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Abstract 

In Object-Oriented Databases (OODB), nested object queries are used regularly. 

Nested structures are put in conditional expressions of the queries in two forms: nested 

sub-queries or path expression containing hidden joins – nested predicates in WHERE 

clauses. For nested queries, when analyzing the estimated cost of the nested algebraic 

expression, the expression evaluation result gives out an ineffective cost. Therefore, our 

method proposed in this paper will resolve the problems by leveling nested sub-queries in 

the nested queries. This method will increase the effectiveness of the query processing 

cost  – We use object connection hypergraphs to present nested queries.  
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1. Introduction 

In order to process repeated (nested) predicates, Cho W. [2] introduces a method 

of cost estimating which is dependent of rates between objects of the  beginning 

class in the path expression and total objects of the class basing on the many-to-

many relationship of classes. This rate is one of parameters selected in the physical 

database designing process.  

For nested sub-queries, Cluet S. [8] proposes an optimization method with two 

steps. Firstly, the queries are transformed syntactically to process common sub -

expressions and independent sub-queries effectively. Then, the queries are compiled 

into nested algebraic expressions using an algebraic transformation. However, when 

analyzing the estimation of nested loops in algebraic expressions, we recognize that 

the result expression contains an ineffective cost. Therefore, our method presented 

later in this article will help solve the problem of processing nested sub-queries 

using a “leveling” method for nested queries. The method is about the reduction of 

object connection hyper-graphs, and this makes the estimating method more 

effective [4]. 

In this article, inspired by the idea of the query representation and optimization 

using hypergraphs of Ullman J.D [7] and Han [3], we propose the concept of object 

connection hypergraphs to represent queries written in OQL (Object Query 

language), especially to process nested queries. Furthermore, we also introduce 

algorithms to estimate hyperedges and the algorithm of reducing object connection 

hypergraphs. 

 

2. Object Query Representation using Hypergraphs 

    We define the formal concept of object connection hypergraphs as follows [4]: 

Definition. An object connection hypergraphs is a hexa-tuple 

 H = (CH, VH, EH, LH, sH, lbH), in which:  
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(i)  CH is a finite set of classes involved in the query 

(ii) VH is a finite set of nodes 

(iii) LH is a finite set of labels 

(iv) EH = EC  EQ – a set of hyperedges finite, in which EC, EQ is sets of 

hyperedges representing classes of objects and elements of the query 

(v) sH: VH  EH is a mapping initiating hyperedges from the set of nodes 

(vi) lbH: EH  LH is a function labeling hyperedges, so that  e  EH lbH(e)  LH  

Example 2.1. We consider an object connection hypergraphs represented as below: 

 select A 

 from c1, c2, c3 

 where c1.A = c2.F and (c1.A + c1.B > c3.D) and (c3.E  c2.G) 

 

BA C

D

E

e1

HG

e2

e3

f1

f2

head

 

Figure 2.1. Objects Connection Hypergraphsof Example 2.1 

in which we have:  

CH = {c1, c2, c3}, c1 = (A, B, C), c2 = (G, H) and c3 = (D, E, F) are object classes. 

VH = {A, B, C, D, E, F, G, H}: set of nodes, LH = {e1, e2, e3,  f1, f2, “head”}: 

labels, EH = EC  EQ, with EC is the set of labelled hyperedges {e1, e2, 

e3}representing classes c1, c2, c3. And EQ has hyperedges that represent results of the 

queries consequently; the conditional expression of the correspondent query is labelled as {f1, 

f2, “head”}. With “c1.A = c2.F” condition, we do “merging” of two nodes labelled 

“A”. 

From definition, object connection hypergraphs are hereafter called as hypergraphs, 

we use hypergraphs notation to represent  OQL queries as follows: 

- A set of hypergraphs nodes is the set of properties that belongs to classes involved 

in the query. Each property of class ci is represented by a node. If two classes ci and cj 

have inherited properties from a hyperclass, or they both inherit all properties of a 

hyperclass, we still create  separate nodes for these properties. 

- Hyperedges) of the hypergraph are created from conditional expressions and 

classes ci: 

We consider the conditional expressions in a where clause, they are divided into 

following forms: 

 A = a (2.1)  

 A = B (2.2)  
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 A  B,   { < ,  ,  , > , } (2.3)  

 A  B,    { ,  ,  ,  , } (2.4)  

where, A and B are properties of classes and a is a constant. 

 Hyperedges) are sets of finite nodes representing classes, called object 

hyperedges; an object hyperedge is drawn as a close line around nodes of the 

hyperedge. The hyperedge is labelled with the class name. 

 For each conditonal expression in forms of (2.3) or (2.4) (1.4), we will create 

a hyperedge containing properties in the expression. These hyperedge are 

called conditional hyperedge and they are represented by close dashed lines. 

 The conditon of form (2.1) will become the label “A = a” of the node 

representing the correspondent property. 

 The conditional expression of form A = B (2.2), with A, B are properties in 

two classes (they are probaly properties inherited from a certain hyperclass, 

then we choose a representative property and label it by name of one property. 

- If there are two conditions of only one set of properties, we must label hyperedges 

separately in order to distinguish them. 

- Properties in a select clause are bordered in a close line and labelled as “head”, the 

so-called top hyperedges. The top hyperedges is correspondent to a class – the result of the 

query.  

- Association hyperedges contain properties in expressions having {IS, IN, UNION, 

FORALL, EXIST,...} operators of nested sub-queries. The edges are drawn by a closed 

dashed line. Association hyperedges are lebelled with the correspondent operator names. 

A single query only have a select...from...where (SFW) pattern; Nested queries in OQL 

have more than one SFW pattern. The nested query represented by a hypergraph is built from 

hypergraphs of single SFW patterns and connected together with association hyper-edges. 

We formally represent the object schema S = (s1, …, sn), in which si are classes in S 

and the object query QE = (s1, …, sm, R, p1, …, pk) in which si (i = 1,…, m) are classes in 

the query, R is result class/type of the query; and pj (j = 1, …, k) are conditional 

expressions in where clause. 

Algorithm 2.1: Object Query‟s  Hypergraph Initialization (not containing nested query). 

Input: Object schema S = (s1, …, sn) 

 Object query QE = (s1, …, sm, R, p1, …, pk) 

Output: Hypergraph H 

Method: 

(1)  SC :=   //set of object hyperedges of Hypergraph H 

(2) V := (s1, …, sm) 

(3)  for si  V do 

(4)  if (si is initial hyperclass) then   //not inherited from other hyperclasses 

(5)   Initialize object hyperedges e = sH({si}) and label lbH(e) 

(6)  else if (si is single or multiple inherited class) then 

(7)   Process the problem of name conflicts with inherited properties. 
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(8)   Initialize class si’ containing class properties and inherited properties 

(9)   Initialize object hyperedges e = sH({si’}) and label lbH(e) 

(10)  SC := SC  e 

(11) Initialize top hyperedges h = sH({R}) and lbH(h) = “head” 

(12) SC := SC  h 

(13) SD :=   //set of condition hyperedges of hypergraphs H 

(14) for pi  (p1, …, pk) do 

(15)  if (pi is in forms of (2.3)  and (2.4) then 

(16)   Initialize conditional hyperedges f  = sH({pi}) 

(17)   SD := SD  f 

(18)  else Label the node lbH(e) = “= a” 

(19) H := SC  SD 

     From the definition we confirm that algorithm 2.1 is correct and its computational 

complex is O(n
2
), with n is the number of classes in the query. 

     Now we build an algorithm of initializing a hypergraph that represents nested queries. 

From the steps of forming a single hypergraph, we create the result hypergraph from 

connections of single hypergraphs with association hyperedges. 

Algorithm 2.2: Nested OQL Query‟s Hypergraph Initialization. 

Input:  Object schema S = (s1, …, sn) 

Query QE = (s1, …, sm, R, p1, …, pk), TT  {is, in, union, diff, forall, exists} is 

a set of operators in where clause of query QE. 

Output: HypergraphH. 

Method: 

(1) H :=  

(2)  for (each sub-query QEi  QE) do 

(3)  Initialize Hypergraph Hi with QEi (Algorithm 2.1) 

(4)  H := H  Hi 

(5) for (each operator ti  TT) do 

(6) Initialize association Hyperedges g with label ti containing the top hyperedges 

of the hypergraph in the right side of ti and properties in the left side of ti 

(7)  H := H  g 

Example 2.2. Find the names of all students living in the same city with lecturers  having 

name as “Hue”. 

define  Student as  p1 

select (p1.name)  

from p1, p2 Employee  

where p1.city = p2.city AND p2.name = “Hue” 
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The query in Example 2.2 contains a value-based join (p1.city = p2.city) and is 

labelled as “city”, we merge two nodes labelled “city”. 

       name   city .............

Employee

Student

........

........

name

„ “Hue” = „

head

 

Figure 2.2. Hypergraph Representation of Example 2.2 

Example 2.3. We consider a query: finding names of employees in departments granted 

the budget of more than 250 (unit: milion VND) and having salary level equal or greater 

than 2.4. 

 select  e.name 

 from  Employee as e 

 where  e.salary >= 2.4 AND e.dept IN ( select  s.dept 

      from Department as s 

      where  s.budget > 250) 

The hypergraph in example 2.3 is initialize as follows: The object hyperedges express 

classes Employee and Department. For top hyperedges, we have two top hyperedges: 

e.name – top hyperedge query result, s.dept – hyperedge of nested SFW patterns. Two 

conditional hyperedge e.salary >= 2.4, s.budget > 250 and association hyperedge e.dept 

are labelled IN. 

name         dept             salary    ......

dept

deptname

budget > 250

       ........

> = 2.4

head

IN

Employee

Department  

Figure 2.3. Hypergraph Representation of  Example 2.3 

3. Hypergraph Estimation Method  

3.1. Hyperedge Estimation  

We formally express the hypergraph of object-oriented query as series of events: H 

= (E1, E2 , ..., En), in which events Ei is probably an object hyperedge, a conditional 

hyperedge or an association hyperedge [4]. 

The derived class obtained after the effect of an event Ej is noted as 

DerivedClass(E1, ..., Ej), in which E1 must be an object hyperedge (in case the hypergraph) 

has only one hyperedge, that edge must be an object hyperedge.  
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The HyperedgeEstimation procedure receives the derived class obtained after the 

effect of events Ej-1 and Ej, the procedure result is the derived class of event Ej in H. 

Procedure HyperedgeEstimation (DerivedClass(E1, ..., Ej-1), Ej) 

Input: DerivedClass (E1, ..., Ej-1) and the event Ej  

Output: DerivedClass(E1, ..., Ej) 

Method: 

(1)  Initialize, HyperedgeEstimation(E1) give out the result: class DerivedClass (E1) = c1,  

in which, c1 is the correspondent class of the object hyperedge E1. 

(2)   if (Ej is a condition or a conditional hyperedge) then  

DerivedClass (E1, ..., Ej) = F(DerivedClass (E1, ..., Ej-1)) 

in which  F is the correspondent conditional expression of Ej 

(3)   if (Ej is a object hyperedge) of class Cj intersecting the hypergraph) then 

DerivedClass (E1, ..., Ej) = DerivedClass (E1, ..., Ej-1))  Cj 

(4)   if (Ej is a object hyperedge not intersecting the hypergraph) then  

DerivedClass (E1, ..., Ej) = DerivedClass (E1, ..., Ej-1))   Cj 

In example 2.1, S = (Employee, Student), we have: 

DerivedClass (Employee, Student) = DerivedClass (Employee)  Student. 

When all hyperedges of hypergraph H are estimated by affecting events in turn to 

obtain the derived classes. The result derived class will be projected over the set of 
properties in the top hyperedge – This is the answer of the query. 

Algorithm 3.1: Estimating hyperedge of a hypergraph. 

Input: The hypergraph H = (E1, E2, ..., En), R is a top hyperedge. 

Output: Result class of the query. 

Method: 

(1) Expressing the hypergraph H = (E1, E2, ..., En), with a series of events Ei 

(2) for j = 1 to n do 

(3)  Call HyperedgeEstimation(DerivedClass(E1, ..., Ej-1), Ej) 

(4)  Append DerivedClass(E1, ..., Ej) into H 

(5)  H = R(DerivedClass(E1, ..., En)) 

Clause 3.1. Algorithm 3.1 completes after finite steps and gives the correct answer. 

Demonstration 

    Certainly, the number of events in H is finite, so that algorithm 3.1 will complete after 

n hypergraph H.  

    In order to prove that algorithm 3.1 returns a correct answer of given query, we prove 

inductively as follows: 
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    In the base case: n = 1, then H = (E1), E1 is an object hyperedge, we have: 

 H = R(E1) =  R(C1) – is the query‟s answer. 

   Assuming that k
th
 derived class obtained after the effect of event Ek is the estimation of k 

hyperedges in the hypergraph (DerivedClass (E1, ..., Ek)). In another hand, the derived 

class obtained in the k
th
 step is the input of the (k+1)

th
 estimation step, therefore if k = n 

then after n hyperedge estimation steps, we obtain the derived class: 

 HyperedgeEstimation (DerivedClass (E1, ..., En-1), En) = DerivedClass (E1, ..., En) 

     Next, we project over top hyperedge and consequently have the query result:  

 H = R(DerivedClass(E1, ..., En)) – the query result.  

Example 2.4. Considering the query in example 2.2, we have a series of events in 

hypergraph H = (Employee, name = “Hue”, Student). 

    Applying algorithm 3.1, we have estimation steps as follow: (1) Initialize the 

correspondent derived class to object hyperedge Employee, (2) Apply the selection 

condition “name = “Hue”” on the object hyperedge Employee, (3) Esitmate the object 

hyperedge Student, that is the traditional value-based join, (4) Project the derived class 

obtained after connection to top hyperedge (name). 

    We can recognize from example 2.4 thatthe order of hyperedges in H will give 

different series of estimation steps according to the order of sorting executed operators. 

This is one of the parameters that determines searching space of query execution methods. 

    In the algorithm 3.1, we have not processed the case of association hyperedge yet, i.e. 

considering hypergraphs expressing nested object queries. The nested queries have sub-

queries execution order from “inside to outside”, i.e. the queries in the deepest level will 

be executed first. Assuming that hypergraphs expressing nested object queries are 

described formally as a series of events, we build an algorithm to reduce the hypergraph 

H = (E1, E2, …Ei, EAj, Ei+1, …, Ek, …), where Ei are objects or conditonal hyperedges, 

EAj are association hyperedge. 

     We extend algorithm 3.1 by processing association hyperedges as follows: Firstly, 

we estimate all hyperedges El (l = i + 1, …, k) after the association hyperedge EAj, 

and without loosing the generality, we assume that Ek is the last hyperedge estimated 

(before estmating the association hyperedge EAj). Secondly, we affect the event EAk 

over the derived classe obtained after affecting event Ek (EAj
‟
). Therefore, H is 

rewriten as H = (E1, E2, …Ei, EAj
‟
, Ei+1, …, Ek, EAj, …), EAj is derived from the result 

class after estimating the association hyperedge. 

Algorithm 3.2: Hypergraph Reduction 

Input: Hypergraph H = (E1, E2, …Ei, EAj, Ei+1, …, Ek, …), R is a hyperedge. 

Output: Result class of the query. 

Method: 

(1) Express hypergraph H =  (E1, E2, …Ei, EAj, Ei+1, …, Ek, …) 

(2) i := 1 

(3) repeat  

(4)  if  (EAj is a association hyperedge) then  

(5)   for l = i + 1 to k – 1 do 

(6)    Call HyperedgeEstimation(DerivedClass(Ej), Ej+1) 
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(7)   Append DerivedClass (El, ..., Ek) vào H trước EAj 

(8)  else  Call HyperedgeEstimation(DerivedClass(E1, ..., Ei-1), Ei) 

(9)  Append DerivedClass(E1, ..., Ei) vào H 

(10)  inc(i) 

(11) until (estimated all hyper-edges in H) 

(12)  H = R(DerivedClass(E1, ..., Ek, …)) 

     From Clause 3.1, we can say algorithm 3.2 will complete and give a correct result as 

an answer. The computational complex of algorithm 3.2 is expressional. 

3.2. Query Searching Space 

Methods of the query execution in the searching space are considered upon selection 

possibilities, the estimation of classes and hyperedge of the hypegraph. From then, with 

algorithms of the estimation and reduction of hypergraph (3.1 and 3.2 algorithms), we will 

create the searching space of query execution methods as follows (algorithm 3.3): We use 

a set of lists having with elements containing items of the hypergraph, then we traverse 

correspondent lists to determine solutions. 

Algorithm 3.3. Query searching space. 

Input: Hypergraph H 

Output: Searching space with all query execution methods 

Method: 

(1) Sorting classes, object hyperedges, conditions and association hyperedges into a set 

of lists {L1} 

// Step 1: Estimate condition hyperedges and association hyperedges. 

(2)   for each list L1 do 

(3)  for each hyper-edge E do 

(4)    if  E is an association hyperedge then 

(5)           Add EAj into L1 after the last hyperedge Ek //algorithm 3.2 

(6)    else if E is condition hyperedge then 

(7)    Estimate condition hyperedges//algorithm 3.1 

(8)  Obtained result is the list {L1
’
} 

// Step 2: Estimate object hyperedges 

(9)   for each list L1
’
 do 

(10)   for each object hyperedge do 

(11)    Estimate correspondent conditional hyperedge 

(12)  The result stored in the list {L2} 

// Step 3: Estimate joins 

(13)  for each list  L2 do 

(14)   for each hyperedge do 

(15)    Estimate joins over on classes 
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(16) The result is the list {L3};  

The set of {L3} lists is the search space of query execution methods. 

We note KGTK is the total of methods of object query execution in the search space. 

Theorem 3.2. The searching space in algorithm 3.3 has the total of query execution 

methods as follows: 

(p + q!+ 2
q – 1

)    KGTK    (q! + p2
q – 1

) 

in which q is the number of hyperedges of the hypergraph, p is the cost of algebraic 

operations. 

Demonstration  

    The searching space in algorithm 3.3 is determined by following parameters: (i) The 

sorting order of hyperedges in the list, (ii) The cost of operation execution, and (iii) The 

cost of joins in the query. For (i), if q is the number of hyperedges then the number of 

alternatives of the hyperedge order in the list L1 is q!. Parameters in (ii) depend on the 

design of the system and the cost of joins on q hyperedges is 2
q – 1

 (iii). So that, total of 

query execution methods are: 

(p + q! + 2
q – 1

)   KGTK  q! + p2
q – 1

 

    In the worst case, if the methods in estimation steps are independent and this result list 

is the input of the next step then KGTK = q! + p2
q – 1

, otherwise KGTK = q! + p + 2
q – 1

. 

 

4. Conclusion 

Object-oriented query optimization has attracted many researchers with results based 

on different approaches such as the optimization method using the query processing cost, 

the path expression optimization in object-oriented queries, methods of object horizontal 

and vertical partitioning. In this article, we propose an object-oriented query optimization 

developed from hypergraph approaches of Ullman J.D [7] and Han [3] to solve the problem 

of nested object queries by the algorithm of estimation on object hyperedge with a query 

processing cost which is more effective than the methods of object algebraic expression 

transformation and the path expression optimization. Moreover, by using object 

hypergraph notation we can express and optimize complex object queries. The result of 

this article is also implemented in ObjectStore, an object-oriented database management 

system. The issue of building a general algorithm to reduce object hypergraph and 

combining the querying space with the query processing cost model will be the research 

issue and presented in incoming articles. 
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