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ALGORITHMS FOR CHECKING
ZERO-DIMENSIONAL COMPLETE INTERSECTIONS

MARTIN KREUZER, LE NGOC LONG AND LORENZO ROBBIANO

Given a 0-dimensional affine K -algebra R = K [x1, . . . , xn]/I , where I is an ideal in a polynomial ring
K [x1, . . . , xn] over a field K , or, equivalently, given a 0-dimensional affine scheme, we construct effective
algorithms for checking whether R is a complete intersection at a maximal ideal, whether R is locally a
complete intersection, and whether R is a strict complete intersection. These algorithms are based on
Wiebe’s characterization of 0-dimensional local complete intersections via the 0-th Fitting ideal of the
maximal ideal. They allow us to detect which generators of I form a regular sequence resp. a strict regular
sequence, and they work over an arbitrary base field K . Using degree filtered border bases, we can detect
strict complete intersections in certain families of 0-dimensional ideals.

1. Introduction

Regular sequences and complete intersections play a fundamental role in commutative algebra and
algebraic geometry. Given an ideal I in a polynomial ring P = K [x1, . . . , xn] over a field K , e.g., the
vanishing ideal of an affine or projective scheme, it is therefore an important algorithmic task to check
whether I is a complete intersection ideal, that is, whether I can be generated by ht(I ) polynomials.
Equivalently, we call R = P/I a complete intersection ring in this case. Several approaches have been
developed to tackle this problem effectively for special classes of ideals.

For instance, if the ring R = P/I is local, based on a description of the structure of the R-algebra
TorR(K , K ) in [17], characterizations of the complete intersection property using the Hilbert series
of TorR(K , K ) were developed in [2] and [7]. However, this approach requires the calculation of the
Hilbert series of a noncommutative algebra. Furthermore, in the local setting, complete intersections were
characterized in [18] using the freeness of the conormal module I/I 2 and the finiteness of the projective
dimension of I . Again, these conditions are not easy to check algorithmically. In a similar vein, if the
base field K has characteristic zero, one can use techniques based on the Kähler differential module
�1

R/K , as in [3], or on Kähler differents, as in [9], but they are neither general enough for our purposes
nor do they lend themselves to a generalization for families of ideals. Finally, let us mention that effective
algorithms have been developed in [4] for checking the complete intersection property of toric ideals
defining affine semigroup rings.

In this paper we are interested in algorithms for checking the locally complete intersection property
and the strict complete intersection property for a 0-dimensional ideal I in P = K [x1, . . . , xn], where
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K is an arbitrary field. In other words, we want to check these properties for a 0-dimensional affine
K -algebra of the form P/I . In the language of algebraic geometry, the scheme X = Spec(P/I ) is then a
0-dimensional affine scheme, and R = P/I is its affine coordinate ring. Notice that every 0-dimensional
projective scheme can be embedded into a basic affine open subset of Pn after possibly extending the
field K slightly. Then we can readily move between the languages of affine and projective geometry by
using homogenization and dehomogenization. For reasons which will become clear shortly, we prefer the
affine setting in this paper. In any case, 0-dimensional affine K -algebras R = P/I have been used in
many areas besides algebraic geometry, for instance in algebraic statistics, algebraic biology, etc.

Our main algorithms check whether a 0-dimensional affine K -algebra R = P/I is locally a complete
intersection or a strict complete intersection. They are based on a characterization of local complete
intersections by H. Wiebe in [19], where it is shown that a 0-dimensional local ring is a complete
intersection if and only if the 0-th Fitting ideal of its maximal ideal is nonzero. Given a 0-dimensional
affine K -algebra R = P/I whose defining ideal I has a primary decomposition I = Q1 ∩ · · · ∩Qs , this
characterization can be applied right off the bat, because the localizations are of the form P/Qi , and
hence again 0-dimensional local affine K -algebras. For checking the strict complete intersection property,
we use the graded ring grF (R) with respect to the degree filtration F instead. It has a presentation
grF (R) = P/ DF(I ), where the degree form ideal DF(I ) is homogeneous and 0-dimensional; see [11,
Definition 4.2.13].

Now let us describe the contents of this paper in detail. In Section 2 we start by recalling some basic
properties of a 0-dimensional scheme X embedded in an affine space An

K , where K is an arbitrary field.
In particular, besides recalling the degree filtration and the affine Hilbert function of the affine coordinate
ring RX = P/IX of X, where IX is the vanishing ideal of X in P = K [x1, . . . , xn] and K is a field, we
recall the degree form ideal DF(IX), the associated graded ring grF (RX), and mention their connection to
the Rees algebra RF (RX) and to Macaulay bases of IX.

Then the main part of the paper starts in Section 3. After defining what we mean by a complete
intersection at a maximal ideal and by the property of being locally a complete intersection, we recall
Wiebe’s characterization mentioned above; see [19, Satz 3]. The central tool for computing the 0-th Fitting
ideal needed in this characterization is given in Proposition 3.3. For a maximal ideal M of P and an
M-primary ideal Q, it suffices to write the generators of Q in terms of a regular sequence generating M

and to compute the maximal minors of the coefficient matrix. As an immediate consequence, we obtain
Algorithm 3.4 for checking if a 0-dimensional affine K -algebra RX = P/IX is a complete intersection at
a maximal ideal, and by combining this with the computation of a primary decomposition of IX, we get
an algorithm for checking whether RX is locally a complete intersection. Moreover, the nonzero minors
provide us with regular sequences generating Q PM, as Proposition 3.7 shows. Suitable examples at the
end of the section illustrate the merits and some hidden features of these algorithms.

In Section 4 further notions are recalled. More precisely, strict regular sequences, strict Gorenstein
rings, and strict complete intersections enter the game. In particular, the ideal IX is called a strict complete
intersection if its degree form ideal DF(IX) is generated by a homogeneous regular sequence. Since the
graded ring grF (RX) = P/ DF(IX) is 0-dimensional and local, we can use Proposition 3.3 and Wiebe’s
result again to construct Algorithm 4.4 for checking the strict complete intersection property. Moreover,
we also get a description of which generators of IX form a strict regular sequence (see Corollary 4.5) and
illustrate everything via some explicit examples.
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In the last section of the paper, we present a second algorithm for checking the strict complete
intersection property via border bases which generalizes to certain families of 0-dimensional ideals. Based
on the notion of a degree filtered K -basis of RX, we define degree filtered O-border bases. They have
several nice characterizations, the most useful one here being the property that the degree forms of the
border basis polynomials form an O-border basis of the degree form ideal (see Proposition 5.3). Then we
obtain Algorithm 5.4 which checks for the strict complete intersection property using a degree filtered
border basis. This version allows us to detect all strict complete intersections within certain families of
0-dimensional ideals, as illustrated by Example 5.5 and applied further in [15]. Finally, in Remark 5.6, we
compare the algorithms of this paper with the methods based on Jacobian matrices, Kähler differentials,
and Kähler differents mentioned above.

All examples in this paper were computed using the computer algebra system CoCoA; see [6]. Unless
explicitly stated otherwise, we adhere to the notation and definitions provided in [10; 11; 13].

2. Zero-dimensional affine schemes

In the following we always work over an arbitrary field K and let An
K be the affine n-space over K .

We fix a coordinate system, so that the affine coordinate ring of An
K is given by the polynomial ring

P = K [x1, . . . , xn]. Thus a 0-dimensional subscheme X of An
K is defined by a 0-dimensional ideal IX in P,

and its affine coordinate ring is RX = P/IX. Consequently, the vector space dimension µ = dimK (RX) is
finite and equal to the length of the scheme X.

Since we are keeping the coordinate system fixed at all times, we have further invariants of X. Recall
that the degree filtration F̃ = (Fi P)i∈Z on P is given by Fi P = { f ∈ P \ {0} | deg( f ) ≤ i} ∪ {0} for all
i ∈ Z. Then the induced filtration F = (Fi RX)i∈Z, where Fi RX = Fi P/(Fi P ∩ IX), is called the degree
filtration on RX. It is easy to see that the degree filtration on RX is increasing, exhaustive and orderly in
the sense that every element f ∈ RX \ {0} has an order ordF ( f ) = min{i ∈ Z | f ∈ Fi RX \ Fi−1 RX}.

Definition 2.1. Let X be a 0-dimensional subscheme of An
K as above:

(a) The map HFa
X : Z → Z given by i 7→ dimK (Fi RX) is called the affine Hilbert function of X.

(b) The number ri(RX) = min{i ∈ Z | HFa
X( j) = µ for all j ≥ i} is called the regularity index of X.

(c) The first difference function 1 HFa
X(i) = HFa

X(i) − HFa
X(i − 1) of HFa

X is called the Castelnuovo
function of X, and the number 1X = 1 HFa

X(ri(RX)) is the last difference of X.

It is well-known that HFa
X satisfies HFa

X(i) = 0 for i < 0 and

1 = HFa
X(0) < HFa

X(1) < · · · < HFa
X(ri(RX)) = µ

as well as HFa
X(i) = µ for i ≥ ri(RX). The affine Hilbert function of X is related to the following objects.

Definition 2.2. Let X be a 0-dimensional subscheme of An
K as above:

(a) For every polynomial f ∈ P \{0}, its homogeneous component of highest degree is called the degree
form of f and is denoted by DF( f ).

(b) The ideal DF(IX) = ⟨DF( f ) | f ∈ IX \ {0}⟩ is called the degree form ideal of IX.

(c) The ring grF̃ (P) =
⊕

i∈Z Fi P/Fi−1 P is called the associated graded ring of P with respect to F̃ .
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(d) The ring grF (RX) =
⊕

i∈Z Fi RX/Fi−1 RX is called the associated graded ring of RX with respect
to F .

(e) For an element f ∈ RX \ {0} of order d = ordF ( f ), the residue class LF( f ) = f + Fd−1 RX in
grF (RX) is called the leading form of f with respect to F .

We observe that in our setting the associated graded ring grF (RX) is a 0-dimensional local ring whose
maximal ideal is generated by the residue classes of the indeterminates. Its K -vector space dimension is
given by

dimK (grF (RX)) =

∞∑
i=0

dimK (Fi RX/Fi−1 RX) = dimK (RX).

For actual computations involving the associated graded ring and leading forms, we can use the following
observations.

Remark 2.3. Notice that there is a canonical isomorphism of graded K -algebras grF̃ (P) ∼= P which
allows us to identify grF (RX) ∼= P/ DF(IX); see [11, Propositions 6.5.8 and 6.5.9].

In order to represent the leading form of a nonzero element f ∈ RX as a residue class in P/ DF(IX),
we first have to represent f by a polynomial F ∈ P with deg(F) = ordF ( f ). This can, for instance, be
achieved by taking any representative F̃ ∈ P of f and computing the normal form F = NFσ,IX

(F̃) with
respect to a degree compatible term ordering σ . Then the degree form DF(F) represents the leading form
LFF ( f ) with respect to the isomorphism grF (RX) ∼= P/ DF(IX).

The affine Hilbert function of X and the (usual) Hilbert function of grF (RX) are connected by

HFa
X(i) =

i∑
j=0

HFgrF (RX)( j) and 1 HFa
X(i) = HFgrF (RX)(i)

for all i ≥ 0. Since the Hilbert function of grF (RX) can be calculated using a suitable Gröbner basis of IX

(see [11], Section 4.3), this formula allows us to compute the affine Hilbert function of X.
The ring RX and its graded ring grF (RX) are connected by the following flat family. (For further details

and proofs; see [11, Section 4.3.B].)

Remark 2.4. Let x0 be a further indeterminate:

(a) The ring RF̃ (P) =
⊕

i∈Z Fi P · x i
0 is called the Rees algebra of P with respect to F̃ . Every nonzero

homogeneous element of the Rees algebra is of the form f · xd+ j
0 with d = deg( f ) and j ≥ 0.

By identifying it with the polynomial f hom
· x j

0 , we obtain an isomorphism of graded K [x0]-
algebras RF̃ (P) ∼= K [x0, x1, . . . , xn] =: P . Here f hom is the usual homogenization f hom

= xdeg( f )

0 ·

f
( x1

x0
, . . . , xn

x0

)
.

(b) Similarly, using the degree filtration F on RX, we have the Rees algebra RF (RX) =
⊕

i∈Z Fi RX · x i
0.

Now we let I hom
X = ⟨ f hom

| f ∈ IX \ {0}⟩ be the homogenization of IX. Then the above isomorphism
induces an isomorphism of graded K [x0]-algebras RF (RX) ∼= P/I hom

X =: Rhom
X .

Geometrically speaking, the ring Rhom
X is the homogeneous coordinate ring of the 0-dimensional

scheme obtained by embedding X = Spec(P/IX) ⊂ An
K into the projective n-space via An

K
∼=

D+(x0) ⊂ Pn .
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is the defining ideal of the universal family of all subschemes of length four of the affine plane which
have the property that their coordinate ring admits O as a vector space basis. The parameters c21, c23,
c32, c34, c41, c42, c43, and c44 are free. In other words, the family is parametrized by an 8-dimensional
affine space. Since the degree form ideal DF(I ) is generated by the degree forms of f1, f2, f3, f4, we
have DF(I ) = ⟨y2

− c41xy, x2
− c42xy, xy2, x2 y⟩. To compute the locus of strict complete intersections

in A8
K , we write the generators of DF(I ) in the form

(−c41 y)x + (y)y, (x)x + (−c42x)y, (y2)x + (0)y, (xy)x + (0)y

We get the matrix

W =

(
−c41 y x y2 xy

y c42x 0 0

)
Then the only nonzero maximal minor of W modulo DF(I ) is given by (1 − c41c42)xy. In conclusion,
outside the hypersurface in A8

K defined by 1 − c41c42 = 0, all ideals define a strict complete intersection
scheme.

Finally, we note that one can also use the Kähler different of RX to check whether this ring is a strict
complete intersection or locally a complete intersection. However, this approach introduces constraints
on the characteristic of the base field. Let us formulate the characterizations underlying the algorithms
using Kähler differents and leave the details to the interested reader.

Remark 5.6. Let X be a 0-dimensional subscheme of An
K , and let RX = P/IX be the affine coordinate

ring of X:

(a) The module of Kähler differentials �1
RX/K is given by the presentation

�1
RX/K

∼=

n⊕
i=1

Pdxi/

(
IX ·

n⊕
i=1

Pdxi +

〈 n∑
i=1

∂ f/∂xi dxi | f ∈ IX

〉)
.

(b) The Kähler different ϑRX
of the K -algebra RX is the ideal in RX generated by residue classes of

the maximal minors of the Jacobian matrix Jac( f1, . . . , fr ) = (∂ fi/∂x j )i, j , where { f1, . . . , fr } is a
system of generators of IX. For further details about Kähler differents; see [16, Section 10].

(c) The Kähler different ϑgrF (RX) of the associated graded ring grF (RX)∼= P/ DF(IX) is defined similarly.

(d) Suppose that char(K ) does not divide µ. Then X is a strict complete intersection if and only if
ϑgrF (RX) is nonzero.

(e) Again, suppose that char(K ) does not divide µ. Then X is locally a complete intersection if and only
if the image of ϑRX

in every local ring of RX is nonzero. (For instance, if we know the principal
idempotents f1, . . . , fs of RX, it suffices to check that fi · ϑRX

̸= ⟨0⟩ for i = 1, . . . , s.)

The following easy example shows that the assumption on the characteristic of K is necessary for the
approach via Kähler differents to work, while the approach based on Wiebe’s result (see Proposition 3.2)
works in general.

Example 5.7. Let p be a prime number, let K = Fp, let P = K [x], and let X be the 0-dimensional
subscheme of A1

K defined by IX = ⟨x p
⟩.



ALGORITHMS FOR CHECKING ZERO-DIMENSIONAL COMPLETE INTERSECTIONS 75

When we use Algorithm 4.4 to check whether X is a strict complete intersection, we find the matrix
W = (x p−1) whose determinant yields the relation x p−1

∈ grF (RX) \ {0}. Hence we conclude that X is a
strict complete intersection.

However, the Jacobian matrix is Jac(x p) = (0) and therefore we have ϑgrF (RX) = ⟨0⟩. Thus the Kähler
different does not yield the correct answer.
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