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1. Introduction

Use of lactic acid bacteria (LAB) as starters for food thiamine, nicotine, folic acid, pyridoxine and vitamin B1y),
fermentation has become popular as lactic acid is an effective free amino acids, exopolysaccharides and short chain fatty
preservative and a flavor enhancer [1]. In addition, LAB are acids (SCFA) [2-4]. Naturally, LAB can produce a non-
often used for the production of functional foods because of protein amino acid or y-aminobutyric acid (GABA) [5,6],
their probiotic potential and production of vitamins (e.g. which acts as inhibitory neurotransmitter, hypotension
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inductor, diuretic agent and tranquilizer [7,8]. Therefore,
GABA is one of the most commonly used bioactive
components in fermented foods [9]. The biochemical can be
produced by a variety of species, including animals, plants
and microorganisms. The GABA production by LAB is
particularly interesting due to their safety, low production
costs and narrow space requirements. Hence, several studies
have focused on the enrichment of various food systems with
GABA from LAB [10-14]. Biosynthesis of GABA in LAB
is catalyzed by glutamic acid decarboxylase (GAD),
including GAD enzyme and glutamate/GABA antiporter
GadC. The L-glutamate can be transported into the cell via
GadC and converted to GABA by decarboxylation under
catalysis of GAD with pyridoxal-5’-phosphate as cofactor
[8]. Then, GABA is exported extracellularly via GadC.
Alternatively, L-glutamate can be produced intracellularly
from a-ketoglutarate [8] and GABA can be degraded into
succinate by GABA aminotransferase and succinate
semialdehyde dehydrogenase [7,8]. Several factors, include-
ing pH and temperature, were reported to affect activity of
GAD as well as GABA production in LAB species [15-17].
Thus, cultivation parameters need to be optimized for the
LAB strains to achieve optimal GABA yields. Ruoc is a high-
salt fermented paste that is produced by mixing small sea
shrimps (Acetes sp.) with nearly 25% (w w) of sea salt.
Then, this mixture is compressed and incubated at ambient
temperature for nearly 9-12 months. During ruoc production,
proteins are hydrolyzed by intracellular shrimp enzymes,
which occurs with microbial secondary metabolite formation
simultaneously. This results in typical ruoc aroma and flavor.
Up-to-date, no studies have been published on the production
of GABA by LAB isolated from ruoc. Therefore, the aim of
this study was to assess GABA-producing LAB isolates from
ruoc samples in Vietnam. The isolate with the highest GABA
producing ability was identified to the species level and its
GABA production conditions were optimized.

2. Materials and Methods

2. Materials and Methods

2.1. Isolation of lactic acid bacteria

Commercial ruoc samples were purchased from local
markets in Hue, Vietnam. Forty-five ruoc samples were
homogenized in Ringer solution (Sigma-Aldrich, Milan,
Italy), decimally diluted, spread on de Man, Rogosa and
Sharpe (MRS) agar (Oxoid, Milan, Italy) and anaerobically
incubated at 37 °C for 48 h. Isolates were reported as LAB if
they were positive to Gram stain and negative to catalase test.
The isolates were stored at -80 °C for further analysis.

2.2. Preparation of inoculant

Cells were activated in 10 ml of MRS broth at 37 °C for 24
h. The cell biomass collected after centrifuging at 12000x g
for 5 min at 4 °C was resuspended in Ringer’s solution. The

ODeso of the cell suspensions was measured and used to
standardize cell density before using as inoculants.

2.3. Screening of y-aminobutyric acid-producing lactic
acid bacteria

Isolates were cultured in MRS broth containing 1% of
monosodium glutamate (MSG) at 37 °C for 24 h with initial
pH 6.2. Cultures were centrifuged at 12000x g for 5 min at 4
°C and GABA contents in the supernatants were measured
using high-performance liquid chromatography (HPLC).

2.4. ldentification of lactic acid bacteria

The LAB isolate R13 was identified through MALDI-TOF
mass spectroscopy analysis as described before [18] using
MBT Compass Explorer Software v.4.1 (Bruker Daltonik,
Germany), BDAL Database (MSP-8468) and in-house
identification databases. Samples for the analysis were
prepared based on a method reported in a previous study
[18]. The MS profiles of LAB were reported using MALDI
TOF/TOF Analyzer 4800 Plus (Applied Biosystems,
Framingham, MA, USA). Furthermore, 200-Hz tripled UV
Nd:YAG laser was used to generate ions, which were
accelerated in a 20-kV electric field through a grid at 19.2
kV. lons were separated based on their m/z ratio in a 1.5-m
linear field-free drift tube. Mass spectra were recorded
through scanning in 2000-20000 Da mass ranges. Calibration
was carried out before analyses using Protein Calibration
Standard | (Bruker Daltonics, Leipzig, Germany).
Identification criteria provided by the manufacturer were
used to interpret identification scores. Matching between
MALDI-TOF MS profiles from novel isolates and MALDI-
TOF MS profiles in the reference database was expressed
using BioTyper Software as log (score) and color code
(green, yellow and red). BioTyper log (score) values greater
than 2.3 and green color indicated a highly probable
identification at the species level [19].

2.5. Assessment of optimal conditions for y-aminobutyric
acid production

The optimal cultivation parameters for GABA production by
Lactiplantibacillus (L.) pentosus R13 were assessed using
one-factor-at-a-time method. Moreover, GABA accumulated
in the culture media was assessed using HPLC. Cell growth
was assessed by measuring ODeggo of the culture media,
which was normalized to log CFU ml? using cell density
standard curve. Cultivation parameters investigated in this
study included an initial cell density from 5 x 10°to 5 x 107
CFU ml, a monosodium glutamate concentration of 0.5-2%
(wv1), initial pH of 4-9, incubation temperature of 30-50 °C
and incubation time of 24-120 h.

2.6.  High-performance liquid
quantification of y-aminobutyric acid

chromatography

Sample preparation and HPLC analysis of GABA were
carried out as described previously [17]. Briefly, GABA in
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culture media was purified via centrifugation and elimination
of proteins with sulfosalicylic acid, followed by dabsylation
using 4-dimethylaminoazobenzen-4-sulfonyl chloride. Dab-
syl-GABA was quantified using HPLC featured with C18
column (250 x 4.6 mm, 5-um particle size), 465 nm of
detection wavelength, isocratic eluent mode and mobile
phase of 25 mM ammonium acetate buffer containing 0.1%
of acetic acid:acetonitrile at a ratio of 26:74 (v v1). All
analyses were carried out in triplicate.

2.7. Statistical analysis

Data were reported as mean +SD (standard deviation) of
triplicate analyses. One-way ANOVA followed by Tukey’s
HSD test were used to assess differences between the means.
Differences were reported significant if p < 0.05. All
statistical analyses of data were carried out using SPSS
Software v.16 (SPSS, Chicago, USA).

3. Results and Discussion

3. Results and Discussion

3.1. The y-aminobutyric acid-producing ability of lactic
acid bacteria

Ability of GABA production by LAB strains depends on
activity of GAD (EC 4.1.1.15) system as well as L-glutamate
dehydrogenase (GDH) [7,8]. Variations in the activity of
these enzymes results in differences in GABA production by
the strains. Siragusa et al. [20] reported that GABA Yyields
were different between Lactobacillus paracasei PF6, L.
plantarum C48 and L. delbrueckii subsp. bulgaricus PR1
isolated from cheese at similar conditions. Therefore, it is
crucial to screen for the most potential LAB candidates for
GABA enrichment in particular food products. In the current
study, a total of 20 LAB isolates (data not shown) from ruoc
were inoculated in MRS broth containing 1% MSG (w v!) at
initial pH 6.2, which were then incubated at 37 °C for 24 h to
assess their GABA-producing ability. Of these isolates, R1,
R3, R12 and R13 isolates showed significant GABA
production (Figure 1). Isolate R13 produced the highest
quantity (14.69 mM £0.16) of GABA. Therefore, this isolate
was further identified and its culture conditions were
optimized to maximize GABA production.

3.2. Identification of lactic acid bacteria R13 isolate

Isolate R13 was identified with a high identification log
score (2.57) L. pentosus using MBT Compass Explorer
Software v.4.1. (Bruker Daltonik, Germany) and therefore
this identification was considered highly valid [19]. The
identification result has verified several previous reports on
the usefulness of MALDI-TOF MS for the species level
identification of LAB isolates from wvarious sources
[19,21,22].
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Figure 1. The y-aminobutyric acid production by lactic acid
bacteria from ruoc. All isolates were grown for 24 h at 37 °C
in de Man, Rogosa and Sharpe broth containing 1% (w v'%)
of monosodium glutamate at initial pH 6.2. The y-
aminobutyric acid content was measured by high perfor-
mance liquid chromatography. Data are means =SD of
triplicate experiments. Means that do not share a common
letter differ significantly at p < 0.05

3.3. Optimization of cultivation parameters for vy-
aminobutyric acid production by Lactiplantibacillus
pentosus R13

3.3.1. Initial cell density

Cell suspensions of L. pentosus R13 with cell count of
5x10° to 5 x 107 CFU ml* were inoculated into MRS broth
supplemented with 1% (w v'') MSG at initial pH 6.2 and
incubated for 24 h at 37 °C. The highest GABA yield (15.31
mM +0.17) was achieved at an initial cell density of 5 x 10°
CFU mlt (Figure 2).
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Figure 2.  The vy-aminobutyric acid production by
Lactiplantibacillus pentosus R13 at different initial cell densities.
Cell suspensions with different initial densities were grown for 24
h at 37 °C in de Man, Rogosa and Sharpe broth containing 1% (w
v1) of monosodium glutamate at initial pH 6.2. The y-aminobutyric
acid content was measured by high-performance liquid
chromatography. Data are means +SD of triplicate experiments.
Means that do not share a common letter differ significantly at p <
0.05
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Lower initial cell densities (5 x 10° and 106 CFU ml?)
were possibly suboptimal to reach a maximum GABA
production, while higher initial cell densities (107 and 5 x 107
CFU mlY) might be inhibited by a lack of nutrients, which
could force cells to use GABA as a carbon and energy source.
This result was similar to that from a previous study [17],
which showed that Pediococcus pentosaceus MN12
produced higher quantities of GABA at an initial density of
5 x 108 CFU ml, compared to higher initial cell densities of
107 or 5 x 107 CFU ml®. Similarly, Levilactobacillus
namurensis NH2 produced a higher GABA vyield at a lower
initial cell density (6 log CFU g*), compared to higher cell
densities (7 and 8 log CFU g?) [23].

3.3.2. Monosodium glutamate concentration

Since glutamate is a source of carbohydrate for GABA
synthesis by LAB [8], supplementation of glutamate into
culture media is essential for achieving high GABA Yyields.
In this study, effects of MSG supplementation on GABA
production by L. pentosus isolate R13 were investigated
using various MSG concentrations of 0-2% (w v) with 0.5%
increments while culture temperature, initial pH and
fermentation time were 37 °C, 6.2 and 24 h, respectively.
Concentration of GABA in the culture media increased with
the increase of MSG concentration from 0 to 1.5% (w vl),
reaching a maximum of 14.02 mM #0.09 (Figure 3).
However, GABA concentration decreased when the MSG
concentration exceeded 1.5% (w v1). High MSG
concentrations in the culture media might impose an extreme
osmotic stress on the cells, interrupting GABA synthesis [8].
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Figure 3. The y-aminobutyric acid production by Lactiplanti-
bacillus pentosus R13 at different monosodium glutamate
concentrations. Cell suspensions with initial density of 5 x 106 CFU
ml-t were grown for 24 h at 37 °C in de Man, Rogosa and Sharpe
broth containing different monosodium glutamate concentrations at
initial pH 6.2. The y-aminobutyric acid content was measured by
high-performance liquid chromatography. Data are means £SD of
triplicate experiments. Means that do not share a common letter
differ significantly at p < 0.05

A similar dose dependency was reported by Tajabadi et
al. [24] using Lactiplantibacillus plantarum Taj-Apis362, a
honeybee isolate and by Komatsuzaki et al. [25] using

Lacticaseibacillus paracasei NFRI 7415, a funa-sushi
(Japanese traditional fermented fish food) isolate.

3.3.3. Initial pH

Technically, pH of the culture media is a key parameter
for the production of GABA by LAB as it affects cell growth
and GAD activity [8]. In this study, effects of initial pH on
GABA synthesis by L. pentosus R13 were investigated by
adjusting media pH from 4 to 8 prior to inoculation, while
MSG supplement, initial cell density, culture temperature
and growth time were maintained at 1.5% (w v), 5 x 108
CFU ml, 37 °C and 24 h, respectively. Results showed that
GABA production by L. pentosus R13 increased with the
increase of initial pH and reached a maximum yield of 16.72
mM £0.16 at initial pH 7.0 (Figure 4).
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Figure 4. The y-aminobutyric acid production by Lactiplanti-
bacillus pentosus R13 at different initial pH values. Cell
suspensions with initial density of 5 x 106 CFU ml-! were grown for
24 hat37°Cin de Man, Rogosa and Sharpe broth containing 1.5%
(w v'Y) monosodium glutamate at various medium pH values. The
y-aminobutyric acid content was measured by high-performance
liquid chromatography. Data are means +SD of triplicate
experiments. Means that do not share a common letter differ
significantly at p <0.05

At higher initial pH, GABA accumulation in culture
media decreased significantly; as previously reported for P.
pentosaceus MN12 [17]. During the fermentation, lactic acid
formation causes decreases in pH and induces GABA
synthesis by GAD as this enzyme contributes to acid
tolerance ability of the LAB by utilizing hydrogen ions [26].
In contrast, LAB such as L. brevis CGMCC 1306, L.
plantarum C48, Lb. paracasei, Streptococcus salivarius
subsp. thermophilus Y2 and Lactococcus lactis PU1 produce
maximum quantities of GABA at pH 4-5 [14,20,25,27,].
Possibly an initial pH of 7.0 was favorable for the
acclimatization of L. pentosus R13 and P. pentosaceus
MN12 [17] cells in the culture media, which then accelerated
cell growth and faster transferred the cells to the stationary
phase, compared to other initial pH values. It is noteworthy
that the media pH decreased to ~4.8 after 24 h of
fermentation, which was the optimal pH for GAD activity

(8].
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3.3.4. Culture temperature

The GABA concentration achieved after 24 h of
fermentation increased with increasing the fermentation
temperature (Figure 5). The optimal temperature was 45 °C;
at which, a GABA vyield of 20.53 mM £0.10 was achieved.
Further increasing the incubation temperature to 50 °C
decreased GABA vyield to 13.70 mM £0.07. This might be
due to the high temperature stress on the metabolism of L.
pentosus R13, particularly on the activity of GAD system.
An optimal temperature of 45 °C was higher than that
reported for other LAB, including 30-40 °C [25,27].

N
N
T

s3]

[any
©
T
o

[EN
[ep]
T

-
w
T

u

=
o
T

GABA concentration [mM]
o

~

30 35 40 45 50

Culture temperature [°C]
Figure 5. The y-aminobutyric acid production by Lactiplanti-
bacillus pentosus at different temperatures. Cell suspensions with
initial density of 5 x 106 CFU ml-! were grown for 24 h in de Man,
Rogosa and Sharpe broth containing 1.5% (w v't) monosodium
glutamate at initial pH 7 and at different temperatures. The vy-
aminobutyric acid content was measured by high-performance
liquid chromatography. Data are meanstSD of triplicate
experiments. Means that do not share a common letter differ
significantly at p<0.05

3.3.5. Changes of pH, cell growth and y-aminobutyric
acid production by Lactiplantibacillus pentosus R13
during fermentation

To investigate kinetics of GABA production by L.
pentosus R13, pH, cell density and GABA content in the
media were assessed every 24 h during fermentation at
optimal conditions. Within the first 24 h of incubation, pH of
the media decreased from 7.0 to 4.8 (Figure 6a), with a sharp
increase in the cell numbers from 6.70 to 9.12 log CFU ml™!
(Figure 6b) and a rapid accumulation of GABA to 21.02 mM
+0.19 (Figure 6c). Changes in pH, cell yield and GABA
content were similar to those reported by Lin [28] for L.
rhamnosus YS9. From 24 to 96 h of fermentation, the cell
number of L. pentosus R13 steadily increased with a gradual
GABA accumulation to a maximum of 23.34 mM £0.11.
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Figure 6. Changes of culture media pH (A), cell growth (B) and y-
aminobutyric acid production (C) during fermentation. Cell
suspensions with initial density of 5 x 106 CFU ml-! were grown for
120 h at 45 °C in de Man, Rogosa and Sharpe broth containing
1.5% (w v'1) monosodium glutamate at initial pH 7. The final pH,
cell growth and y-aminobutyric acid concentration were monitored
at 24 h intervals. Data are means +SD of triplicate experiments.
Means that do not share a common letter differ significantly at p <
0.05

After 96 h, nutrient depletion likely triggered decreases
in the cell growth and GABA production. Further decreases
of media pH after 96 h were correlated to decreases in GABA
concentration. Naturally, decarboxylation of glutamate to
produce GABA utilizes hydrogen ions and the exchange of
further alkaline GABA for glutamate increases the pH of
environment [29]. Therefore, decreases in GABA production
after 96 h might explain further decreases of media pH.
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4. Conclusion

In the present study, four LAB isolates from ruoc, a high-
salt fermented sea-shrimp paste, included capacities to
produce GABA. Isolate R13 produced higher quantities of
GABA and was identified as L. pentosus using MALDI-TOF
MS analysis. Initial cell density of 5 x 108 CFU ml* in broth
media containing 1.5% (w v!) MSG, initial pH of 7.0,
cultivation temperature of 45 °C and incubation time of 96 h
were verified as the optimal production parameters, yielding
23.34 mM £0.11 of GABA in culture media. Further studies
are needed to use these results for the production of
functional foods containing GABA as a primary bioactive
component.
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' matrix-assisted laser desorption/ionization-time of flight mass spectrometry or MALDI/TOF MS
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