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Abstract
For a given odd prime number p, in this paper we construct a minimal generating set for the
mod-p cohomology of the Steinberg summand of a family of Thom spectra over the clas-
sifying space of an elementary p-abelian group. This resolves the remaining cases for odd
prime numbers of a problem studied previously by M. Inoue (Contemporary Mathematics,
vol. 293, pp. 125–139, 2002) and (J. Lond. Math. Soc. 75: 317–329, 2007) and by the author
(J. Algebra 381: 164–175, 2013).
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1 Introduction

Fix p an odd prime number. Given n and k two natural numbers, we study in this paper the
following module over the mod-p Steenrod algebra A :

Ln,k = stn(e
k
nH

∗Vn).

In this formula,

– H ∗Vn
∼= E(x1, . . . , xn) ⊗ Fp[y1, . . . , yn] is the mod-p cohomology of a rank n

elementary abelian p-group Vn,

– en = L
p−1
2

n , where Ln = det((ypi−1

j )1≤i,j≤n), and
– stn is the Steinberg idempotent of the group ring Fp[GLn(Fp)].

The module Ln,k is thus the image of the action of stn on the principal ideal of H ∗Vn

generated by ekn. The class en, up to sign, is the Euler class of the vector bundle over the
classifying space BVn associated to the reduced real regular representation, ρ̄n, of Vn. If

� Nguyen Dang Ho Hai
ndhhai@husc.edu.vn

1 College of Sciences, University of Hue, Hue, Vietnam

Published online: 5 June 2021

Vietnam Journal of Mathematics (2022) 50:229–248

http://crossmark.crossref.org/dialog/?doi=10.1007/s10013-021-00501-y&domain=pdf
mailto: ndhhai@husc.edu.vn


we let L(n, k) denote the stable summand associated to the Steinberg module of the Thom
spectrum over the classifying space BVn associated to k copies of ρ̄n, then by Thom’s iso-
morphism the module Ln,k is the mod-p cohomology of L(n, k). We refer the reader to [1,
2, 13–15, 17, 22] for the important role of L(n, k) in stable homotopy theory.

The purpose of this paper is to give an explicit description of a minimal generating set
for Ln,k as a module over the mod-p Steenrod algebra. The cases where k = 0, 1 were
treated by M. Inoue for the prime 2 in [9] and for odd primes in [10]. The case where p

is the prime 2 and k an arbitrary natural number was considered by the author in [6]. This
paper thus completes the remaining cases for odd primes.

We now state the main results of the paper. Given an A -module M , put Q(M) =
M/A +M , where A + denotes the augmentation ideal of A . By definition, Q(M) is the
largest quotient of M on which A acts trivially. The following result relates the quotient
spaces Q(Ln,k) for different values of n and k.

Theorem 1 1. If m = m′p with m′ ≥ 1, there is an isomorphism of graded vector spaces:

Q(ΣnLn,2m−1) ∼= ΦQ(ΣnLn,2m′−1).

2. If m = m′p + r with m′ ≥ 0 and 1 ≤ r ≤ p − 1, there is a short exact sequence of
graded vector spaces:

0 → ΦQ
(
ΣnLn,2m′+1

) → Q
(
ΣnLn,2m−1

) → Q
(
Σ2m(p−1)+n−1Ln−1,2mp−1

)
→ 0.

3. For all m ≥ 0, there is a short exact sequence of graded vector spaces:

0 → Q(Ln,2m+1) → Q(Ln,2m) → Q
(
Σ2m(p−1)Ln−1,2mp+1

)
→ 0.

Here Σ and Φ denote respectively the suspension functor and the Frobenius functor of the
category of A -modules.

By induction, Theorem 1 leads to a construction of minimal generating sets for all Ln,k’s.
To state the result, we need the numerical function γ : N → N defined by

γ (a) =
{

pγ (a′) if a = pa′,
p(a′ + 1) if a = pa′ + r, 1 ≤ r ≤ p − 1.

It is checked easily that γ (0) = 0 and γ (psq) = ps+1(q+1) if (p, q) = 1. For each natural
number i, we will write γ i for the i-fold composition of the function γ , with the convention
that γ 0 is the identity function.

Consider the following classes which were introduced by L. E. Dickson [4] and H. Mui
[18] in modular invariant theory:

Ls =

∣∣∣
∣∣∣
∣∣∣
∣

y1 · · · ys

y
p

1 · · · y
p
s

...
. . .

...

y
ps−1

1 · · · y
ps−1

s

∣∣∣
∣∣∣
∣∣∣
∣

, Ms =

∣
∣∣∣
∣∣∣
∣∣

x1 · · · xs

y1 · · · ys

...
. . .

...

y
ps−2

1 · · · y
ps−2

s

∣
∣∣∣
∣∣∣
∣∣

.

Put μs = Ms

Ls
and ωs = Lp−1

s . So μs (resp. ωs) is a class of degree 1−2ps−1 (resp. 2ps −2)

in the localized ringH ∗Vs[L±1
s ]. ForE = (e1, . . . , en) ∈ {0, 1}n and I = (i1, . . . , in) ∈ N

n,
put

ωE;I = stn
(
μ

e1
1 ω

i1−pi2+e2
1 · · · μen−1

n−1ω
in−1−pin+en

n−1 μen
n ωin

n

)
.
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Theorem 2 Let m be a positive integer.

1. The classes ω1n;pn−1γ i1 (m),...,p0γ in (m) with i1 ≥ i2 ≥ · · · ≥ in ≥ 0 form a minimal
generating set for Ln,2m−1.

2. The classes

ω1n; pn−1γ i1 (m),...,p0γ in (m), i1 ≥ i2 ≥ · · · ≥ in ≥ 0,

ω1n−1,0; pn−2γ i1 (mp−p+1),...,p0γ in−1 (mp−p+1),m−1, i1 ≥ i2 ≥ · · · ≥ in−1 ≥ 0,

form a minimal generating set for Ln,2m−2.

Here and below, 1n denotes the sequence (1, . . . , 1) of length n.
As in the case p = 2 [6], two main tools employed in this paper are odd primary versions

of Kameko’s homomorphism [11] and Takayasu’s short exact sequence [22]. As we may
expect when working with odd primes, there are some technical points which need to have
careful consideration. For example, the construction of Kameko’s homomorphism makes
use of the Frobenius functorΦ ofA -modules and, as opposed to the case p = 2, we have to
take into account the fact that Φ does not commute with either the indecomposable functor
Q or the tensor product when p is odd. Furthermore, when p = 2, the module Ln,k’s are
related by a short exact sequence constructed by Takayasu, while in odd primary cases,
these modules are related by two short exact sequences. This is similar to the fact that when
localized at 2 there is a fibration of James which relates the spheres while at odd primes,
the spheres are related by two fibrations discovered by Toda. Though we are not going to
pursuit it here, it should be noted that this similarity could be explained by using work of
Arone–Mahowald on the Goodwillie calculus of the identity functor [1].

The paper is organized as follows. In Section 2, we focus on the linear structure of Ln,k

and construct odd primary versions of Takayasu’s short exact sequences. In Section 3, we
consider an odd primary version of Kameko’s homomorphism and prove Theorem 1. The
proof of Theorem 2 will be given in Section 4.

2 TheModules Ln,k

Wework in the categoryM whose objects are Z-gradedA -modules and whose morphisms
are A -linear maps of degree zero. We need to recall some functors used in this paper.

2.1 The Suspension FunctorΣ

The functor Σ : M → M is given on an A -module M by

(ΣM)d = Md−1, θ(Σx) = (−1)|θ |Σθ(x), θ ∈ A ,

Σx ∈ ΣM denoting the element corresponding to x ∈ M . It is clear that the functor Σ is
exact and commutes with the indecomposable functor Q:

Q(ΣM) ∼= ΣQ(M).
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2.2 The Frobenius FunctorΦ

The functor Φ : M → M is defined on an A -module M by

(ΦM)d =
⎧
⎨

⎩

M2i if d = 2ip,

M2i+1 if d = 2ip + 2,
0 otherwise.

In particular, ΦM is concentrated in even degrees, and an element x ∈ M of degree 2i (resp.
2i + 1) gives rise to Φx ∈ ΦM of degree 2ip (resp. 2ip + 2). The action of the Steenrod
algebra is given by β(Φx) = 0 and

P i (Φx) =
⎧
⎨

⎩

Φ(P i/px) if p | i,

Φ(βP (i−1)/px) if p | (i − 1) and |x| odd,
0 otherwise.

Remark 1 The functor Φ is usually defined in the category of unstable modules. In this
case, the natural Fp-linear map λM : ΦM → M defined by λM(Φx) = βeP i (x), where
|x| = 2i + e, is A -linear and so λM is a homomorphism of unstable modules ([19, p. 27]).

Remark 2 Given anA -moduleM , applying the exact functorΦ on the short exact sequence
0 → A +M → M → Q(M) → 0 gives rise to an exact sequence 0 → ΦA +M →
ΦM → ΦQ(M) → 0. Let P denote the subalgebra of A generated by the Steen-
rod powers P i , i ≥ 0, and let P+ denote the augmentation ideal of P . It is clear that
A +ΦM = P+ΦM ⊂ ΦA +M and so there is a natural surjection Q(ΦM) � ΦQ(M).
If M is concentrated in even degrees, it is clear that this is an isomorphism. It is not the
case in general if p is odd. For example, if M = ΣF(1), where F(1) = Fp〈x, y, yp, · · · 〉
is the free unstable module generated by an element of degree 1 (see [19, p. 23]), then
Q(ΦΣF(1)) is generated by ΦΣx (of degree 2p) and ΦΣy (of degree 2p + 2) while
ΦΣQ(F (1)) is generated by ΦΣx.

Remark 3 Given two A -modules M and N , there is also a natural A -linear map

ϕM,N : ΦM ⊗ ΦN → Φ(M ⊗ N),

given by

ϕM,N(Φx ⊗ Φy) =
{

Φ(x ⊗ y) if |x|and |y| are even,
0 otherwise.

Note that this is not an isomorphism in general (this again can be seen by taking M = N =
F(1)).

2.3 TheModules Ln,k

Recall that the mod-p cohomology of the group Vn := (Z/p)n is given by

H ∗Vn
∼= E(x1, . . . , xn) ⊗ Fp[y1, . . . , yn],

232 N.D.H. Hai



where |xi | = 1, |yi | = 1, and {x1, . . . , xn} is an Fp-basis of the Fp-linear dual of Vn. The
action of the Steenrod algebra A on H ∗Vn is determined by the Cartan formula and the
following:

βxj = yj , P0xj = xj , P ixj = 0, i > 0, j ≥ 1,

βyj = 0, P iyd
j =

(
d

i

)
y

d+(p−1)i
j , i, d ≥ 0, j ≥ 1.

The natural action of the general linear group GLn := GLn(Fp) on the Fp-vector space
Vn

∼= (Fp)n induces an action of GLn on H ∗Vn. In this paper we consider the left action
of GLn on H ∗Vn specified as follows. For each matrix g = (gi,j )1≤i,j≤n ∈ GLn and each
F ∈ H ∗Vn, gF is given by

gF(x1, . . . , xn; y1, . . . , yn) = F(gx1, . . . , gxn; gy1, . . . , gyn),

where gxj = ∑n
i=1 gi,j xi and gyj = ∑n

i=1 gi,j yi for 1 ≤ j ≤ n. It is well-known that the
action of GLn commutes with that of the Steenrod algebra on H ∗Vn.

The Steinberg idempotent stn of Fp[GLn] is defined as follows. Let Bn be the subgroup
of upper triangular matrices in GLn and let Σn be the subgroup of permutation matrices.
Then stn is defined by [20]

stn = (−1)nB̄nΣ̃n,

where B̄n = ∑
b∈Bn

b and Σ̃n = ∑
σ∈Σn

sgn(σ )σ .
Recall from the introduction that, for 1 ≤ s ≤ n, we put

Ls =

∣
∣∣∣
∣∣∣
∣∣∣

y1 · · · ys

y
p

1 · · · y
p
s

...
. . .

...

y
ps−1

1 · · · y
ps−1

k

∣
∣∣∣
∣∣∣
∣∣∣

, Ms =

∣∣
∣∣∣
∣∣∣
∣

x1 · · · xs

y1 · · · ys

...
. . .

...

y
ps−2

1 · · · y
ps−2

s

∣∣
∣∣∣
∣∣∣
∣

,

and

μs = Ms

Ls

, ωs = Lp−1
s .

For E = (e1, . . . , en) ∈ {0, 1}n and I = (i1, . . . , in) ∈ N
n, put

σE;I = μ
e1
1 ω

i1−pi2+e2
1 · · · μen−1

n−1ω
in−1−pin+en

n−1 μen
n ωin

n

and

ωE;I = stn(σE;I ).
Note that the classes μs and ωs are GLs-invariant where we consider GLs as a subgroup

of GLn by sending a matrix g in GLs to

(
g 0
0 Idn−s

)
in GLn, Idn−s denoting the identity

matrix.

Definition 1 For E = (e1, . . . , en) ∈ {0, 1}n and I = (i1, . . . , in) ∈ N
n, the couple (E; I )

is (n, k)-admissible if the following condition holds:
⎧
⎨

⎩

ej ∈ {0, 1}, if 1 ≤ j ≤ n,

ij − pij+1 + ej+1 > 0, if 1 ≤ j ≤ n − 1,
2in − en ≥ k, otherwise.

233Generators for the Mod-p Cohomology of the Steinberg Summand...



We also say that the class ωE;I (or the class σE;I ) is (n, k)-admissible if (E; I ) is (n, k)-
admissible. We note that if (E; I ) is (n, k)-admissible, then ωE;I is a Bn-invariant element
of H ∗Vn and

deg(ωE;I ) = 2(p − 1)(i1 + · · · + in) − (e1 + · · · + en).

Remark 4 The couple (E; I ) is (n, k)-admissible if and only if the operation

β1n−EPI := β1−e1P i1 · · · β1−enP in

is admissible in the Steenrod algebra A and the excess of β1−enP in , i.e. 2in − en, is bigger
than k. Recall also that an A -module M is said to be unstable if βeP i (x) vanishes when-
ever the excess of βeP i is bigger than the degree |x| of a homogeneous element x of M .
We refer the reader to [19, Part I] for more information on unstable modules.

For 1 ≤ j ≤ n, put Xj = xj /yj and Yj = y
p−1
j . We associate to a monomial

X
e1
1 Y

i1
1 · · ·Xen

n Y
in
n the sequence (d1, . . . , dn) where dj = 2(p − 1)ij − ej is the degree

of X
ej

j Y
ij
j . It is clear that the sequence (d1, . . . , dn) determines uniquely the sequence

(e1, i1, . . . , en, in). The set of monomials X
e1
1 Y

i1
1 · · ·Xen

n Y
in
n is ordered by using the right

lexicographical order on the set of associated sequences (d1, . . . , dn).
The following result gives a link between the basis elements considered by Mitchell–

Priddy [17] and the classes ωE;I ’s considered here.

Theorem 3 If (E; I ) is (n, 0)-admissible then

β1n−EPI (X1 · · ·Xn) = (−1)|I |Σ̃n(σE;I ).

Proof We prove the formula by induction on n ≥ 1, following the approach of
[7, Prop. A.2]. If n = 1 then β1−eP i (X1) = (−1)iXe

1Y
i
1. Suppose the formula is true for

1, . . . , n − 1. Put E′ = (e2, . . . , en) and I ′ = (i2, . . . , in). We have

β1n−1−E′
PI ′

(X1 · · ·Xn) = PE′,I ′ +
∑

1≤j≤n

(−1)j−1Xjβ
1n−1−E′

PI ′
(

X1 · · · Xn

Xj

)

+
∑

1≤j<k≤n

(−1)j+k−2XjXkβ
1n−1−E′

PI ′
(

X1 · · · Xn

XjXk

)
+ · · · ,

where PE′,I ′ is an element of H ∗Vn of degree 2(p − 1)(i2 + · · · + in) − (e2 + · · · + en). By
(n, 0)-admissibility of (E; I ), we check that this degree is less than the excess of β1−e1P i1 ,
which is 2i1 + 1 − en, and so PE′,I ′ is killed by β1−e1P i1 by instability. Writing

β1n−1−E′
PI ′ = β1−e2P i2β1n−2−E′′

PI ′′
,

where E′′ = (e3, . . . , en) and I ′′ = (i3, . . . , in), we have by inductive hypothesis that
β1n−2−E′′

PI ′′
(X1···Xn

Xj Xk
) is an element of H ∗Vn of degree less than the excess of β1−e2P i2 .

It follows that the terms in the second line of the above identity vanish, and so we obtain

β1n−EPI (X1 · · ·Xn) =
∑

1≤j≤n

(−1)j−1β1−e1P i1

(
Xjβ

1n−1−E′
PI ′

(
X1 · · ·Xn

Xj

))

= C̃n

(
β1−e1P i1

(
X1β

1n−1−E′
PI ′

(X2 · · ·Xn)
))

= (−1)|I ′|C̃nΣ̃n−1

(
β1−e1P i1

(
X1σE′;I ′ (x2, . . . , xn; y2, . . . , yn)

))
.
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Here C̃n = ∑n
j=1 sgn(πj )πj , with πj being the permutation sending (1, 2, . . . , n) to

(j, 1, . . . , j − 1, j + 1, . . . , n) and Σn−1 the subgroup of Σn of permutations which fix 1.
It suffices now to prove that

β1−e1P i1
(
X1σE′;I ′(x2, . . . , xn; y2, . . . , yn)

) = (−1)i1σE;I (x1, . . . , xn; y1, . . . , yn). (1)

To this end, we use the stable version of the total Steenrod power as defined in the work of
Hung and Sum [8]. For M an A -module, let S : M → (E(x) ⊗ Fp[y±1])⊗̂M be the linear
morphism

S(z) =
∑

i≥0, e∈{0,1}
(−1)i+eXeY−i ⊗ βeP i (z),

where X = x/y and Y = yp−1. For our purpose, we consider the case where M is
E(x2, . . . , xn) ⊗ Fp[y2, . . . , yn]. In this case, as M is an A -algebra, if follows from the
Cartan formula that S is a homomorphism of algebras (in fact, it is a monomorphism of
algebras [8, Prop. 2.6]). Following the computation in [8], we verify that

S
(
μs(x2, . . . , xs+1; y2, . . . , ys+1)

) = Yps−1
μs+1(x, x2, . . . , xs+1; y, y2, . . . , ys+1)

S
(
ωs(y2, . . . , ys+1)

) = Y−ps

ωs+1(y, y2, . . . , ys+1).

We get then the following equalities

Xe1Y i1 = Y−e2+pi2μ
e1
1 ω

i1−pi2+e2
1 ,

S(μ
e2
1 ) = Y e2μ

e2
2 ,

S(ω
i2−pi3+e3
1 ) = Y−p(i2−pi3+e3)ω

i2−pi3+e3
2 ,

S(μ
e3
2 ) = Ype3μ

e3
3 ,

S(ω
i3−pi4+e4
2 ) = Y−p2(i3−pi4+e4)ω

i3−pi4+e4
3 ,

. . . . . . . . .

S(μ
en−1
n−2 ) = Ypn−3en−1μ

en−1
n−1 ,

S(ω
in−1−pin+en

n−2 ) = Y−pn−2(in−1−pin+en)ω
in−1−pin+en

n−1 ,

S(μ
en

n−1) = Ypn−2enμen
n ,

S(ω
in
n−1) = Y−pn−1inωin

n ,

where μs and ωs on the left-hand sides (resp. right-hand sides) are in terms of the variables
x2, . . . , xs+1 and y2, . . . , ys+1 (resp. x, x2, . . . , xs and y, y2, . . . , ys). Taking into account
the multiplicativity of S, we get

Xe1Y i1S
(
σE′;I ′(x2, . . . , xn; y2, . . . , yn)

) = σE;I (x, x2, . . . , xn; y, y2, . . . , yn),

and so

Xe1Y i1S
(
X1σE′;I ′ (x2, . . . , xn; y2, . . . , yn)

) = (−1)e1S(X1)σE;I (x, x2, . . . , xn; y, y2, . . . , yn). (2)

The coefficient of X on the left-hand side of this equality is equal to

c := (−1)i1+1−e1β1−e1P i1(X1σE′;I ′(x2, . . . , xn; y2, . . . , yn)).

For the right-hand side of (2), we know that the action of the total Steenrod power on
X1 = x1/y1 is given by

S(X1) =
∑

e,i

(−1)eXeY−iX1−e
1 Y i

1.
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Furthermore, the (n, 0)-admissibility of (E; I ) permits us to write σE;I as a finite sum

σE;I (x, x2, . . . , xn; y, y2, . . . , yn) =
∑

e′,i′
Xe′

Y i′fe′,i′

with fe′,i′ ∈ E(x2, . . . , xn) ⊗ F[y2, . . . , yn]. The right-hand side of (2) is thus equal to
∑

e,i

∑

e′,i′
(−1)e1+e+e′(1−e)Xe+e′

Y−i+i′X1−e
1 Y i

1fe′,i′ .

It is easily to check that the coefficient of X in this sum is

c′ := (−1)1+e1
∑

e′,i′
Xe′
1 Y i′

1 fe′,i′ = (−1)1+e1σE;I (x1, x2, . . . , xn; y1, y2, . . . , yn).

Comparing the coefficients c and c′ yields the identity (1). The theorem is proved.

The following result was proved in [5] using properties of the Steinberg idempotents.
Using Lemma 3, this is similar to [17, Lemma 3.6].

Lemma 1 ([5, Lemme 2.11]) For each (n, 0)-admissible couple (E, I ), we have

ωe1,...,en;i1,...,in = ωe1,...,en−1;i1,...,in−1 · Xen
n Y in

n +
∑

deg(Xe
nY i

n)>deg(Xen
n Y

in
n )

fe,i · Xe
nY

i
n

for some fe,i ∈ E(x1, . . . , xn−1) ⊗ Fp[y1 . . . , yn−1]. As a consequence,

ωe1,...,en;i1,...,in = X
e1
1 Y

i1
1 · · ·Xen

n Y in
n + monomials of higher order.

The linear structure of Ln,k is given by the following result. The case where k is odd
was proved in [5] based on the work of Mitchell and Priddy [17]. The case where k is an
arbitrary natural number was proved in [3] using the modular Hecke algebra [12] generated
by Steinberg idempotents.

Theorem 4 Ln,k has a basis consisting of all (n, k)-admissible classes.

Proof We sketch a proof which follows that of [5, Proposition 2.8]. By Lemma 1, we have

ωe1,...,en;i1,...,in = X
e1
1 Y

i1
1 · · ·Xen

n Y in
n + monomials of higher order.

This implies the linear independence of the set of all (n, k)-admissible classes. To prove
that this set is a basis, we make use of the formulas of the Poincaré series of Ln,0 (resp.
Ln,1) computed by Mitchell-Priddy [17] in order to determine the Poincaré series of Ln,even

(resp. Ln,odd ).

The following theorem provides an odd primary versions of Takayasu’s short exact
sequence [22].

Theorem 5 There are short exact sequences of A -modules:

1. 0 → Ln,2m+1
ιn,2m+1−−−−→ Ln,2m

πn,2m−−−→ Σ2m(p−1)Ln−1,2mp+1 → 0, m ≥ 0;

2. 0 → Ln,2m
ιn,2m−−→ Ln,2m−1

πn,2m−1−−−−→ Σ2m(p−1)−1Ln−1,2mp−1 → 0, m ≥ 1.
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Proof Given a (n, 2m)-admissible class ωE;I , the condition 2in − en ≥ 2m implies that
deg(Xen

n Y
in
n ) ≥ 2(p − 1)m, where the equality holds if and only if (en, in) = (0,m). It

follows from Lemma 1 that Ln,2m is a submodule of H ∗Vn−1⊗ (H ∗V1)
≥2m(p−1), where for

each A -module M , M≥d denotes the submodule of M consisting of elements of degree at
least d. The projection on the bottom class (H ∗V1)

≥2m(p−1) → Σ2m(p−1)
Z/p then gives

rise to an A -linear map

πn,2m : Ln,2m → Σ2m(p−1)H ∗Vn−1.

The image of ωE;I under this map is given by

πn,2m(ωE;I ) =
{

Σ2m(p−1)ωe1,...,en−1;i1,...,in−1 if en = 0 and in = m,
0 otherwise.

If (en, in) = (0,m), then the (n, 2m)-admissibility of (E, I ) implies that 2in−1 − en−1 ≥
2(mp + 1) − 1 = 2mp + 1, and so ωe1,...,en−1;i1,...,in−1 is (n − 1, 2mp + 1)-admissible. The
map πn,2m thus induces a surjection Ln,2m � Σ2m(p−1)Ln−1,2mp+1. The kernel of πn,2m
has a basis consisting of all classes ωE;I for which

(E; I ) is (n, 2m)-admissible and (en, in) = (0,m).

We check that {
2in − en ≥ 2m,

(en, in) = (0,m)
⇐⇒ 2in − en ≥ 2m + 1.

It follows that the kernel of πn,2m is exactly Ln,2m+1. The short exact sequence 1) is proved.
The sequence 2) is proved similarly.

3 Odd Primary Version of Kameko’s Homomorphism
and its Restriction to Ln,m

3.1 Odd Primary Version of Kameko’s Homomorphism

We first recall the definition of Kameko’s homomorphism when p = 2. The mod-2 coho-
mology ring of (Z/2)n is given by the polynomial ring Pn := F2[x1, . . . , xn] with each xi

of degree 1. In order to study the space Q(Pn), Kameko introduced in his thesis [11] the
homomorphism ψ : Pn → Pn by the formula

ψ(x
i1
1 · · · xin

n ) = x
(i1−1)/2
1 · · · x(in−1)/2

n ,

where x
(ij −1)/2
j is zero if ij is even. The homomorphism ψ is GLn-linear. Though it is

not A2-linear, it can be checked that ψSqi = Sqi/2ψ , where Sqi/2 is zero if i is odd. The
most fundamental property of ψ discovered by Kameko is that ψ induces an isomorphism

between Qd(Pn) and Q
d−n
2 (Pn) whenever μ(d) = n where μ(d) is the smallest number r

for which it is possible to write d = ∑
1≤i≤r (2

di − 1) with di > 0.
In [6], we considered the homomorphism ψn : ΣnPn → ΦΣnPn defined by

ψn(Σ
nX) = ΦΣnψ(X),

where ψ is as above. The identity ψSqi = Sqi/2ψ mentioned above can be interpreted as
saying thatψn isA2-linear. One of the main results of [6] is thatψn induces an isomorphism
of graded vector spaces

Q(ΣnLn,2k+1) ∼= Q(ΦΣnLn,k).
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It was also observed in [6] that if we let P̂1 denote the subspace of F2[x±1
1 ] spanned by

the classes xi
1 with i ≥ −1, then ψ1 : ΣP1 → ΦΣP1 is the restriction of the A2-linear

map ψ̂1 : ΣP̂1 → ΦΣP̂1 which sends Σxi
1 to ΦΣx

(i−1)/2
1 . The formula Sqi+1(x−1

1 ) = xi
1

implies that ψ̂1 is the unique A2-linear map which extends the isomorphism Σx−1
1 �→

ΦΣx−1
1 in degree zero. The map ψn is thus the restriction of (ψ̂1)

⊗n to ΣnPn in an evident
way.

We now present an odd primary version of the Kameko homomorphism. Let H ∗
Z/p be

identified with E(x) ⊗ Fp[y] where |x| = 1 and |y| = 2. It is well-known that the localized
ring (H ∗

Z/p)[y−1] is equipped with an A -module structure which is compatible with that
of H ∗

Z/p. In particular,

P iyd =
(

d

i

)
yd+(p−1)i , i ≥ 0,

for any d ∈ Z where the binomial coefficient
(
d
i

)
is interpreted as the coefficient of t i in the

formal power series (1 + t)d ∈ Fp[[t]]. For example,
(−1

i

) = (−1)i for any i ∈ N.

Put X = x/y and let P̂1 denote the A -submodule of (H ∗
Z/p)[y−1] generated by the

classes Xeyi for which e ∈ {0, 1} and 2i − e ≥ −1. We define the linear map ψ̂1 : ΣP̂1 →
ΦΣP̂1 by the formula

ψ̂1(ΣXeyi) =
{

ΦΣXyj if e = 1 and i = pj ,
0 otherwise.

(3)

Proposition 1 ψ̂1 is A -linear.

Proof We need to verify
θψ̂1(ΣXeyi) = ψ̂1θ(ΣXeyi), (4)

where 2i − e ≥ −1 and θ = β or θ = P�. We consider the following cases:
Case e = 0. Both sides of (4) are zero.
Case e = 1 and p � i. The left-hand side of (4) is zero. For the right-hand side, if θ is the

Bockstein operation β, then

ψ̂1

(
β(ΣXyi)

)
= −ψ̂1(Σyi) = 0.

If θ = P�, then

P�(ΣXyi) =
(

i − 1

�

)
ΣXyi+�(p−1).

If i − � is not divisible by p, then ψ̂1 sends this class to zero. If i − � is divisible by p then,
writing i = pi′ + r and � = p�′ + r with 1 ≤ r ≤ p − 1, we have

(
i − 1

�

)
=

(
pi ′ + r − 1

p�′ + r

)
=

(
pi′

p�′

)(
r − 1

r

)
= 0 (5)

by Lucas’s theorem.
Case e = 1 and i = pj ≥ 0.We have

βψ̂1(ΣXypj ) = βΦΣXYj = 0

and
ψ̂1β(ΣXypj ) = −ψ̂1(Σypj ) = 0,
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so (4) holds if θ = β. If θ = P�, we have

P�
(
ψ̂1(ΣXypj )

) = P�(ΦΣXyj ) =
{ (

j−1
k

)
ΦΣXyj+k(p−1) if � = pk,

0 otherwise,

and

ψ̂1
(
P�(ΣXypj )

) =
(

pj − 1

�

)
ψ̂1(ΣXypj+�(p−1)) =

{ (
pj−1
pk

)
ΦΣXyj+k(p−1) if � = pk,

0 otherwise.

The validity of (4) now follows from the identity
(

j − 1

k

)
=

(
pj − 1

pk

)
. (6)

This is true if j = 0 since
(−1

k

) = (−1)k and
(−1
pk

) = (−1)pk = (−1)k . If j > 0, the identity
is obtained by an easy application of Lucas’s theorem:

(
pj − 1

pk

)
=

(
p(j − 1) + p − 1

pk

)
=

(
p(j − 1)

pk

)(
p − 1

0

)
=

(
j − 1

k

)
.

The proposition is proved.

The map ψ̂1 now gives rise to an A -linear map:

ψ̂n : ΣnP̂ ⊗n
1

∼=−→ (ΣP̂1)
⊗n

ψ̂⊗n
1−−→ (ΦΣP̂1)

⊗n ϕ−→ Φ(ΣP̂1)
⊗n ∼= ΦΣnP̂ ⊗n

1 ,

where ϕ is induced by the natural A -linear map ϕM,N : ΦM ⊗ ΦN → Φ(M ⊗ N). By
(3), the only non-trivial action of ψ̂n on monomials is given by

ψ̂n

(
ΣnX1y

pj1
1 · · · Xny

pjn
n

)
= ΦΣn

(
X1y

j1
1 · · ·Xny

jn
n

)
, j1, . . . , jn ≥ 0.

Restricting ψ̂n to ΣnH ∗Vn provides a homomorphism

ψn : ΣnH ∗Vn → ΦΣnH ∗Vn

which may be seen as an odd primary version of the Kameko homomorphism.

Proposition 2 ψn is GLn-linear.

Proof It suffices to prove the proposition for n = 2. To this end, we need to verify that ψ2

commutes with τ :=
(
1 1
0 1

)
, σ :=

(
0 1
1 0

)
and da,b :=

(
a 0
0 b

)
, a, b ∈ Fp . The verification

is easy for the matrices σ and da,b. We prove now that ψ2 commutes with τ , that is,

ψ2

(
τ(X

e1
1 y

i1
1 X

e2
2 y

i2
2 )

)
= τ

(
ψ2(X

e1
1 y

i1
1 X

e2
2 y

i2
2 )

)
, e1, e2 ∈ {0, 1}, i1, i2 ≥ 1.

If e1e2 = 0, then X1X2 does not appear in τ(X
e1
1 y

i1
1 X

e2
2 y

i2
2 ), so both ψ2τ and τψ2 vanish

on X
e1
1 y

i1
1 X

e2
2 y

i2
2 . If e1 = e2 = 1, then

τ
(
X1y

i1
1 X2y

i2
2

)
= x1y

i1−1
1 (x1 + x2)(y1 + y2)

i2−1 =
i2−1∑

�=0

(
i2 − 1

�

)
X1y

i1+�
1 X2y

i2−�
2 .

We consider the following cases:
Case p � i1 and p | i2. The monomial X1y

i1+�
1 X2y

i2−�
2 is sent by ψ2 to zero since

one of the powers i1 + �, i2 − � is not divisible by p. Hence both ψ2τ and τψ2 vanish on
X

e1
1 y

i1
1 X

e2
2 y

i2
2 .
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Case p | i1 and p � i2. This is similar to the previous case.
Case p � i1 and p � i2. The map ψ2 is non-trivial on X1y

i1+�
1 X2y

i2−�
2 only if i1 + � and

i2 − � are both divisible by p. But if i2 − � is divisible by p and i2 is not divisible by p, then
the coefficient

(
i2−1

�

)
is zero by (5). So again both ψ2τ and τψ2 vanish on X1y

i1
1 X2y

i2
2 .

Case p | i1 and p | i2. Put i1 = pj1 and i2 = pj2. We have (omitting the functors Φ and
Σ2 in the writing of ψ2 for simplicity)

ψ2

(
τ(X1y

i1
1 X2y

i2
2 )

)
=

pj2−1∑

�=0

(
pj2 − 1

�

)
ψ2

(
X1y

pj1+�

1 X2y
pj2−�

2

)

=
j2−1∑

k=0

(
pj2 − 1

pk

)
X1y

j1+k

1 X2y
j2−k

2 .

On the other hand,

τ
(
ψ2(X1y

i1
1 X2y

i2
2 )

)
= τ

(
X1y

j1
1 X2y

j2
2

)
=

j2−1∑

k=0

(
j2 − 1

k

)
X1y

j1+k

1 X2y
j2−k

2 .

By (6), we see that the coefficients
(
pj2−1

pk

)
and

(
j2−1

k

)
are equal, and so ψ2τ and τψ2 take

the same value on the class X1y
i1
1 X2y

i2
2 . The proposition is proved.

The following is a direct consequence of Theorem 3 and Proposition 2.

Proposition 3 For each (n, 0)-admissible couple (E; I ),

ψn(Σ
nωE;I ) =

{
ΦΣnωE;J if E = 1n and I = pJ ,
0 otherwise.

Proof Put αE;I = β1n−EPI (X1 · · ·Xn). The A -linearity of ψ̂n yields

ψn(αE;I ) = β1n−EPI
(
ψ̂n(X1 · · ·Xn)

) = β1n−EPI
(
ΦΣn(X1 · · · Xn)

)

=
{

PI
(
ΦΣn(X1 · · · Xn)

)
if E = 1n,

0 if E = 1n

=
{

ΦΣnαE,J if E = 1n and I = pJ ,
0 otherwise.

By Theorem 3, we have ωE;I = (−1)|I |B̄n(αE;I ) and so the result follows from the GLn-
linearity of ψn.

3.2 Restriction ofψn to Ln,k

Denote by ψn,k the restriction of ψn to Ln,k . The following result will play an essential role
in constructing by double induction a minimal generating set for Ln,k .

Theorem 6 1. If m = m′p with m′ ≥ 1, then the following hold:
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(a) ψn induces a commutative diagram

(b) ψn,2m−1 induces an isomorphism

Q
(
ΣnLn,2m−1

) ∼= ΦQ
(
ΣnLn,2m′−1

)
.

(c) The induced map Q(ιn,2m−1) is injective.

2. If m = m′p + r with m′ ≥ 0 and 1 ≤ r ≤ p − 1, then the following hold:

(a) ψn induces a commutative diagram

(b) ψn,2m−1 induces an isomorphism

Im(Q(ιn,2m)) ∼= ΦQ(ΣnLn,2m′+1).

(c) The induced map Q(ιn,2m−1) is injective on Im(Q(ιn,2m)).

The proof of this theorem will be given in Section 3.3 below. Note that the first part of
Theorem 1 is included in the first part of this theorem. The remaining parts of Theorem 1
are given in the following corollaries.

Corollary 1 (Theorem 1(2)) If m = m′p + r with m′ ≥ 0 and 1 ≤ r ≤ p − 1, then there is
a short exact sequence of graded vector spaces

0 → ΦQ(ΣnLn,2m′+1) → Q(ΣnLn,2m−1) → Q
(
Σ2m(p−1)+n−1Ln−1,2mp−1

)
→ 0.

Proof The short exact sequence

0 → Ln,2m
ιn,2m−−→ Ln,2m−1 → Σ2m(p−1)−1Ln−1,2mp−1 → 0

induces an exact sequence

Q
(
ΣnLn,2m

) Q(ιn,2m)−−−−→ Q
(
ΣnLn,2m−1

) → Q
(
Σ2m(p−1)+n−1Ln−1,2mp−1

)
→ 0.

By Theorem 6(2.b), we have Im(Q(ιn,2m)) ∼= ΦQ(ΣnLn,2m′+1). The corollary follows.

Corollary 2 (Theorem 1(3)) For all m ≥ 1, the indecomposable functor Q preserves the
exactness of the short exact sequence

0 → Ln,2m−1
ιn,2m−1−−−−→ Ln,2m−2

πn,2m−2−−−−→ Σ2(m−1)(p−1)Ln−1,2(mp−p+1)p−1 → 0.
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Proof It suffices to prove that the induced map Q(ιn,2m−1) is injective. If m ≡ 0 (mod p),
this is Theorem 6(1.a). Suppose now that m ≡ 0 (mod p). As XYm is A -indecomposable
in L1,2m−2, there is a non trivial A -linear map

π ′ : L1,2m−2 → Σ2m(p−1)−1
Z/p,

which extends the map π1,2m−1 : L1,2m−1 → Σ2m(p−1)−1
Z/p. It follows that for n > 1,

the map
πn,2m−1 : Ln,2m−1 → Σ2m(p−1)−1Ln−1,2mp−1

can also be extended to Ln,2m−2 as indicated in the following commutative diagram:

We get then a commutative diagram where the row is exact:

It follows that KerQ(ιn,2m−1) ⊆ KerQ(πn,2m−1) = ImQ(ιn,2m). But Q(ιn,2m−1) is injec-
tive on ImQ(ιn,2m) by Theorem 6(2.c), so we must have KerQ(ιn,2m−1) = 0. The injectivity
of Q(ιn,2m−1) is proved.

3.3 Proof of Theorem 6

We need some preparatory results. We recall that the dual of the Steenrod algebra is
computed by J. Milnor in the fundamental work [16]:

A ∗ ∼= E(τ0, τ1, τ2, . . . ) ⊗ Fp[ξ1, ξ2, ξ3, . . . ], |τi | = 2pi − 1, |ξi | = 2pi − 2.

Let Qi , i ≥ 0, (resp. Pi , i ≥ 1) denote the dual of τi (resp. ξi) with respect to the basis
of A ∗ consisting of all monomials τs1 · · · τsk ξ

r1
1 · · · ξ rm

m with 0 ≤ s1 < s2 < · · · < sk and
r1, . . . , rm ≥ 0. The operations Qi and Pi are primitive in A (which is a Hopf algebra)
and can also be defined inductively as follows (see Corollaries 2 and 5 in [16]):

Q0 = β, Qi+1 = [Ppi

,Qi],
P1 = P1, Pi+1 = [Ppi

,Pi],
[a, b] denoting the graded commutator ab − (−1)|a||b|ba. The actions of Qi and Pi on
H ∗Vn

∼= E(x1, . . . , xn) ⊗ Fp[y1, . . . , yn] are given by the rules

Qi (ab) = Qi (a)b + (−1)|a|aQi (b), Qi (xj ) = y
pi

j , Qi (yj ) = 0, i ≥ 0,

Pi (ab) = Pi (a)b + aPi (b), Pi (yj ) = y
pi

j , Pi (xj ) = 0, i ≥ 1,

where a, b are homogeneous elements of H ∗Vn.
The following can be proved easily by using the above rules.

Lemma 2 For 1 ≤ i ≤ s, we have
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1. Qi−1(Ms) =
{

(−1)s−1Ls if i = s,
0 if i = s.

2. Pi (Ls) =
{

(−1)s−1Lp
s if i = s,

0 if i = s.

For a proof the reader may refer to the proofs of Lemmas 2.2 and 2.3 in [21] (where the
action of primitive Milnor operations on modular invariants are computed explicitly).

We also need the following property of Steinberg idempotents. Recall that for s ≤ n, we

consider GLs as a subgroup of GLn by sending g ∈ GLs to

(
g 0
0 Idn−s

)
.

Lemma 3 ([12]) stnsts = stn.

The following propositions, which will play key roles in the proof of Theorem 6, provide
some criteria for a class ωE;I to be A -decomposable (a.k.a. hit) in Ln,k . Recall that an
element of an A -module M is A -decomposable in M if it belongs to A +M , A + denoting
the augmentation ideal of A .

Proposition 4 Suppose (E; I ) is (n, k)-admissible.

1. If es = 0 for some 1 ≤ s ≤ n − 1, then ωE;I is hit in Ln,k .
2. If en = 0 and 2in − 1 ≥ k, then ωE;I is hit in Ln,k .

Proof Let s be the first index for which es = 0. Put

u = μ1ω
j1
1 · · · μs−1ω

js−1
s−1 and v = μsω

js
s μ

es+1
s+1ω

js+1
s+1 · · ·μen

n ω
jn
n ,

where jr = ir − pir+1 + er+1 for 1 ≤ r ≤ n − 1 and jn = in. The conditions given in the
proposition assure that stn(uv) is (n, k)-admissible and so is a basis element of Ln,k . [This
is clear if s < n. If s = n, then v = μnω

in
n , so the power of μn in uv is 1 and that of ωn is

in, and so stn(uv) is (n, k)-admissible by the condition 2in − 1 ≥ k.]
By Lemma 2(1), we have

Qs−1(v) = (−1)s−1ω
js
s μ

es+1
s+1ω

js+1
s+1 · · ·μen

n ω
jn
n .

This shows in particular that ωE;I is hit in Ln,k if s = 1. Suppose s > 1 and ωE;I is hit if
er = 0 for some 1 ≤ r ≤ s − 1. We have

ωE;I = (−1)s−1stn
(
uQs−1(v)

)

= stn
(
Qs−1(uv) − Qs−1(u)v

)

≡ stn
(
Qs−1(u)v

)
(mod A +Ln,m).

Since v is GLs−1-invariant and stn = stnsts−1 by Lemma 3, we get

stn
(
Qs−1(u)v

) = stn
(
(sts−1Qs−1(u))v

)
.

As sts−1(Qs−1(u)) is an element of Ls−1,1, it is a linear combination of sts−1(μ
ε1
1 ω

t1
1 · · ·

μ
εs−1
s−1ω

ts−1
s−1) with t1, . . . , ts−1 > 0 and ε1, . . . , εs−1 ∈ {0, 1} by Theorem 4. By comparing

degrees, we see that
ε1 + · · · + εs−1 ≡ s (mod 2)

and so εr = 0 for some 1 ≤ r ≤ s − 1. By inductive hypothesis, the class

stn
(
μ

ε1
1 ω

t1
1 · · ·μεs−1

s−1ω
ts−1
s−1 · μsω

js
s μ

es+1
s+1ω

js+1
s+1 · · · μen

n ω
jn
n

)

243Generators for the Mod-p Cohomology of the Steinberg Summand...



is hit in Ln,k , and so ωE;I is also hit in Ln,k . The proposition is proved.

Proposition 5 Suppose (1n; I ) is (n, k)-admissible.

1. If is ≡ 0 (mod p) for some 1 ≤ s ≤ n − 1, then ω1n;I is hit in Ln,k .
2. If in ≡ 0 (mod p) and 2(in − 1) − 1 ≥ k then ω1n;I is hit in Ln,k .

Proof Using the Milnor operation Ps , the proof is similar to that of the previous
proposition. We first observe that

μ1 · · · μn = (−1)
n(n−1)

2 L−1
n x1 · · · xn.

The class ω1n;I is then rewritten as

ω1n;I = (−1)
n(n−1)

2 stn
(
ω

i1−pi2+1
1 · · ·ωin−1−pin+1

n−1 ωin
n L

−1
n x1 · · · xn

)
.

Let s be the first index for which is ≡ 0 (mod p). Put

u = (−1)
n(n−1)

2 ω
j1
1 · · ·ωjs−1

s−1 and v = ω
js−1
s ω

js+1
s+1 · · ·ωjn

n L−1
n x1 · · · xn,

where jr = ir − pir+1 + 1 for 1 ≤ r ≤ n − 1 and jn = in. The power of Ls in v is equal
to (p − 1)(is − pis+1) if 1 ≤ s ≤ n − 1 and to (p − 1)(jn − 1) − 1 if s = n, so this power
is ≡ −is (mod p). The conditions given in the proposition assure that stn(uv) is (n, k)-
admissible and so is a basis element of Ln,k . [Again this is clear if s < n. If s = n, then the
power of μn in uv is 1 and that of ωn is in − 1, and so stn(uv) is (n, k)-admissible by the
condition 2(in − 1) − 1 ≥ k.]

By Lemma 2(b), we have

Ps(v) = (−1)s isω
js
s · · · ωjn

n L−1
n x1 · · · xn = 0.

This shows in particular that ω1n;I is hit in Ln,k if s = 1. Suppose s > 1 and ω1n;I is hit if
ir ≡ 0 (mod p) for some 1 ≤ r ≤ r − 1. We have

(−1)s isω1n;I = stn(uPsv) = stn
(
Ps (uv) − Ps (u)v

) ≡ −stn(Ps (u)v) (mod A +Ln,k).

As sts−1(Ps(u)) is an element of Ls−1,1 which is free of x1, . . . , xs , it can be written as a
linear combination of sts−1(ω

t1
1 · · ·ωts−1

s−1) with t1, . . . , ts−1 > 0 by Theorem 4. So it suffices
to prove that the class

stn
(
ω

t1
1 · · ·ωts−1

s−1ω
js−1
s ω

js+1
s+1 · · ·ωjn

n μ1 · · ·μn

)

is hit in Ln,k . Suppose this class corresponds to a (n, k)-admissible couple (1n; T1, . . . , Tn).
We first note that Tr ≡ tr − 1 (mod p) for all 1 ≤ r ≤ s − 1, so by inductive hypothesis, it
suffices to prove tr ≡ 1 for some 1 ≤ r ≤ s − 1. By comparing degrees, we have

2(ps − 1) + deg(ωj1
1 · · · ωjs−1

s−1 ) = deg
(
ω

t1
1 · · · ωts−1

s−1

)
,

which implies that

t1 + · · · + ts−1 ≡ j1 + · · · + js−1 + 1 (mod p).

Since jr = ir − pir+1 + 1 ≡ 1 (mod p) for all 1 ≤ r ≤ s − 1, we get tr ≡ 1 (mod p) for
some 1 ≤ r ≤ s − 1. The proposition is proved.

We are now ready to prove Theorem 6.
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Proof of Theorem 6
(1) Suppose m ≡ 0 (mod p) and write m = m′p with m′ ≥ 1. Let ΣnK denote the

kernel of ψn,2m−1:

0 → ΣnK → ΣnLn,2m−1
ψn,2m−1−−−−→ ΦΣnLn,2m′−1.

A basis class ωE;I in K is of the form given either in Proposition 4 or in Proposition 5, and
so is hit in Ln,2m−1. The induced map Q(ΣnK) → Q(ΣnLn,2m−1) is thus trivial.

By Proposition 3, we have Im(ψn,2m−1) = ΦM , where

M := Fp{Σnω1n;I : (1n; I ) is (n, 2m′ − 1)-admissible} ⊂ ΣnLn,2m′−1.

Since M is concentrated in even degrees, we have Q(ΦM) = Φ(M/P+M). On the other
hand, by Proposition 4, a class ωE;I is hit in Ln,2m′−1 if ek = 0 for some k. It follows that

M/P+M ∼= ΣnLn,2m′−1/A
+ΣnLn,2m′−1 = Q(ΣnLn,2m′−1).

We conclude Q(ΣnLn,2m−1) ∼= Q(ΦM) ∼= ΦQ(ΣnLn,2m′−1).
(2) Suppose m = m′p + r with m′ ≥ 0 and 1 ≤ r ≤ p − 1. By Proposition 3, we have

Im(ψn,2m) = Im(ψn,2m−1) = Im(ψn,2m−2) = ΦN,

where

N := Fp{Σnω1n;I : (1n; I ) is (n, 2m′ + 1)-admissible} ⊂ ΣnLn,2m′+1.

As above, we verify that Q(ΦN) ∼= Φ(N/P+N) ∼= ΦQ(ΣnLn,2m′+1).
Now let ΣnK denote the kernel of the map ψn,2m. We have the following commutative

diagram in which, by abuse of notation, we write f in place of the induced map Q(f ) for
each A -linear map f :

The module K is generated by the classes ωE;I ∈ Ln,2m for which either (ej = 0 for some
1 ≤ j ≤ n) or (E = 1n and ij ≡ 0 (mod p) for some 1 ≤ j ≤ n). By Propositions 4
and 5, these elements are hit in Ln,2m−1 because (2in ≥ 2m implies 2in − 1 ≥ 2m − 1) and
(2in − 1 ≥ 2m implies 2(in − 1) − 1 ≥ 2m − 1). It follows that the composition ιn,2m ◦ u

is trivial, that is Im(u) ⊂ Ker(ιn,2m).
We obtain then the following diagram
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Hence Im(ιn,2m) ∼= Q(ΦN) ∼= ΦQ(ΣnLn,2m′+1). This together with the commutative
diagram above also gives the injectivity of ιn,2m−1 on Im(ιn,2m). The theorem is proved.

4 Minimal Generating Set for Ln,k

4.1 Generators for Ln,1

We give first an inductive proof for the result of M. Inoue [10] on the linear structure of the
space Q(Ln,1).

Lemma 4 Let Fn(t) denote the Poincaré series of the graded vector space Q(ΣnLn,1).
Then Fn(t) is given by

Fn,1(t) =
∑

j1>···>jn≥0

t2p
j1 (p−1)+···+2pjn (p−1).

Proof Note that if PM(t) is the Poincaré series of M then

PΦM(t) = PM+(tp) + t2−pPM−(tp),

where M+, M− denote respectively the subspace of even and odd degree elements of M .
By the first two parts of Theorem 1, we have

Q(ΣnLn,1) ∼= ΦQ(ΣnLn,1) ⊕ Σ2(p−1)ΦQ(Σn−1Ln−1,1).

This shows in particular that the graded vector space Q(ΣnLn,1) is concentrated in even
degrees. It follows that the Poincaré series of ΦQ(ΣnLn,1) is Fn(t

p) and so

Fn(t) = Fn(t
p) + t2(p−1)Fn−1(t

p).

It is easy to verify that this equation determines uniquely Fn(t) once we have obtained the
formula for Fn−1(t). The lemma now follows by induction on n ≥ 0, starting from the case
n = 0 where L0,1 ∼= Fp.

Theorem 7 (Cf. [10]) The classes ω1n;pj1 ,pj2 ,...,pjn with j1 > j2 > · · · > jn ≥ 0 form a
minimal generating set for Ln,1.

Proof For j1 > · · · > jn ≥ 0, the class ω1n;pj1 ,...,pjn is A -indecomposable because

its expansion as a sum of monomials contains x1y
(p−1)pj1−1
1 · · · xny

(p−1)pjn−1
n . Moreover

these classes occur in different degrees of Ln,1, so they are linearly independent in Q(Ln,1).
The theorem now follows from Lemma 4.

4.2 Generators for Ln,2m−1, m ≥ 1

We now prove Theorem 2 by double induction on (n,m), n ≥ 0, m ≥ 1. The couples (n,m)

are ordered by the left lexicographical order. The case n = 0 is clear and the case m = 1 is
Theorem 7, so we can start the induction. We consider the following two cases:

Case m = m′p. By Theorem 6(1), the map ψn,2m−1 induces an isomorphism

Q(ΣnLn,2m−1) ∼= ΦQ(ΣnLn,2m′−1).

By inductive hypothesis for (n, m′), the classes
ω1n;pn−1γ i1 (m′),...,γ in (m′)
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with i1 ≥ i2 ≥ · · · ≥ in ≥ 0 form a minimal generating set for Ln,2m′−1. It follows that the
classes

ω1n;pnγ i1 (m′),...,pγ in (m′) = ω1n;pn−1γ i1 (m),...,γ in (m)

with i1 ≥ i2 ≥ · · · ≥ in ≥ 0 form a minimal generating set for Ln,2m−1.
Case m = m′p + r , 1 ≤ r ≤ p − 1. By Theorem 6, there is a commutative diagram

where the row is exact and Im(ι) ∼= ΦQ(ΣnLn,2m′+1). By inductive hypothesis for
(n − 1,mp), the classes

ω1n−1;pn−2γ i1 (mp),...,γ in−1 (mp)
= ω1n−1;pn−1γ i1 (m),...,pγ in−1 (m)

with i1 ≥ i2 ≥ · · · ≥ in−1 ≥ 0 form a minimal generating set for Ln−1,2mp−1. The pullback
of such a class under the map π is

ω1n;pn−1γ i1 (m),...,pγ in−1 (k),m
.

Similarly, by inductive hypothesis for (n,m′ + 1), the classes

ω1n;pn−1γ i1 (m′+1),...,γ in (m′+1)

with i1 ≥ i2 ≥ · · · ≥ in ≥ 0 form a minimal generating set for Ln,2(m′+1)−1. The pullback
of the class ω1n;pn−1γ i1 (m′+1),...,γ in (m′+1) under ψn,2m−1 is

ω1n;pnγ i1 (m′+1),...,pγ in (m′+1) = ω1n;pn−1γ i1+1(m),...,γ in+1(m).

It follows that the classes
ω1n;pn−1γ i1 (m),...,γ in (m)

with i1 ≥ i2 ≥ · · · ≥ in ≥ 0 form a minimal generating set for Ln,2m−1.

4.3 Generators for Ln,2m−2, m ≥ 1

Combining the exactness of the sequence (Theorem 1(3))

0 → Q(Ln,2m−1) → Q(Ln,2m−2) → Q
(
Σ2(m−1)(p−1)Ln−1,2(mp−p+1)p−1

)
→ 0

and the above determination of Q(Ln,odd), we see that that the classes

ω1n;pn−1γ i1 (m),...,p0γ in (m), i1 ≥ i2 ≥ · · · ≥ in ≥ 0,

ω1n−1,0;pn−2γ i1 (mp−p+1),...,p0γ in−1 (mp−p+1),k−1, i1 ≥ i2 ≥ · · · ≥ in ≥ 0,

form a minimal generating set for Ln,2m−2.
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