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Landau levels and magneto-optical responses in Weyl semimetal quantum
wells in a non-uniform magnetic field
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We study the Landau level (LL) structure and magneto-optical responses in the Weyl semimetal (WSM)
quantum well in the presence of a non-uniform magnetic field (NUMF). The number of LLs in the NUMF
is found to be finite, and the LL structure of the system is significantly affected by the inhomogeneity of
the magnetic field. The added electric field significantly affects the separation of the two Weyl nodes in
momentum space. We investigate the role of the inhomogeneity of the magnetic field, temperature, electron
density, and electric field, as well as the doping level on the optical response properties. Both longitudinal and
Hall susceptibilities in the (x, y) plane and the longitudinal susceptibility in the z direction display a series of
peaks whose height and spacing decrease with the increase of the LL index. At T �= 0, thermal excitation triggers
new transitions, which are forbidden by the Pauli blocked at T = 0. The optical response spectra are different
when the chemical potential lies in different energy regions, which are strongly dependent on the inhomogeneity
of the magnetic field, electron density, and electric field. In this paper, we provide a possible way to control the
optical response spectrum in WSM materials by changing these parameters.
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I. INTRODUCTION

A Weyl semimetal (WSM) is an interesting material class
whose low energy is described as massless chiral fermions,
named Weyl fermions. WSMs have been demonstrated to be
charged even at room temperatures [1–3] and are a critical
topological phase of matter in addition to topological insula-
tors [4]. The low-energy bands of WSMs have also displayed
a linear dispersion whose conduction and valence bands touch
each other at isolated Dirac points, named Weyl nodes. These
nodes always appear in pairs and have opposite chiralities,
acting as the beginning and end points of the Berry curvature
in the momentum space [5,6]. In WSMs, both inversion and
time-reversal symmetries or either one of them is broken [1,7].
If both of these symmetries are protected, Weyl nodes will
be degenerated [8], and the system should be referred to as a
Dirac semimetal whose typical representatives are Na3Bi [9]
or Cd3As2 [10]. Recently, a WSM has been predicted theo-
retically [11,12] and observed experimentally in TaAs [13].
This material is expected to have many useful applications in
electronics and computing due to its high mobility of charged
Weyl fermions [14].

When a uniform magnetic field (UMF) is applied to the
system, the linear dispersion electronic states are quantized to
a set of discrete energy levels, which has been observed in

*Corresponding author: hvphuc@dthu.edu.vn

Cd3As2 [15]. Studying the optical transitions between these
Landau levels (LLs) allows us to determine the distance be-
tween the LLs, thereby defining the characteristics of fermions
in the materials [5,16–21]. The optical conductivity in an iso-
lated Weyl node is shown as a series of asymmetric peaks both
without [16] and with quadratic terms [17]. The magneto-
response in the z direction has been found to be comparable
with that in the (x, y) plane [5]. Along with this, the exis-
tence of a chiral anomaly [22] sets WSMs apart from other
two-dimensional (2D) monolayer materials [23–29]. The elec-
tronic properties of the WSM in the presence of a UMF have
been studied in great detail using a minimal model [5,18,30].
However, the effects of the non-UMF (NUMF) on the wave
functions, the energy spectrum, and the magneto-optical prop-
erties of the WSM have not yet received sufficient research
attention.

It is well known that, in the NUMF case, the energy spec-
trum and wave function have many different characteristics in
comparison with those in the UMF one [31]. Theoretically,
different kinds of NUMFs have been studied in 2D electron
gas [32,33]. Experimental strategies for creating such NUMFs
can be found in a review by Nogaret [34]. According to that,
such NUMFs can be implemented by using micromagnetic,
superconducting elements, and non-planar 2D electron gas.
While a microscopical NUMF can be obtained by fabricating
micromagnets in the proximity of a 2D electron gas, super-
conducting elements [35] could be used to screen applied
magnetic fields using the Meissner effect [34]. Another type
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of NUMF is the magnetic step, which can be obtained by
overgrowing heterojunctions on a non-planar substrate [36].
The magnetic field generated by this system will have the
following characteristic: It has a finite value at the facet and is
zero everywhere else.

Among different types of NUMF, the exponentially de-
caying magnetic field (EDMF) is one of the most popular
[37,38], where the analytic solutions for a Dirac electron
have been obtained in several systems such as quantum wells
(QWs) [39], monolayer graphene [31,40], bilayer graphene
[41], and monolayer black phosphorus [42]. According to
that, the wave functions of electrons in the EDMF are not
expressed by Hermite polynomials but by Laguerre polyno-
mials, and the number of their corresponding LLs energies
is finite. Thus, the magneto-optical response properties of the
systems placed in the EDMF have many interesting features
and need to be studied in more detail. Such an EDMF can
be produced by parallelly applying a UMF to one planar
surface of a superconductor. Then an EDMF will occur inside
the superconductor within the penetration depth λ [39,41,42].
This design can be used to consider a NUMF in our system.

In this paper, we present a calculation of the susceptibilities
of a WSM QW in the presence of a NUMF. We study the
contribution of the electric field to the energy spectrum of
WSM, which is described by a two-node model [5,18,30]. It
has been shown that the distance between the two Weyl nodes
is significantly dependent on the electric field. We study the
influence of the temperature, the magnetic field penetration,
electron density, the electric field, and polarization orientation
of the light on the longitudinal and Hall susceptibilities in the
(x, y) plane and in the z direction in both cases of doped and
undoped WSMs.

II. MODEL AND FORMALISM

A. Minimal model

We start with the Hamiltonian by the minimal model for a
WSM [5,18,30]:

H0 = h̄vF(kxσx + kyσy) + Ma
(
k2

c − k2
)
σz, (1)

where vF is the Fermi velocity in the (x, y) plane with h̄vF =
2.5 eV Å; k = |k| with k = (kx, ky, kz ) being the wave vector;
σx, σy, and σz are the Pauli matrices; and kc = 0.1 Å−1 and
Ma = 10 eV Å2 are the model parameters [18]. Applying a
uniform electric field E = (0, 0,−Ez ) to the system, the dis-
persion of energy bands of the system is found to be

E± = ±
√

(h̄vF)2
(
k2

x + k2
y

) + [
Ma

(
k2

c − k2
) − �z

]2
, (2)

where �z = eEzLz, with Lz being the length of the system
in the z direction. At kx = ky = 0, the energy dispersion in
Eq. (2) reduces to E± = ±|M0(k2

c − k2
z ) − �z|. In Fig. 1, we

show the energy spectrum as a function of kz at kx = ky = 0
for different values of the electric field, which is described
through a dimensionless parameter γ = �z/(Mak2

c ). In the
absence of electric field, γ = 0 [see Fig. 1(a)], the two bands
E+ and E− intersect at two nodes (0, 0,±kc). In the range
between the two nodes, i.e., −kc < kz < kc, the WSM dis-
plays a topological phase [5,18], like that observed in silicene
[43,44]. When the electric field is increased such that γ < 1

FIG. 1. Energy spectrum as a function of kz at kx = ky = 0 for
different electric fields (�z = γ Mak2

c ). (a)–(d) are for γ = 0, 0.5, 1,

and 2, respectively.

[see Fig. 1(b)], the system remains in a topological phase
but with the intersections being changed to kz = ±ka with
ka = (k2

c − �z/Ma)1/2 = kc(1 − γ )1/2. This topological prop-
erty can be characterized through the nonzero Chern number
[45], which is nonzero (zero) in (out of) the range of −ka <

kz < ka [46]. When γ = 1 [see Fig. 1(c)], the two nodes are
converged into one, the two bands intersect at only one node,
and the system displays a special type of phase, which is
related to the valley-polarized metal phase in silicene [47]. As
γ continues increasing further with γ > 1 [see Fig. 1(d)], the
two bands become completely separated with a finite gap, and
the system will no longer be a semimetal but a semiconductor.
In this paper, we mainly focus on the semimetal phase of the
system, where γ < 1.

B. Landau bands

In this paper, we consider a QW with a width Lz in the
z direction, which is taken to be Lz = 100 nm for the nu-
merical calculations. Applying an infinite potential V (z) = ∞
outside the QW, the wave vector in the z direction becomes
kz = ±(nzπ/Lz ), with nz = 1, 2, 3, . . .. In this case, the total
wave function can be written as ψ = φnz (z)ψ (x, y), where
φnz (z) = √

2/Lz sin(nzπz/Lz ) is the wave function in the z
direction. In the presence of a NUMF B = [0, 0, B(x)], the
wave vector k is replaced by k → π/h̄ = k + eA/h̄ under the
Peierls replacement with the Landau gauge A = (0, Ay, 0).
Considering both electric and magnetic fields, the Hamilto-
nian becomes

H0 = vF(πxσx + πyσy) + Mnσz

=
[

Mn −ih̄vF(∂x + W )
ih̄vF(−∂x + W ) −Mn

]
, (3)
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where Mn = Ma(k2
c − k2

z ) − (2Ma/α
2
c )(n + 1/2) − �z. Here,

ωc = vF

√
2/αc, αc = [h̄/eB(x)]1/2 is the magnetic length, and

W = ky + eAy/h̄ is the superpotential function [48]. In this
paper, we consider two different forms of magnetic fields: uni-
form and non-uniform ones. We firstly present the results for
the Weyl-Dirac equation H0ψ = Eψ , for which the Hamilto-
nian is shown in Eq. (3). To do that, we use the wave function
for the η state |η〉 ≡ ψ = [exp(ikyy)/

√
Ly]φnz (z)ψ (x), where

ψ (x) = {ψ+(x), iψ−(x)}T is the wave function in the x direc-
tion, with T being the transpose operator.

1. UMF

Consider the case where a UMF B(x) = B0 is applied to
the system. Then we have Ay = B0x. The energy levels cor-
responding to the Hamiltonian in Eq. (3) have three degrees
of freedom {η} = {n, p, nz}, which are given as follows, for
n � 1:

Eu
η ≡ Enz,u

n,p = p
√

n(h̄ωc)2 + M2
n ≡ pEnz,u

n , (4)

where the superscript u denotes the UMF case, n and p stand
for the LL and the band (conduction or valence) indices,
respectively. The corresponding eigenstates are

ψ (x) ≡ ψnz,u
n,p =

[
Anz,u

n,p φu
n−1(x)

ipBnz,u
n,p φu

n (x)

]
, (5)

where

φu
n (x) = 1√

2nn!αc
√

π
exp

[
− (x − x0)2

2α2
c

]
Hn

(x − x0

αc

)
(6)

are the normalized oscillator functions centered at x0 = α2
c ky.

The normalization coefficients are

Anz,u
n,p =

√
pEnz,u

n + Mn

2pEnz,u
n

, Bnz,u
n,p =

√
pEnz,u

n − Mn

2pEnz,u
n

. (7)

For n = 0, Enz,u
0 = −M0 and ψ

nz,u
0 = (0, φu

0 )T .

2. NUMF

For the NUMF, we consider an EDMF [31,37–42]:

B(x) = B0 exp
(
− x

λ

)
, (8)

where λ is the magnetic field penetration. In this case, we have
Ay = −B0λ[exp(−x/λ) − 1]. Using the technique of super-
symmetric quantum mechanics [31,48,49], the energy levels
for the NUMF case are given by

Ed
η = Enz,d

n,p = p

√
n

(
1 − n

2ξ0

)
[h̄ωc(x0)]2 + M2

n , (9)

where ξ0 = λky + eB0λ
2/h̄ = [λ/αc(x0)]2. We can see that,

when λ → ∞, ξ0 → ∞, the energy level in Eq. (9) reduces
to its form of the UMF shown in Eq. (4). The corresponding
eigenstates also have the same form as shown in Eq. (5) but

FIG. 2. (a) and (c) Landau level (LL) energy as a function of B0

at nz = 1; (b) and (d) LL energy as a function of nz at B0 = 8 T,
for the uniform magnetic field (UMF) and non-UMF (NUMF) cases,
respectively. The blue curves are for n = 0 LL. The magenta and
red curves depict μ at T = 0 K: the solid, dashed, and dotted curves
are for ne = n0, 2n0, and 3n0, respectively. The other parameters are
γ = 0.5 and λ = 50 nm.

with superscript u replaced by d , and

φd
n (x) =

√
(2β )n!

λ̄αc(x0)(n + 2β )!
(2ξ0)β exp

(
−βX

λ̄

)

× exp
[
−ξ0 exp

(
−X

λ̄

)]

× L2β
n

[
2ξ0 exp

(
−X

λ̄

)]
, (10)

where λ̄ = λ/αc(x0) = √
ξ0, X = (x − x0)/αc(x0), β = ξ0 −

n, and Lm
n (x) are the associated Laguerre polynomials.

In Figs. 2(a) and 2(c), we show the LL energy for UMFs
and NUMFs, respectively, at nz = 1 as a function of B0. Here,
we have denoted n0 = 5 × 1023 m−3 for convenience. In the
UMF case, the LL spectrum displays a

√
B0 behavior with

a gap of M0 + M1, whose value is 0.1 eV at B0 = 0. This
feature of the LL spectrum in the WSM is like those of gapped
graphene [23] or silicene [24–26] rather than transition metal
dichalcogenides (TMDCs) [27–29]. Note that, in the UMF
case, all the LLs start at B0 = 0. Meanwhile, in the NUMF
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case, the LL spectrum is also proportional to
√

B0, but the
LLs start at different values of B0, named B0s. The higher
the order of the LLs (i.e., the bigger the value of the LL
index n), the larger the value of B0s, like that in graphene
[31] and black phosphorus [42]. This stems from the fact
that, in the NUMF case, the number of energy levels is finite.
The number of LLs, Nmax, is found from the condition that
[Enz,d

n,p ]2 < V±(X → ∞), where V±(X ) = (h̄vF)2[W 2 ± ∂xW ]
is the effective potential [40], which leads to Nmax = Int[ξ0 −
s
√

2ξ0] + δ. Here, s = M0/h̄ωc(x0), Int[b] means the integer
part of b, and δ = 0 (1) for the conduction (valence) band.
The difference in the value of the Nmax in the conduction
and valence bands is from the existence of the 0LL, which
is located in the valence band and breaks the electron-hole
symmetry in the WSM. For the fixed parameters shown in
Fig. 2, we have Nmax = 30 (31) at B0 = 8 T for the conduc-
tion (valence) band. It should be noted that, unlike in bilayer
graphene [41] and monolayer black phosphorus [42], the LLs
in the WSM cannot cross each other, i.e., there is no mixing
of Landau states. This can be explained as follows. Using
Eq. (9), we have a condition for the intersection of two levels
of LLs n1 and n2, which if it occurs is 2ξ0 = n1 + n2. From
that, we find the value of the magnetic field at the intersection
as B0c = (h̄/λ2)(n1 + n2) exp(x0/λ), which is much smaller
than that of B0s (the magnetic field value where the LLs start,
as mentioned above), for all values of n1 and n2. That is the
reason why there is no crossing between different LLs in the
WSM.

In Figs. 2(b) and 2(d), we show the dispersion of the LLs
along the z direction at B0 = 8 T for the UMF and NUMF
cases, respectively. The dispersive structure in the WSM leads
to richer results in the optical transitions even in the z direc-
tion. The magenta and red curves present the μ at nc = n0

for the UMF and NUMF cases, which is defined from the

condition:

ne =
∫ ∞

0
dεD(ε) f (ε) −

∫ 0

−∞
dεD(ε)[1 − f (ε)], (11)

where f (ε) = {exp[(ε − μ)/kBT ] + 1}−1 is the distribution
function, T is the temperature, ne is the carrier density, and
D(ε) is the density of states, which is given by

D(ε) = gs

2πα2
c Lz

∑
n,p,nz

δ
(
ε − Enz

n,p

)
. (12)

Here, gs = 2 is the spin degeneracy. We see that μ increases
with the increase in the carrier density.

C. Magneto-optical responses

When the WSM system is excited by an incident light E (t )
of energy h̄ω, the total Hamiltonian is written as

H = H0 + H1, (13)

where the unperturbed Hamiltonian part H0 is given in
Eq. (3), and [28,50]

H1 = −d · E (t ) (14)

is the interaction Hamiltonian part, with d = −er being
the dipole moment operator. Here, r = (x, y, z) is the three-
dimensional position operator. For the j direction ( j =
x, y, z), using the relation d j,κ

η→η′ = 〈η′|d|η〉 = δky,k′
y
δnz,n′

z
d j,κ

n,n′ ,
we have

d j,κ
n,n′ = −e

〈
ψ

nz,κ

n′,p′ |[ j,H0]|ψnz,κ
n,p

〉
Eκ

η − Eκ
η′

, (15)

where the superscript κ = u, d for the UMF and NUMF,
respectively. Using the commutators [x,H0] = ih̄vFσx,
[y,H0] = ih̄vFσy, and [z,H0] = −2ikzMaσz, we have

d

(
x
y

)
,κ

n,n′ = eh̄vF

�Eκ
η,η′

[
pAnz,κ

n′,p′Bnz,κ
n,p

(
1
−i

)
δn′,n+1 − p′Ankz,κ

n,p Bnz,κ

n′,p′

(
1
i

)
δn′,n−1

]
. (16)

dz,κ
n,n′ = 2π ienzMa

�Eκ
η,η′Lz

(
Anz,κ

n′,p′Anz,κ
n,p − pp′Bnz,κ

n,p Bnz,κ

n′,p′
)
δn′,n, (17)

where �Eκ
η,η′ = Eκ

η − Eκ
η′ . The dipole matrix element in Eq. (16) shows that, in the (x, y) plane, only inter-LL transitions are

allowed with the condition n′ − n = ±1. This is in agreement with that reported in graphene [51–53], phosphorene [54], and
monolayer MoS2 [28,29]. Meanwhile, the dipole matrix element in Eq. (17) reveals that, in the z direction, only the intra-LL
transitions are allowed with the condition n′ = n, which is impossible in reality for the intraband transitions. Therefore, there is
no intraband (p = p′) but only interband (p �= p′) dipole transitions in the z direction, like the magneto-optical conductivities
reported in 2D ZrTe5 [55]. Using the equation of motion method [56,57], the electric susceptibility is calculated as follows
[28]:

χκ
μν (ω) = gs

2πε0α2
c Lz

∑
n,p,nz

∑
n′,p′

[
f (Eκ

η′ ) − f
(
Eκ

η

)] ×
[ (

dμ,κ

n,n′
)∗

dν,κ
n,n′

�Eκ
η,η′ + h̄ω + i�

+ dμ,κ

n,n′
(
dν,κ

n,n′
)∗

�Eκ
η,η′ − h̄ω − i�

]
. (18)

Here, μ, ν = x, y, x, � is the phenomenological relaxation
energy, and ε0 is the vacuum permittivity. The results for
the longitudinal χκ

xx(ω) and Hall χκ
yx(ω) susceptibilities in

the (x, y) plane allow us to study the magneto-optical re-
sponse for circularly polarized light, which is defined as

[28]

χκ
±(ω) = χκ

xx(ω) ± iχκ
yx(ω), (19)

where the +/− signs correspond to the right/left polarization.
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FIG. 3. The susceptibilities [in units of χ0 = e2/(ε0Lz ) eV] as a function of h̄ω: (a) χxx , (b) −χyx , (c) χ±, and (d) χzz. The parameters are
B = 8 T, ne = 0, T = 0 K, � = 2 meV, γ = 0.5, and λ = 50 nm.

III. RESULTS AND DISCUSSION

We now evaluate the numerical calculations for the lon-
gitudinal χxx and Hall χyx susceptibilities in the (x, y) plane
and the z-direction susceptibility χzz. According to the doping
level, we divide our results into two main parts: the first
one is the undoped intrinsic WSM where the chemical po-
tential lies inside the bandgap, and the second one is the
doped case where the chemical potential lies in the conduction
band.

A. Undoped intrinsic WSM

In the undoped case, where ne = 0 and μ lies inside the
gap, the magneto-optical responses (MOR) is driven by only
interband transitions. In Figs. 3(a) and 3(b), the real and
imaginary parts of the longitudinal χxx and Hall susceptibil-
ities χyx, respectively, are shown as a function of incident
photon energy. Since the Im(χxx ) and Re(χyx ) parts describe
the absorption processes, the Re(χxx ) and Im(χyx ) parts are
related to the reactive dielectric response [28], which have a
close relationship with the relative refractive index changes
[58,59]. Both real and imaginary parts of χxx and χyx are
found to display a series of peaks. Note that, except for the
first one, which is generated by only one transition L0 → L1,
each other peak appears as a composite of pair of transitions
L−n → Ln+1 and L−(n+1) → Ln, with n � 1, where the minus
sign at L−n indicates that the initial LL is in the valence
band. This explains that the height of the first peak is smaller
than that of the second one, which is formed by a couple of
transitions with n = 1. This result is in agreement with the
half-peak feature in TMDCs [28]. Except for the first peak,

as discussed above, since the second peak, the height of the
peaks decreases when the LL index increases. It can be easily
understood from Eq. (9) that, when n increases, the differ-
ence in energy �E inter

n,n±1 = En + En±1 increases, resulting in
the decrease of dipole matrix element in the x direction [see
Eq. (16)], resulting in a decrease in the height of peaks of χxx.
Additionally, we see that, when the LL index increases, the
peak spacing decreases, i.e., the peaks are getting closer and
closer together. To have an insight into this result, we treat
the peak spacing of two adjacent peaks �ωn, from Eq. (9), as
follows

�ωn = En+2 − En

∝
√

(n + 2)

(
1 − n + 2

2ξ0

)
−

√
n

(
1 − n

2ξ0

)
, (20)

which displays as a decreasing function of n. This peak
spacing behavior in WSMs is different from that in TMDCs
[28,60], in which the peak spacing is found to be independent
of n, and therefore, it is equal at a fixed magnetic field.

In Fig. 3(c), we show the real and imaginary parts of
χ± as a function of h̄ω. From Eq. (19), we have the fol-
lowing relations Im[χ±] = Im[χxx] ± Re[χyx] and Re[χ±] =
Re[χxx] ± Im[χyx]. We can see from Figs. 3(a) and 3(b) that
Im/Re[χxx] and Re/Im[χyx] have almost the same heights
and positions but with opposite signs. Therefore, in the left
polarization, the contribution from Re/Im[χyx] enhances the
height of the peak in Im/Re[χxx], leading to the increment
of the peak in Im/Re[χ−]. The process is opposite to the
case of right polarization. In this case, the contribution from
Re/Im[χyx] reduces, even cancels, the height of the peak in
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FIG. 4. The susceptibilities (in units of χ0) as a function of h̄ω: (a) Im[χ−] and (b) Im[χzz] for different temperatures at λ = 50 nm,
(c) Im[χ−], and (d) Im[χzz] for different λ at T = 0. The parameters are B = 8 T, ne = 0, � = 2 meV, and γ = 0.5.

Im/Re[χxx], resulting in the disappearance of peaks in the
spectrum of Im[χ+] and Re[χ+].

The real and imaginary parts of χzz are shown in Fig. 3(d).
Like the cases of χxx, χyx, and χ−, χzz also displays a series
of peaks, where the transitions satisfy the condition n′ = n,
i.e., the peaks are formed by the transition L−n → Ln. Note
that all peaks of the real and imaginary χzz are generated by
only one transition; the half-peak feature does not exist in
the z-direction susceptibility, although their height of peaks
is slightly bigger than those of χxx, χyx. This is in good agree-
ment with the results for the conductivities in WSM, where
the z direction conductivity is found to be ∼10 times bigger
than that of the x-direction conductivity [5].

The effect of temperature on Im[χ−] and Im[χzz] is shown
in Figs. 4(a) and 4(b), respectively. With the increase in
temperature, due to the thermal excitation, some intraband
transitions become possible, resulting in the appearance of the
intraband transition peaks, as observed in Fig. 4(a). The higher
the temperature is, the higher the intraband absorption peaks
are. For Im[χzz], due to the selection rule with the condition
n′ = n [see Eq. (17)], all the intraband transitions are forbid-
den. Therefore, there are no intraband transitions observed in
the z direction. The effect of the magnetic field penetration
λ on Im[χ−] and Im[χzz] is shown in Figs. 4(c) and 4(d),
respectively. The case of λ = ∞ corresponds to the UMF.
With the increase in λ, the peaks shift toward the lower-energy
region (redshift) due to the decrease in the energy transition
�Eκ

η,η′ . We can also see that the curves with λ = 50 µm almost
coincide with those of λ = ∞. It shows that, in practice, for
magnetic field penetration of λ = 50 µm, the NUMF can be
considered as the UMF.

B. Doped WSM

We now turn our attention to the doped WSM case, where
ne �= 0, and therefore, μ lies in the conduction band. In this
case, both intraband and interband transitions are possible. As
we can see from Figs. 3 and 4, the behavior of χzz is almost
like that of χ−. In this subsection, we mainly focus on χ−.

1. Intraband transitions

In Fig. 5, we present the effect of the temperature, electron
density, magnetic field penetration, and electric field (recall
that γ = �z/Mak2

c ) on the imaginary and real parts of χ−
due to the intraband transitions. Because the energy transition
�Eη,η′ in the intraband transitions is very small, we chose
a value of � to be � = 0.2 meV, which is smaller than LL
spacing for the peaks that are observable. Overall, the energy
scale (the spectra weight) of the intraband transition peaks
is much smaller (bigger) than those of the interband ones,
agreeing with that in TMDCs [28] and graphene [61]. This
is because, in the intraband transitions, the energy scale is
determined by �E intra

n,n±1 = |En±1 − En|, which is much smaller
than that of the interband transitions �E inter

n,n±1 = En±1 + En.
Meanwhile, the high spectra weight of the intraband transi-
tion peaks is the result of two main reasons. The first one
is from its small energy transition scale, as mentioned above
(recall that the values of Im[χ−] and Re[χ−] are proportional
to (�E intra

n,n±1)−1). The second is from the small value of �,
which is chosen so we can observe the intraband transition
peaks.

In Fig. 5(a), we show the temperature effect on Im[χ−]
and Re[χ−] at ne = n0, λ = 50 nm, and γ = 0.5, where μ
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FIG. 5. Im[χ−] and Re[χ−] (in units of χ0) due to intraband transitions as a function of h̄ω at B = 8 T and � = 0.2 meV: (a) for several
T , (b) for several ne, (c) for several λ, and (d) for several γ . The parameters are T = 0, ne = n0, λ = 50 nm, and γ = 0.5 except for otherwise
indicated.

lies between L2 and L3 [see Fig. 2(a)]. Therefore, at T =
0, only intraband transition L2 → L3, with photon energy
h̄ω2,3 = 10.15 meV, is allowed, while the other transitions
are blocked, caused by the Pauli blocking. With the increase
in T , some LLs below the chemical potential (L0, L1, and
L2) become thermally depopulated and no longer completely
occupied. Consequently, electrons in the LLs below can jump
to fill these vacancies, generating some new intraband tran-
sitions. Here, we can observe the new intraband transition
L1 → L2 at h̄ω1,2 = 11.97 meV. Meanwhile, the LLs above
μ (Ln�3) become no longer fully empty due to the thermal
population. These thermally populated electrons can jump to
higher LLs to generate new peaks, which are the results of
the Ln → Ln+1 transitions with n � 3. All these peaks are lo-
cated in the lower-energy region in comparison with the main
peak (L2 → L3). These results are in good agreement with
those in graphene [61] and topological insulator thin films
[62].

In Fig. 5(b), we show the electron concentration effect on
Im[χ−] and Re[χ−] at T = 0, λ = 50 nm, and γ = 0.5. We
can see from Fig. 2(a) that, when ne increases, the chemical
potential shifts upward, resulting in the change in the allowed
transitions. The allowed intraband transitions and their cor-
responding energies are listed in the first three columns of
Table I, which are read as follows. For ne = n0 (2n0, 3n0),
μ lies between L2(5,7) and L3(6,8), leading to the allowed
transition being Ln → Ln+1, with n = 2 (5, 7), generating a
peak at h̄ω = 10.15 (7.28, 6.22) meV. With the increase in ne,
the peaks shift to the lower-energy region and enhance their
height. It is clear from Table I that, when ne increases, the LL
index of allowed transitions n increases, leading to a decrease

in the difference in energy:

�E intra
n,n±1 = |En±1 − En|

∝
∣∣∣∣∣
√

(n ± 1)

(
1 − n ± 1

2ξ0

)
−

√
n

(
1 − n

2ξ0

)∣∣∣∣∣, (21)

because the �E intra
n,n±1 shown in Eq. (21) is a descending func-

tion of n.
The effect of the magnetic field penetration λ on Im[χ−]

and Re[χ−] is shown in Fig. 5(c). The varying λ also leads
to the change of the position of μ and therefore also changes
the LL order involved in the allowed transition. The allowed
transitions and their corresponding energies are listed in the
central three columns of Table I. In the case of λ = 50 nm,
the transition is L2 → L3, while it is L3 → L4 for both cases
of λ = 100 nm and λ = ∞ (UMF). Note that, although the
allowed transitions in the two cases of λ = 100 nm and UMF
have the same LL index (n = 3), their energy transitions are
different. This is because the change in λ also leads to the
change in the energy spectrum [see Eq. (9)], which leads to the

TABLE I. List of allowed intraband transitions Ln → Ln+1 and
their corresponding energies (in units of meV) for different ne, λ,
and γ from Figs. 5(b), 5(c), and 5(d).

ne n h̄ω λ n h̄ω γ n h̄ω

n0 2 10.15 50 nm 2 10.15 0.3 1 9.18
2n0 5 7.28 100 nm 3 8.65 0.5 2 10.15
3n0 7 6.22 ∞ 3 7.95 0.7 3 10.35
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FIG. 6. (a) Im[χ−] (in units of χ0) due to interband transitions
vs h̄ω for different ne. (b) Scheme of optical interband transitions,
where the dotted lines show the corresponding chemical potentials.
The parameters are B = 8 T, � = 2 meV, T = 0, λ = 50 nm, and
γ = 0.5.

change in the �E intra
n,n±1. Like Fig. 4(c), when the λ increases,

the intraband transition peaks also redshift due to the decrease
of �E intra

n,n±1.
The effect of the electric field, expressed in terms of γ ,

on Im[χ−] and Re[χ−] is illustrated in Fig. 5(d). Like the
electron density and magnetic field penetration, the varying
electric field also changes the position of μ leading to the
change of the allowed transition, as listed in the last three
columns of Table I. With the increase in the electric field, the
intraband transition peaks show a blueshift due to the increase
of �E intra

n,n±1.

2. Interband transitions

In Fig. 6(a), we show Im[χ−] due to interband transitions
vs h̄ω for different electron densities. Here, Im[χ−] due to
interband transitions also displays a series of peaks. Due to the
Pauli blocking, where all transitions which have the final LLs
below μ are forbidden, the first peaks of each series (threshold
energy) locate at different positions depending on the position
of μ. The increase in ne pushes μ upward, resulting in the
increase in the LL index involved in the transitions. Therefore,
the threshold energy shifts to a higher-energy region. This

FIG. 7. Im[χ−] (in units of χ0) due to interband transitions as
a function of h̄ω for different temperature. The inset shows � f =
| f−n − fn+1| as a function of temperature. The parameters are B =
8 T, � = 2 meV, ne = n0, λ = 50 nm, and γ = 0.5.

is illustrated visually in the scheme of Fig. 6(b), where the
dotted arrows (with an x sign on them) illustrate the forbid-
den transitions. For example, for ne = n0, μ lies between L2

and L3, and the first transition is from L−2 to L3 [which is
illustrated by the first cyan solid arrow in Fig. 6(b)], while
its counterpart (L−3 → L2) is forbidden (which is illustrated
by the cyan dotted arrow). This transition forms the first peak
in the series of peaks of the case of ne = n0 (cyan curve) in
Fig. 6(a). Its second peak is derived from a pair of transitions
L−3 → L4 and L−4 → L3, which are illustrated by the second
and third cyan solid arrows in Fig. 6(b). Similarly, the third
one is from L−4 → L5 and L−5 → L4, and so on. Cases of
ne = 2n0 and ne = 3n0 can also be expressed in the same
way. Additionally, the half-peak feature is still observed in the
interband transitions. This half-peak feature is in agreement
with that obtained in TI thin film [62,63] and the half-plateau
characteristic in TMDC monolayers [28]. In Fig. 7, we show
the imaginary part of χ− due to interband transitions as a
function of h̄ω at B = 8 T, � = 2 meV, ne = n0, λ = 50 nm,
and γ = 0.5 for different temperatures. Like the undoped case
[see Fig. 4(a)], in the doped case, Im[χ−] also displays a
series of peaks. However, unlike in the undoped case where
all the interband transitions are allowed, in the doped case,
not all but only interband transitions whose final LLs above
μ are allowed, as discussed in Fig. 6. With parameters used
in Fig. 7, μ lies between L2 and L3. Therefore, at T = 0, all
transitions which have final LLs indexes <2 are blocked, and
the allowed transitions start at n = 2 (see again the case of
ne = n0 in Fig. 6). When the temperature increases, due to
the thermal excitation, a couple of new interband transitions
whose final LLs below μ become possible, form new inter-
band transitions peaks, as observed clearly from the blue and
green curves of Fig. 7 for T = 150 and 300 K, respectively. In
addition to generating new peaks, thermal excitation affects
the height of peaks. This effect is not similar for all transitions
but depends on the position of their final LLs. (i) For the
transitions which have their final LLs below μ (including
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FIG. 8. (a) Im[χ−] (in units of χ0) due to interband transitions vs
h̄ω for different λ. (b) Scheme of optical interband transitions where
the dotted lines show the chemical potentials. The parameters are
B = 8 T, � = 2 meV, T = 0, ne = n0, and γ = 0.5.

n = 0 and 1), the height of peaks increases with the increase
in the temperature. Note that these two peaks are formed due
to the thermal excitation and appear only in the case of T �= 0.
When the LLs L0 and L1 are thermally depopulated, electrons
in these LLs get thermal energy and jump to higher levels,
creating holes in there. As a result, other electrons in the
valence band can jump in to fill those holes. The higher the
temperature, the stronger thermal excitation occurs, leading
to an increase in the probability of transitions, which in turn
leads to an enhancement of the peak height. (ii) Meanwhile,
for the transitions whose final LLs are above μ, the height
of the peaks decreases with the temperature. In this case,
the LLs are thermally populated and partially occupied. The
higher the temperature, the more thermal electrons will appear
there, leading to the decrease in the probability of transitions,
therefore resulting in the reduction in the height of peaks.
Mathematically, note from Eq. (18) that χ (ω) is proportional
to � f = f (Eκ

η′ ) − f (Eκ
η ), which increases with temperature

when n < 2 and decreases with the temperature when n � 2,
as shown clearly in the inset.

The effect of λ on Im[χ−] is depicted in Figs. 8(a) and
8(b). We can see from Fig. 8(b) that the varying λ not only
changes the energy spectrum but also changes the position

FIG. 9. (a) Im[χ−] (in units of χ0) due to interband transitions
vs h̄ω for different electric fields. (b) Scheme of optical interband
transitions where the dotted lines show the chemical potentials. The
parameters are B = 8 T, � = 2 meV, T = 0, λ = 50 nm, and ne = n0.

of the chemical potential, therefore changing the threshold
energy. When λ increases, the Ed

η slightly reduces, resulting
in the reduction in the difference in energy, which leads to the
redshift behavior of the peak positions. Note that the redshift
behavior is only valid for transitions with the same LL index
n. The first peak in the case of λ = 50 nm corresponds to the
transition L−2 → L3, while it is L−3 → L4 in both rest cases
[see the scheme in Fig. 8(b)]. Since h̄ωn,n±1 = �E inter

n,n±1, with

�E inter
n,n±1 = En±1 + En

∝
√

(n ± 1)

(
1 − n ± 1

2ξ0

)
+

√
n

(
1 − n

2ξ0

)
(22)

being an increasing function of n, the first peak of the case
λ = 50 nm (which has n = 2) lies on the left-hand side of the
first peaks of the cases λ = 100 nm and λ = ∞ (both have
n = 3).

Finally, the electric field effect on Im[χ−] is illustrated in
Figs. 9(a) and 9(b). The varying λ also changes the energy
spectrum and the position of μ, therefore changing the thresh-
old energy. When γ increases, Ed

η reduces, resulting in the
reduction in the transition energy, but μ increases, resulting in
the increase of the energy threshold. This competition leads
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to a complicated change in the peak positions of the interband
transitions with the varying of the electric field.

IV. CONCLUSIONS

We have studied the LLs and the optical properties of a
WSM QW in the presence of a NUMF with an exponential
decaying form. We have analyzed in detail the effect of the
magnetic field penetration, a quantity that characterizes the
exponential decaying magnetic field, on the LL energy spec-
trum in both the (x, y) plane and the z direction. Unlike in the
UMF case, in the NUMF, (i) the LLs do not start at B0 = 0 but
at B0s; the higher the LL index, the bigger the value of B0s; (ii)
the number of energy levels is finite. Additionally, the LLs in
the WSM do not cross each other, and therefore, there is no
mixing of Landau states. When λ → ∞, the energy level of
the NUMF reduces to its form of the UMF.

The selection rules obtained from the dipole matrix ele-
ment show that, in the (x, y) plane, only inter-LL transitions
are allowed with the condition n′ = n ± 1, which is valid for

both intraband and interband transitions. Meanwhile, in the z
direction, only the intra-LL transitions are allowed with the
condition n′ = n. Consequently, there is no intraband but only
interband transitions in the z direction.

We have also analyzed in detail the longitudinal and Hall
optical response under the effect of the temperature, the mag-
netic field penetration, the electron density, and the electric
field in both doped and undoped cases. Except for the case of
intraband transition at T = 0, in all other cases, both real and
imaginary parts of the longitudinal and Hall susceptibilities,
χ− displays a series of peaks where the height of peaks and
the peak spacing decrease with the increase of the LL index.
The temperature significantly affects the optical response. The
increase in the temperature triggers new transitions, forming
new peaks in the optical response spectrum. The electron den-
sity, magnetic field penetration, and electric field all markedly
affect the position of the chemical potential; therefore, the
change in these parameters strongly affects the value of the
threshold energy. In this paper, we provide an effective way
to control the threshold energy and therefore to control the
optical response spectrum in the WSM.
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88, 125429 (2013).
[62] N. V. Hieu, S. S. Kubakaddi, N. N. Hieu, and H. V. Phuc, J.

Phys.: Condens. Matter 34, 305702 (2022).
[63] K. Rahim, A. Ullah, M. Tahir, and K. Sabeeh, J. Phys.:

Condens. Matter 29, 425304 (2017).

075412-11

https://doi.org/10.1103/PhysRevB.52.R8629
https://doi.org/10.1103/PhysRevD.82.016004
https://doi.org/10.1103/PhysRevD.85.125035
https://doi.org/10.1103/PhysRevB.72.161308
https://doi.org/10.1088/0953-8984/21/4/045505
https://doi.org/10.1016/j.physleta.2013.08.041
https://doi.org/10.1088/1361-648X/ab561a
https://doi.org/10.1088/1367-2630/14/3/033003
https://doi.org/10.1103/PhysRevB.88.085433
https://doi.org/10.1103/PhysRevB.81.115407
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1088/1751-8113/47/28/285302
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1103/PhysRevB.99.035416
https://doi.org/10.1103/PhysRevLett.98.157402
https://doi.org/10.1103/PhysRevB.77.115313
https://doi.org/10.1016/j.optcom.2014.12.086
https://doi.org/10.1063/1.4974951
https://doi.org/10.1103/PhysRevB.101.195201
https://doi.org/10.1103/PhysRevB.84.235410
https://doi.org/10.1103/PhysRevLett.105.055501
https://doi.org/10.1063/1.5009481
https://doi.org/10.1016/j.physe.2020.114315
https://doi.org/10.1103/PhysRevB.94.045415
https://doi.org/10.1103/PhysRevB.88.125429
https://doi.org/10.1088/1361-648X/ac6ead
https://doi.org/10.1088/1361-648X/aa85fe

