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Introduction
Soil Organic Carbon (SOC) is a crucial element in evaluating 
soil quality, especially in areas of agricultural land use (Tajik 
et al., 2020). The SOC influences the physical, chemical, and 
biological aspects of soil (Milne et  al., 2015; Zeraatpisheh 
et  al., 2021, 2022). The capacity for water-retention and the 
infiltration of rainwater that is influenced by SOC creates an 
increased availability of moisture within the landscape 
(Hartemink & McSweeney, 2014). In general, SOC is an 
indispensable consideration in regard to sustainable agriculture 
( John et  al., 2007). Understanding the fundamental aspects 
and functions of SOC, and its specific measurement, is an 
important observance in addressing soil degradation 
(Ramifehiarivo et  al., 2017). This knowledge also helps to 
improve agricultural productivity ( Jat et al., 2019). The detailed 
and accurate spatial distribution of SOC is vital for many pro-
cesses that are relevant to land use.

The SOC map is a useful tool that has many applications. 
For instance, to define degraded land areas and thus improve 
land management (Meersmans et al., 2012), especially in regard 
to agricultural production (van Den et  al., 2017). In 2017, a 
Global Soil Organic Carbon Map was established by the Food 
and Agriculture Organization of the United Nations (FAO, 
2020), at the resolution of a 1 km grid, and reaching a depth of 

0 to 30 cm of the top-soil. This map provides an improved abil-
ity to determine the current SOC content stored in a given area 
and also indicates the potential for carbon sequestration 
throughout the world (FAO, 2020). However, SOC mapping 
using the historically standardized method of field surveys 
conducted physically by researchers is a costly and time-con-
suming process due to the difficulties of accessing areas where 
the terrain is treacherous, especially in certain mountainous 
regions (Vågen & Winowiecki, 2013).

Digital Soil Mapping (DSM) has become popular in recent 
years. It is favored because of its accuracy and the detailed 
information that it provides. Also with DSM, the data can be 
updated easily (G. L. Zhang et al., 2017). DSM also records 
spatial material information in such a way that it can be inte-
grated into various software programs and serve as a tool that 
can be applied to other geographical studies such as studies in 
evaluation and the planning of agricultural land use (Naresh, 
2020). The goal of improving the accuracy of the soil mapping 
process has always been one of the foremost topics of interest 
among soil scientists. Several methods were applied to map the 
distribution of soil properties worldwide (Bostani et al., 2017; 
FAO, 2018; Göl et  al., 2017; Pouladi et  al., 2019). However, 
definitive conclusions have not been drawn as to the compara-
tive accuracy of the various interpolated methods of soil 
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mapping in each research case. The methods have different 
theoretical bases and thus, in combination, it is possible to 
study a variety of different conditions (Lai et al., 2021). The 
different methods have their advantages and disadvantages, for 
instance, the multiple linear regression (MLR) approach uses 
auxiliary variables as predictive factors to simulate soil proper-
ties, whereas the Ordinary Kriging (OK) interpolation 
approach emphasizes the spatial heterogeneity of simulated 
variables (Piccini et al., 2020). Some researchers consider geo-
statistics to be an efficient method for reducing the variance of 
assessment errors and also the cost of application (Bhunia 
et al., 2018; Bostani et al., 2017). Even so, soil science research-
ers are still seeking a consensus on which one of the spatial 
interpolation methods is the most accurate. Some researchers 
found that the OK method seems more accurate than the IDW 
approach for SOC mapping (Göl et al., 2017; Pouladi et al., 
2019). Other researchers (Calvo de Anta et  al., 2020; Siyu, 
2013) found that the Random Forest (RF) model outper-
formed the other models. Predictive models are commonly 
designed based on special hypotheses and may be characterized 
by some inherent shortcomings (Song et al., 2020). The appli-
cation of machine learning methods is one of the current trends 
in the spatial interpolation and distribution of soil features. 
The vast majority of studies are conducted on a large scale, 
however on a smaller scale, for example, the area of land occu-
pied by a given farm, have not as yet been addressed by detailed 
studies of this kind.

Much effort has been made to determine the influences of 
environmental variables on soil properties (G. L. Zhang et al., 
2017). Previous research found that the rock outcrop ratio 
(ROR), bulk density (BD), altitude, soil depth, slope gradient, 
and pH level, all have a significant effect on SOC (Hu et al., 
2018). Climatic factors also have substantial impact on SOC 
(Z. Liu et al., 2011). Terrain and environmental variables influ-
ence the spatial distribution of small-scale SOC (Piccini et al., 
2020). Therefore, taking into account the influence of environ-
mental factors on the distribution of SOC is an important con-
sideration in the SOC mapping processes. The number of 
auxiliary variables used in the spatial interpolation models of 
SOC content are diverse, however, it is apparent that the num-
ber of regular variables ranges from 5 to 12 (T. Liu et al., 2020; 
Mishra et  al., 2020). Calculating these auxiliary variables 
requires considerable time and software skills, which causes 
certain difficulties for less developed areas where human 
resources are minimal, for example in mountainous regions in 
developing countries. Conducting research on models that 
have a small number of auxiliary variables which are easier to 
calculate for these regions should be developed further.

In Vietnam, the investment into SOC mapping has not 
been given sufficient attention or become standard practice by 
the relevant agencies such as agricultural departments and nat-
ural resources departments. Most of the current SOC maps 
were inherited products from more basic research techniques 

on soil quality that were used many years ago. The main method 
applied is to take samples from the field for laboratory analysis 
in combination with observation of the soil color and vegeta-
tion cover to create SOC maps. As a result, most of the existing 
maps created from previous methods are general and outdated. 
More recently, selected researchers have begun to apply 
machine learning in soil properties mapping more regularly 
(Châu, 2020; Gia Pham et al., 2019). However, the influences 
of environmental variables on soil properties mapping in the 
mountainous of Central Vietnam are often still lacking in this 
approach. Therefore, this study aims to compare the popular 
interpolation methods to find the most suitable approach in 
SOC mapping in the specific conditions of Central Vietnam, 
especially considering areas with steep terrain for small-scale 
areas.

Materials and Methods
Research area

The research site encompasses 145 hectares (ha) and belongs to 
Nam Dong district, Thua Thien Hue Province, in Central 
Vietnam. The research area is shown in Figure 1. The climate 
in this area shows tropical monsoon characteristics with a rainy 
season from September to December. The average precipita-
tion from 2005 to 2019 is 3,824 mm, and the average tempera-
ture is 23ºC to 24ºC with the highest temperatures reached in 
June and lowest temperatures in January, 30ºC, and 15ºC, 
respectively. Although our research area is not large, the terrain 
is quite complicated. The elevation fluctuates from 130 to 
301 m m.a.s.l and decreases from the southern to the northern 
areas. The slopes range from more than 0º to 47º. However, 
70% of the total area has an average slope of about 10º, so the 
terrain is generally not very steep (Nam Dong District People’s 
Committee, 2020). This area belongs to Thuong Quang com-
mune’s agricultural land, Nam Dong district. Here there are 
three main types of land-use, including cultivation of acacia, 
cassava, and rubber trees with mass areas of 80, 11, and 48 ha 
respectively. The soil types in this area are Ferralic Acrisols, that 
has a general depth of more than 100 cm. In areas with acacia 
and rubber plantations, the soil surface is covered with a mat of 
decaying leaves, while in areas where cassava is grown, the 
ground is cleared of vegetative cover. Acacia is planted at the 
highest altitudes, followed by rubber and cassava. Rubber latex 
extraction is the main source of livelihood for the local people, 
the plantations of which have been established 15 or 20 years 
previously, while acacia plantations and logging provide the 
main immediate cash income due to its rotation cycle of 4 to 
5 years.

Methods

Soil sampling and soil organic carbon analysis.  There were 65 soil 
samples collected in March 2020 on a random basis, including 
23 samples taken from rubber plantations, five samples from 
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cassava plantations, and 37 samples from acacia plantations. 
The sample locations are presented in Figure 2. The distance 
between each sampling site ranges from 60 to 200 m. All the 
samples were selected in the same soil type to ensure that the 
soil samples were homogenous. The samples have been col-
lected at a depth of 30 cm of topsoil, and from five points around 
a circle of land area with a radius of 1 m. These were then mixed 
together to make up one soil sample. All of the samples were 
dried at room temperature before further processing.

The SOC content was analyzed by the Walkley–Black 
method (Black, 1965) at the Soil Science and Fertilizer 
Department laboratory at Hue University of Agriculture and 
Forestry, Hue city, Vietnam.

Environmental variables.  The environmental variables were 
extracted and calculated based on the remote sensing data. This 
data is the Landsat 8 image (acquired on March 10th 2020, 
path 125, row 49) with less than 10% of cloud cover and the 
Digital Elevation Model (n15, e108, 1 arc global, acquired in 
2010). All remote sensing data was downloaded from the 
United States Geological Survey (USGS) website (https://
earthexplorer.usgs.gov/, n.d.). The data of Landsat 8 was 
atmospherically corrected and converted from digital numbers 
to reflectance values based on the guidance of USGS (U.S. 
Geological Survey, 2019). The remote sensing data were then 

resampled to get a spatial resolution of 30 m. In this research, 
Band 4 and Band 5 of the Landsat 8 image were used to calcu-
late NDVI as the following equation (U.S. Geological Survey, 
2019):

NDVI
Band Band

Band Band
=
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where NDVI is Normalized Difference Vegetation Index; 
Band 5 is the reflectance value of the Near-Infrared band and 
Band 4 is the reflectance value of the Red band.

The DEM data was used to calculate the slope by ArcGIS 
software which established the elevation and slope maps. The 
elevation, slope, and NDVI maps are presented in Figure 3.

Soil organic carbon interpolation techniques
Inverse distance weighting.  The IDW technique has been 

developed based on the relative distance between the estimated 
points and the known points. The critical levels of the known 
points were created through the inverse of its distance from the 
interpolation point. This method has been written as the fol-
lowing equation (Maleika, 2020).
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Figure 1.  The location of the research site.

https://earthexplorer.usgs.gov/, n.d
https://earthexplorer.usgs.gov/, n.d
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where Z x( )0  represents the unknown value point at ( )x0 ; 
Z xi( )  represents the measured point at ( )xi ; n  are the num-
ber of points (in the search radius area); wi  represents the 
weighting of each soil sample; di  is the distance from ( )x0  to 
( )xi ; and p  is the power.

IDW interpolation is a mathematical application which 
assumes that points that are closer together have a stronger 
relation than points that are further apart. The weighting of 
influence is proportional to the inverse of the distance raised to 
the power value p. A smaller p-value has less effect on the inter-
polated value. If the p-value is 0, the effectiveness of distance 
was eliminated. Previous researcher (Tung, 1983) noted that a 
p-value of 2 is the most suitable in the IDW interpolation. The 
IDW method is used for spatial interpolation in the environ-
mental research of soil properties, terrain mapping, and air pol-
lution (Salekin et  al., 2018; Srivastava et  al., 2019; Su et  al., 
2018). In this research, the IDW method has been imple-
mented by ArcGIS with the value of p being 2, and n being 47.

Ordinary Kriging.  Ordinary Kriging (OK) is used in spatial 
interpolation because the amount of input data that is required 
is relatively small (Mesić Kiš, 2016). This interpolation method 
uses only data that is easily accessible, rather than the entire 
exhaustive dataset, and also excludes the remote points. It cal-
culates the value of unknown points by a linear sum of known 
points with a weighting coefficient between the known and 
unknown points. The standard condition when assessing the 

Figure 2.  Soil sampling locations at the research site.

OK technique is that the sum of all weights is equal to 1. In 
order to find the significance in the OK method, the Lagrange 
multipliers is applied. The OK method has been written as the 
following equation (Cressie, 1993).

Z x Z x
i

n

i i0
1

( ) = ( )
=
∑λ 	 (3)

where Z x( )0  is the value of the unknown point ( )x0 ; 
Z xi( )  is the value of unknown at i th  point ( )xi ; λi  is the 
weighting coefficient value between ( )x0  and ( )xi ; n  is the 
total number of known points. In this research, the OK has 
been conducted in R with some previous research frameworks 
(Hengl, 2009; Omuto & Vargas, 2015).

The semi-variogram depicts the spatial autocorrelation of 
the measured sample points in the model of the OK method. 
This semi-variogram has a nugget of 0.02; a sill of 0.13 and a 
range of 85 m. This was found in the OK method with a 
spherical model (Figure 4). The nugget/sill ratio of SOC is 
0.18, indicating that the sampled spatial dependence is quite 
important.

Random forest.  RF is a machine learning technique which 
was developed based on the “decision tree” and “bagging” 
(Prasad et al., 2006). Bagging creates an ensemble algorithm 
that fits multiple models on different subsets of training data-
sets, then combines the predictions from all models. Random 
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Figure 3.  The elevation, slope, and NDVI maps of the entire research area.

Figure 4.  The semi-variogram of SOC in the OK method.
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forest is an extension of bagging that is more detailed and also 
randomly selects subsets of features used in each data sample. 
It is a versatile method and has been applied in determin-
ing many various classifications and regression predictions. 
For SOC mapping, RF is quite effective when compared to 
other predictive models (FAO, 2018). In the RF model, the 
“decision tree” makes a series of conclusions based on a set of 
features/attributes that are present in the data; on the other 
hand, bagging is a more general procedure that can be used to 
reduce the variance for those algorithms that display a high 
variance (Yohei et al., 2014). RF provides the ability to meas-
ure the importance of variables, which in turn quantifies how 
much each feature influences the accuracy of the RF model 
(Sekulić et  al., 2020). To compare the accuracy of different 
methods, this study, therefore, uses the same input data for 
RF as for training data with 47 soil samples used for other 
methods. The parameters of the number of bootstrap repli-
cates (ntree) and the number of variables is randomly sampled 
at each split ( )mtry  play an essential role in the accuracy of 
the model. Some studies have stated that satisfactory results 
can be achieved with the default parameters (Andy & Mat-
thew, 2002; Zhang & Roy, 2017). However, we operated with 
a multiple ntree  of 100, 500, 1,000 and a set mtry  of 1, 2, 3 
for further investigation. This study was calculated by using 
R software with a framework introduced by Tomislav Hengl 
(Hengl et al., 2018). In general, the RF method can be writ-
ten as a multi variables regression formula as follows (Sekulić 
et al., 2020).

Z x f x x x xi n0 0 0( ) = ( ) … ( )( , . )
where x x i ni 0 1 2( ) = …( , , .. )  are covariates at the loca-

tion x0( ) .
Prediction values are made by aggregation of the predictions 

of the trees. The final prediction will be the most common 
average value returned by the decision trees that compose the 
forest (da Silva Júnior et al., 2019).

Assessment accuracy.  Eighteen soil samples, (27% of the total soil 
samples) were used to validate the predicted maps of all the 
methods. This was evaluated by comparing our observations 
with predictions at the validated points. In this study, root means 
square errors (RMSE) were selected as an index of validation. 
The method which has the lowest RMSE is the most accurate 
method for SOC mapping in this study. The RMSE was calcu-
lated by the following equation (Gia Pham et al., 2019):
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m

Z Z
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m
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=
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The prediction accuracy (Acc) was also used to evaluate the 
accuracy of predicted and measured SOC content (Gao et al., 
2021). It was calculated by following equation:
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where m  is the number of validation points, Zoi  is the 
observed value at the i th  position, and Zpi  is the predicted 
value at the i th  position.

In general, RMSE  closer to zero and a higher Acc  give a 
better prediction.

Results
Description of soil organic carbon and 
environmental variables

The SOC content of 65 soil samples is presented in Table 1. 
The data shows that the SOC content of the research site fluc-
tuates widely, with the lowest value being 0.26%, and the high-
est value being 1.73% of soil weight. The coefficient of variation 
of SOC content is 0.39 and it is considered to be a low vari-
ance. Therefore, the level of dispersion of SOC value around 
the mean is lower. The soil samples’ SOC content on the west-
ern side of the research site is higher than in other locations. 
Although the skewness index, (0.58, less than 1), indicates that 
the data may be a normal distribution, however, through the 
variance of samples and the mean of the data set it shows that 
it does not meet the criterion of normal distribution.

There is some variance of SOC content between different 
land use types. The highest SOC value was observed in the 
acacia land use type with the mean value of 0.89%, followed by 
cassava and rubber, 0.80% and 0.79%, respectively.

The NDVI value ranges from 0.3 to 0.7 and 75% of the 
total areas have an NDVI value that is higher than 0.5. This 
means that the land cover surface within the research site is 
significantly dense. There is no clear difference in NDVI values 
in relation to land uses. In regard to land use, acacia plantation 
has an average NDVI value of 0.56; the rubber tree area is 0.54 
and cassava area is 0.52. The western part of the study area also 
has a higher NDVI value than other regions.

Many researchers found that the elevation level significantly 
impacted the SOC content in agricultural and forest land areas 
due to the occurrence of soil erosion (Feng-bo et al., 2015; Joel 
et  al., 2016). The sampling data showed that elevation has a 
correlation not only to SOC content but also to other environ-
mental variables, as shown in Table 2.

Soil organic carbon interpolation

The spatial distribution of the predicted SOC percentage is 
shown in Figure 5 using three methods. The results showed 

Table 1.  Summary of SOC at the sampling points and environmental 
variables of the entire area of the research site.

Indicator Min Max Median Mean SD

SOC (%) 0.26 1.73 0.81 0.86 0.34

NDVI 0.30 0.71 0.55 0.54 0.08

Elevation (m) 130 301 170 175 29.8

Slope (°) 0.34 46.94 9.11 10.57 7.17



Huynh et al.	 7

that they were different when using different methods, espe-
cially between the environmental variable (RF) and other 
methods (IDW, OK). The maps of both IDW and OK are 
almost the same. The variance of SOC values of these maps is 
1.40% even though the SOC content of the IDW method is 
slightly higher than OK, by 0.01%.

The accuracy of interpolated methods has been shown via 
the RMSE and Acc values. The RMSE value within the OK 
model is the highest being 0.29, followed by RF and IDW with 
0.28, 0.25, and 0.24, respectively. The prediction accuracy (Acc) 

of the IDW, RF and OK method was 0.56, 0.50 and 0.42 
respectively. These indicates that the IDW method is the most 
accurate in comparison to the other methods we used. The pro-
cedure of the IDW method is also the simplest, which makes it 
more advantageous to use than other more complex methods 
that require much more data input.

The advantage of the RF model is in showing the impor-
tance of the effect of the given variables. It explains the influ-
ence of the predictor variable upon a given dependent variable. 
For example, in our model it shows that elevation is most rel-
evant to the increase of Mean Square Error (MSE) of RF 
model with 8%, followed by slope and NDVI, 2.5% and 0.5% 
respectively.

Discussion
Finding the most suitable interpolation methods for soil prop-
erties mapping is still a challenge for researchers worldwide. 
Previous research (Y. H. Wu & Hung, 2016) has indicated that 
no specific model is the best under all conditions, and each spa-
tial interpolation algorithm preforms differently. This means 
that in our particular case, IDW might be the most suitable 
method, but it may not reach the most effective conclusions for 

Table 2.  The correlation between SOC and environmental variables of 
47 soil samples.

Elevation Slope NDVI SOC

Elevation 1.00  

Slope 0.36*** 1.00  

NDVI 0.28** −0.02 1.00  

SOC 0.47*** 0.14 0.18 1.00

**Significant level of 0.05; ***Significant level of 0.01.

Figure 5.  The SOC maps by IDW, OK, and RF methods.
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other topographical regions, or when using different sampling 
methods.

Many researches indicated that the OK model is more accu-
rate than IDW due to the regularity in sample density and high 
spatial correlation (Zimmerman et al., 1999). However, other 
researchers (Qiao et  al., 2018; Setianto & Triandini, 2013) 
found that the IDW model is more suitable for ecological 
interpolation than the OK technique. The IDW method can 
predict the changing of spatial feature interpolation better than 
the OK method (Shi et  al., 2007; Zhao et  al., 2019). Our 
research finds that the OK method has highest RMSE value 
and lowest Acc index which means that OK is least method in 
comparison to other methods used. Contrary to this, the high-
est in Acc  and lowest in RMSE  is the IDW method, which 
subsequently was determined to be the most accurate. There 
are many reasons that can explain this situation, however, the 
most important factor is attributed to that of the interpolation 
data itself. The kriging predictions are dependent on data that 
satisfies the statistical criteria in an unbiased way and takes into 
consideration variances (Ikechukwu et al., 2017). A prerequi-
site of using the kriging method is that the data set must be 
used with normal distribution (Gorai & Kumar, 2013; Wu 
et al., 2006). This is an important requirement when using the 
OK method (Ikechukwu et al., 2017). In addition to this, the 
data must be distributed consistently with the rule that 68% of 
all values of 𝑥 fall between 𝜇 ± 1𝜎; 95% of all values of 𝑥 will 
fall between 𝜇 ± 2𝜎; and 99.7% of all values of 𝑥 will fall 
between 𝜇 ± 3𝜎, with 𝑥 as the SOC content, 𝜇 represents mean 
of SOC content, and 𝜎 is the variance of the sample. The data-
set used in this research of spatial interpolation is 47 samples 
and only 38%, 45%, and 75% of samples respectively are dis-
tributed according to the parameters mentioned above. The 
lack of a normal distribution within the results of the OK 
method also shows it to be less effective than the other meth-
ods mentioned in this article.

An optimal choice is the semi-variogram model as an 
important application for spatial interpolation when using the 
kriging methods. Since the semi-variogram expresses the rela-
tionship between measured values, it is obvious that model rec-
ognition strongly influences the evaluation process (Mazzella 
& Mazzella, 2013). As mentioned, our dataset has only 47 
sample points, and the range value of the semi-variogram is 
quite minimal, only 85 m. It proves that the participation of 
outliers outside the 85 m range for each interpolated point is 
not large. In this instance, the accuracy will be negatively 
affected when using the OK method. These findings are com-
mon with individual models and small data sets (Biswas & 
Cheng, 2013). Moreover, the data does not fit to the function 
in the semi-variogram, which is also a factor in determining the 
accuracy of the OK method. This again shows it to be inferior 
worst because it does not determine important criterion in a 
satisfactory way within the kriging interpolation group 
(Ikechukwu et al., 2017).

When the RF model is used, the auxiliary variables also 
impact the accuracy of the RF model. In the RF model, when 
predicting a value at a given location, the spatial information in 
the neighboring locations is not taken into consideration 
(Hengl et al., 2018; Leo, 2001). Mariano and Mónica (2021), 
shows that the performance of RF is based on the characteris-
tics of the training dataset. Therefore, when compared with the 
kriging method, the accuracy of RF is better because it is not 
affected by the sampling location and distance between sam-
ples. Our research was conducted in a small area with homoge-
neous natural conditions; therefore, the density of samples and 
their distances are similar to previous studies. As was found in 
previous research (Xie et al., 2020), the IDW approach works 
well under uniform sample distribution due to the local vari-
ance, which is a driver of the estimated surface. RF accuracy for 
each interpolation is different, (even if the initial input dataset 
is the same) due to the “random nature” of the method. One 
consideration when evaluating the effectiveness of the various 
models of research is that the physical conditions of each indi-
vidual study are unique. And therefore, each study may require 
a different specific model to be the most effective within the 
specific conditions of that study. Recently, a combination of the 
OK and RF (called RFK) or IDW and RF (called RF-IDW) 
have performed well in current digital soil mapping research 
(Szabó et al., 2019; Tan et al., 2021). Which suggests that fur-
ther investigation into the most effective model, or combina-
tion of models, should be pursued.

The influences of auxiliary variables on SOC content have 
been noted by previous research (Calvo de Anta et al., 2020). 
Our study confirmed the same conclusions about the influ-
ences of environmental variables on SOC maps as had been 
drawn from those previous studies (Abalori et al., 2022). The 
map created by RF method is shown clearly. According to the 
RF method, the variations in the SOC map are similar to those 
of the elevation map. The RF model indicated that the eleva-
tion variable is the most important variable of SOC prediction, 
followed by slope and NDVI. When generating models of pre-
dictor variables by RF, the spatial relationships between the 
points are not taken into account, this means that the RF 
model only uses the characteristics of environmental variables. 
It should be noted that the correlation between the environ-
ment variables and the SOC is calculated based on the sampled 
data set. Therefore, the influence of the variables should be 
carefully considered on the basis of the size of the sample area 
and the characteristics of the sampling area together.

The impact of ecosystem variables such as elevation on 
SOC is usually the result of the long-term interactions between 
climate, vegetation, and soil type (Garten, 2004). Our results 
were also consistent with previous studies in finding a positive 
correlation between elevation and SOC content (Grömping, 
2009). The temperature is the primary environmental element 
that governs soil C dynamics through the effects on soil organic 
matter decomposition. Cooler temperatures at high elevations 
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limit the decomposition of organic matter. In our research, the 
elevation variance was minimal. In these instances, the correla-
tion of SOC and elevation reached the medium level of corre-
lation. In high-altitude areas, farmers often grow perennial 
crops such as acacia hybrid and rubber. As a result, the better 
ground cover shown in the NDVI index is because these areas 
are often significantly higher than the other study areas. Our 
findings here are again consistent with previous studies (Yang 
et al., 2020; Zhang et al., 2019) who found a significant posi-
tive correlation between the SOC content and NDVI. However, 
we also found that the correlation between NDVI and SOC is 
very low when compared with some other previous studies 
(Kumar et al., 2016; Rajeev et al., 2015). This difference may be 
due to the depth of sampling, studies that sampled close to the 
surface have a higher correlation between NDVI and SOC. 
The influence of slope on SOC content is not significant, so 
our results are similar to the recent study mentioned ( Jakšić 
et al., 2021). This may be due to the influence of farming prac-
tices. In areas with high slopes, local farmers often plant forests 
and perennial crops, while in flat areas, cassava is dominant. 
Afforestation areas will have more accumulated SOC, (due to 
leaf decay), but face SOC leaching due to erosion. In the case 
of normative farming methods, flat areas often receive SOC 
washed away from areas with steep slopes, but SOC is lost due 
to those same farming practices (Karchegani et  al., 2012). 
Therefore, the correlation between SOC and slope is complex 
and unpredictable.

Concerning the impact of mtry  and ntree  within the RF 
model, our results indicated that for the RF interpolation 
method for multi variables, the most suitable is 1 and 1000 
respectively, seen in Table 3. (Sekulić et al., 2020) introduced 
that mtry m

=
3

 (where m  is the number of auxiliary variables). 
We used three environmental variables which made an mtry  of 
1 consistent with previous researchers. In regard to the ntree  
value, we recognized that there is no significance of MSE when 
the ntree  value changes. Our research area was small, and the 
number of samples was not large. The distances between sam-
pling locations was also short. These factors all contribute to 
the effectiveness of the ntree  value. Another previous study 
also stated that the optimal value of ntree  depended on the 
degree of spatial correlation and the sample size (Yohei et al., 
2014). The ntree  value is proportional to the sample size and 
range of semi-variogram. If the ntree  increases, it does not 
always mean the performance of the RF is significantly 

improved (Oshiro et al., 2012). In general, in a small area with 
a dense sample area, the mtry m

=
3

 and ntree  as the default 
value of the Random Forest package is an appropriate 
parameter.

Conclusions
The results did not meet our expectations that the environ-
mental auxiliary variable method can improve the accuracy of 
SOC mapping in small areas. SOC mapping in a small area 
with a high and random sampling density shows that IDW is 
the most acceptable interpolation method, followed by RF, and 
OK techniques. A comparison of the best method for SOC 
interpolation needs to be conducted with a wide range of aux-
iliary variables and sampling sizes in the different natural con-
ditions. The evaluation of the distribution of the original data 
set in the kriging method should be noted because this can be 
a cause of poor interpolation results. Sampling strategies need 
to be determined to ensure that the sample size is large enough 
and also has appropriate sample spacing. This can be a solution 
to improve the accuracy of the SOC interpolation results.

The selection of auxiliary variables should be considered on 
the basis of the specific conditions of each study area. In areas 
where there is human activity such as farming, the conditions of 
naturally occurring variables can be compromised and therefore 
these areas may not be suitable for interpolation studies of SOC 
using the auxiliary variable methods. In these cases, the research 
should focus on variables related to human activities and land-
use types, and also should take into account the use of fertilizers, 
or other substances used in modern farming methods.

In the RF method, the mtry  value is a third of the number 
of variables and the ntree  value as the default of the RF pack-
age. This should be taken as the most important parameter.
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