieved by applying Lemma 3.1.
Indeed, we can calculate the vanishing orders of det(W) and Dk at the given point a more
effectively by means of nice coordinates, in which f0, . . . , fn have explicit increasing van-
ishing shapes as (18). Thus for every I , J ∈ S the (‖I‖, ‖J‖)-th entry of W has vanishing
order ≥ Dk − w(I ) + w(J ), whence detW satisfies the estimate (19) by straightforward
summation based on the Laplace expansion. But to reach the stronger estimate (25) we need
more effort, inevitably by exploiting the extra condition that {A∗

j ◦ Fk} j=1,..., |Tt | have high
vanishing orders. Here is our strategy. We will modify some |Tt | columns ofW to represent
the information of {A∗

j ◦ Fk} j = 1,..., |Tt |, by multiplying certain well-chosen invertible matrix

I. Thus the new obtained matrix W̃ = W · I keeps the same vanishing order of determinant.
Now for s = 1, . . . , |Tt | the s-th “new column” of W̃ contribute, in each entry, at least
m∗

s − (k + 1)(n − k) more vanishing order estimate than that of W . Whence by counting
vanishing order in each term of the Laplacian expansion of det(W̃)0, we conclude the proof.

Now we carry out the details. Starting with the following
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486 D. T. Huynh, S.-Y. Xie

Fact. Let {vi }i=1,...,m be a basis of a linear space V , and let ṽ1, . . . , ṽ
 ∈ V be some linearly
independent vectors. Then one can replace some 
 vectors in {vi }i=1,...,m by ṽ1, . . . , ṽ
 such
that they still form a basis. ��

Applying the above fact to V = �k+1(Cn+1)∨ and its basis {e∗
Ii

= ∧
∈Ii e∗

 }i = 0, 1,...,n−1,

we can replace some |Tt | vectors e∗
Ii1

, . . . , e∗
Ii|Tt |

by A∗
1, . . . , A

∗|Tt | respectively to receive a

new basis

(b1, . . . , bn) = (e∗
I0 , . . . , e

∗
In−1

) · I, (26)

where according to our construction, I differs from the identity matrix only in the columns
i1 + 1, . . . , i|Tt | + 1.

Write A∗
1 = l0 ∧ · · · ∧ lk , where linear forms l j ∈ (Cn+1)∨ comparing to the standard

basis {e∗
j } j=0,..., n read as (l0, . . . , lk) = (e∗

0, . . . , e
∗
n) · L for some (n + 1) × (k + 1) matrix

L . By (6) we have

A∗
1 =

∑

0≤ j0 <···< jk ≤ n

det(L{ j0,..., jk }) e∗
j0 ∧ · · · ∧ e∗

jk =
n−1∑

i=0

det(L Ii ) e
∗
Ii , (27)

where L{ j0,..., jk } consists of the rows j0 + 1, . . . , jk + 1 of L . This shows all the entries of
the (i1 + 1)-th column of I, and hence the (‖J‖, i1 + 1)-th entry of W̃ = W · I is nothing but:

n−1∑

i=0

det(L Ii )W (J , Ii ) =
∑

I∈S
det(L I ) det

(
( f ( j)


 ) j∈J , 
∈I
)

(28)

[by Cauchy-Binet Formula] = det
(
(h( j)


 ) j ∈ J , 
 = 0,..., k
)
, (29)

where similar to (11) we have

(h0, . . . , hk) = (l0 ◦ f̃ , . . . , lk ◦ f̃ ) (30)

for the lifting f̃ given in (7). Noting that h( j)

 = l
 ◦ f̃ ( j), setting F̃ J := ∧ j∈J f̃ ( j), then (29)

becomes

det
(
(h( j)


 ) j ∈ J , 
= 0,..., k
) = det

(
(l
 ◦ f̃ ( j)) j ∈ J , 
= 0,..., k

)

= (l0 ∧ · · · ∧ lk) · (∧ j∈J f̃
( j))

= A∗
1 ◦ F̃ J . (31)

In particular, for J = I0 = {0, . . . , k}, the (1, i1 + 1)-th entry of W̃ is A∗
1 ◦ F̃k =

g · (A∗
1 ◦ Fk), which is known to have high vanishing orderDk(a)+m∗

1 at the point a. Lastly,
applying Corollary 3.3 upon the neat determinant (29) and using Remark 3.1, we conclude
that for any J ∈ S the (‖J‖, i1 + 1)-th entry of W̃ has vanishing order at least

Dk(a) + m∗
1 − w(J ) ≥

(
Dk(a) − w(J ) + w(Ii1)

)
+

(
m∗

1 − (k + 1)(n − k)
)
. (32)

Similarly, for s = 1, . . . , |Tt |, the same argument shows that the (‖J‖, is + 1)-th entry of W̃
has vanishing order at least :

Dk(a) + m∗
s − w(J ) ≥

(
Dk(a) − w(J ) + w(Iis )

)
+

(
m∗

s − (k + 1)(n − k)
)
.

Note that the first bracket above is exactly the original vanishing order estimate of the
(‖J‖, is + 1)-th entry of W , and that the second bracket is a summand in (25). By straight-
forward summation based on the Laplace expansion, we conclude the proof. ��
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3.6 An application of the logarithmic derivative lemma

Here is an estimate due to Fujimoto [5].

Proposition 3.5 One has the estimate

1

2π

∫ 2π

0
max

R⊂Q, |R|=rank(R)=n
log

| det(W)|
∏

i∈R |A∗
i ◦ F̃k |

(reiθ ) d θ = SFk (r). (33)

For the sake of completeness, we include a proof here. To start with, let us recall
Logarithmic derivative Lemma. [9, Lem. 4.2.9]. Let g be a nonconstant meromorphic
function on C. Then for any integer 
 ≥ 1, the following estimate holds

m(
g′
g

)(
) (r) := m(
g′
g

)(
) (r)(r ,∞) = Sg(r).

To prove (33), one must get rid of g in the left-hand side. Hence it is necessary to work in
logarithmic setting. Taking the wedge products of the logarithmic derivatives

f (
)
log =

(( f0
f0

)(
)

, . . . ,
( fn
f0

)
)
)

: C −→ C
n+1

(
= 0, 1,..., k),

we obtain the logarithmic derived curve

F̃k,log = f (0)
log ∧ · · · ∧ f (k)

log : C −→ �k+1
C
n+1,

which in Plücker coordinates reads as

F̃k,log =
∑

0≤ i0 < i1 < ··· < ik ≤ n

Wlog( fi0 , . . . , fik ) ei0 ∧ · · · ∧ eik ,

where

Wlog( fi0 , . . . , fik ) := det
(
( fiβ / f0)

(α)
)

α, β = 0,..., k
= f −(k+1)

0 W ( fi0 , . . . , fik )

is the logarithmic Wronskian. Hence we have

F̃k, log = f −(k+1)
0 F̃k . (34)

For I , J ∈ S, the logarithmic analog Wlog(I , J ) of WI ,J is defined to be the determinant
of the matrix

(
( f j/ f0)(i)

)
i∈I , j∈J . Setting

Wlog := (
Wlog(Ir , Is)

)
0≤ r , s ≤n−1,

by Sylvester–Franke theorem we have

det(Wlog) = Wlog( f0, . . . , fn)
(n
k
)

=
(
f −(n+1)
0 W ( f0, . . . , fn)

)(n
k
)

[recall (13)] = f −(k+1)n
0 det(W), (35)

where in the last equality we need a straightforward calculation (n+1)
(n
k
) = (k+1)

(
n+1
k+1

) =
(k + 1)n.

Proof of Proposition 3.5. By (34), (35), we rewrite

| det(W)|
∏

i∈R |A∗
i ◦ F̃k |

= | det(Wlog)|∏
i∈R |A∗

i ◦ F̃k, log|
.
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Hence

max
R⊂Q, |R|=rank(R)=n

log
| det(W)|

∏
i∈R |A∗

i ◦ F̃k |
≤

∑

R⊂Q, |R|=rank(R)=n

log+ | det(Wlog)|∏
i∈R |A∗

i ◦ F̃k, log|
.

(36)

We now analyze each summand above. Without loss of generality, we illustrate by R =
{1, . . . , n} for simplicity of indices. Since {A∗

i }i∈R form a basis for �k+1(Cn+1)∨, changing
coordinates we read

(A∗
1, . . . , A

∗
n) = (e∗

I0 , . . . , e
∗
In−1

) · C
for an invertible n× n-matrix C. Now the matrix W̃log := Wlog · C, similar to W̃ below (26),

has a neat expression of determinant in each entry. Indeed, setting F̃ I
log := ∧i∈I f (i)

log for

every I ∈ S, by the same argument as (28), (29), the (|I |, j)-th entry of W̃log is nothing but
A∗
j ◦ F̃ I

log. Thus

| det(Wlog)|∏
i∈R |A∗

i ◦ F̃k, log|
= | det(W̃log · C−1)|

∏
i = 1,...,n |A∗

i ◦ F̃k, log|

= | det(C−1)| ×
∣∣∣ det

(
A∗
j ◦ F̃ Ii−1

log

)
i, j = 1,...,n

∣∣∣
∏

j = 1,...,n |A∗
j ◦ F̃k, log|

= | det(C−1)| ×
∣∣∣∣ det

( A∗
j ◦ F̃ Ii−1

log

A∗
j ◦ F̃k, log

)

i, j = 1,...,n

∣∣∣∣. (37)

Using the basic inequalities

log+
( p∑

i=1

xi

)
≤

p∑

i=1

log+ xi + log p, log+
( p∏

i=1

xi

)
≤

p∑

i=1

log+ xi , (38)

we have

log+ | det(Wlog)|∏
i∈R |A∗

i ◦ F̃k, log|
≤

∑

i, j = 1,...,n

log+
∣∣∣∣
A∗
j ◦ F̃ Ii−1

log

A∗
j ◦ F̃k, log

∣∣∣∣ + C, (39)

where C is some constant independent of f . Now the problem reduces to showing that

1

2π

∫ 2π

0
log+

∣∣∣∣
A∗
j ◦ F̃ I

log

A∗
j ◦ F̃k, log

∣∣∣∣(re
iθ ) d θ = SFk (r), (40)

for any I ∈ S and j ∈ Q. We illustrate by j = 1 and A∗
1 = a0 ∧ · · · ∧ ak , where each

ai ∈ (Cn+1)∨ in the standard dual basis {e∗
j } j = 0,..., n reads as ai = ∑n

j=0 ai, j e
∗
j . Similar

to (29), we have

A∗
j ◦ F̃ I

log = det
(
(h(i)


 )i ∈ I , 
= 0,..., k
)

where each h
 = ∑n
i=0 a
,i fi/ f0. Now by applying Proposition 3.3 and the Logarithmic

DerivativeLemma, the desired estimate (40) followsdirectly from (10), (38) and the following
Fact. [9, p.. 78, Thm. 2.5.13] For every i = 0, 1, . . . , n, one has the estimate

T (r , fi/ f0) ≤ O(T f (r)).

��
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3.7 End of the proof of themain theorem

Taking logarithm on both sides of (15) and then integrating, we receive

ω̃
(
q − 2N + n

)
TFk (r) ≤ 1

2π

∫ 2π

0
logϕ(reiθ ) d θ + 1

2π

∫ 2π

0
ψ(reiθ ) d θ + O(1), (41)

where

ϕ = |g|n ∏
i∈Q |A∗

i ◦ Fk |ω(i)

| det(W)| , ψ =
∑

R⊂Q, rank(R)=|R|=n

| det(W)|
∏

i∈R |A∗
i ◦ F̃k |

.

Using Proposition 3.4, we receive

(ϕ)0 =
∑

i∈Q
ωi (A

∗
i ◦ Fk)0 + n(Dk)0 − (detW)0

≤
∑

i∈Q
ω(i)

∑

a∈C
min{orda A∗

i ◦ Fk, (k + 1)(n − k)}{a}

≤ ω̃
∑

i∈Q

∑

a∈C
min{orda A∗

i ◦ Fk, (k + 1)(n − k)}{a}.

Whence by Jensen formula we have

1

2π

∫ 2π

0
log |ϕ(reiθ )| d θ ≤ Nϕ(r , 0) + O(1)

≤ ω̃
∑

i∈Q
N [(k+1)(n−k)]
Fk

(r , Ai ) + O(1).

Together this with (41) and Proposition 3.5, we finish the proof.

4 Some applications

4.1 A defect relation

Defect relation. Let f : C → P
n(C) be a linearly nondegenerate entire holomorphic curve.

For a fixed integer k = 0, 1, . . . , n, let A1, . . . , Aq ⊂ P
(
�k+1(Cn+1)

)
be q decomposable

hyperplanes such that any N of them have empty intersection. Then the k-th derived curve
Fk of f satisfy the following estimate:

q∑

i=1

δ
[(k+1)(n−k)]
Fk

(Ai ) ≤ 2N − n. (42)

Proof The main theorem can be rewritten as

q∑

i=1

(
1 − N [(k+1)(n−k)]

Fk
(r , Ai )

TFk (r)

)
≤ 2N − n + SFk (r)

TFk (r)
.

Taking the limit inferior of both sides of the above inequality, we conclude the proof. ��
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4.2 Ramification theorem

Theorem 4.1 In the setting of the main theorem, assuming moreover that the associated k-th
derived curve Fk is completely μk,i –ramified over each decomposable hyperplane Ai for
i = 1, . . . , q, then one has

q∑

i=1

(
1 − (k + 1)(n − k)

μk,i

)
≤ 2N − n.

Proof For an index i with μk,i < ∞, every nonzero coefficients of the divisor (A∗
i ◦ Fk)0 is

≥ μk
i . Hence

δ
[(k+1)(n−k)]
Fk

(Ai ) = 1 − lim sup
N [(k+1)(n−k)]
Fk

(r , Ai )

TFk (r)

≥ 1 − (k + 1)(n − k) lim sup
N [1]
Fk

(r , Ai )

TFk (r)

[By the First Main Theorem] ≥ 1 − (k + 1)(n − k) lim sup
N [1]
Fk

(r , Ai )

NFk (r , Ai )

≥ 1 − (k + 1)(n − k)

μk
i

.

When μk
i = ∞, the above inequality is trivial. By the defect relation we finish the proof. ��
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