
International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016), pp. 157-166

http://dx.doi.org/10.14257/ijseia.2016.10.5.14

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2016 SERSC

Object Connection Hypergraphs-an Approach for Nested Object

Query Optimization

Hung Hoang Bao
(1)

, Phuong Ngo Viet
(1)

and Thanh Le Manh
(2)

(1)
Korea - Vietnam Friendship Information Technology College, MIC, Vietnam

(2)
 Hue University, MOET, Vietnam

hunghb@viethanit.edu.vn, phuongnv@viethanit.edu.vn

Abstract

In Object-Oriented Databases (OODB), nested object queries are used regularly.

Nested structures are put in conditional expressions of the queries in two forms: nested

sub-queries or path expression containing hidden joins – nested predicates in WHERE

clauses. For nested queries, when analyzing the estimated cost of the nested algebraic

expression, the expression evaluation result gives out an ineffective cost. Therefore, our

method proposed in this paper will resolve the problems by leveling nested sub-queries in

the nested queries. This method will increase the effectiveness of the query processing

cost – We use object connection hypergraphs to present nested queries.

Keywords: hyper-graphs; optimization method; object queries; algorithm

1. Introduction

In order to process repeated (nested) predicates, Cho W. [2] introduces a method

of cost estimating which is dependent of rates between objects of the beginning

class in the path expression and total objects of the class basing on the many-to-

many relationship of classes. This rate is one of parameters selected in the physical

database designing process.

For nested sub-queries, Cluet S. [8] proposes an optimization method with two

steps. Firstly, the queries are transformed syntactically to process common sub -

expressions and independent sub-queries effectively. Then, the queries are compiled

into nested algebraic expressions using an algebraic transformation. However, when

analyzing the estimation of nested loops in algebraic expressions, we recognize that

the result expression contains an ineffective cost. Therefore, our method presented

later in this article will help solve the problem of processing nested sub-queries

using a “leveling” method for nested queries. The method is about the reduction of

object connection hyper-graphs, and this makes the estimating method more

effective [4].

In this article, inspired by the idea of the query representation and optimization

using hypergraphs of Ullman J.D [7] and Han [3], we propose the concept of object

connection hypergraphs to represent queries written in OQL (Object Query

language), especially to process nested queries. Furthermore, we also introduce

algorithms to estimate hyperedges and the algorithm of reducing object connection

hypergraphs.

2. Object Query Representation using Hypergraphs

 We define the formal concept of object connection hypergraphs as follows [4]:

Definition. An object connection hypergraphs is a hexa-tuple

 H = (CH, VH, EH, LH, sH, lbH), in which:

mailto:hunghb@viethanit.edu.vn

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

158 Copyright ⓒ 2016 SERSC

(i) CH is a finite set of classes involved in the query

(ii) VH is a finite set of nodes

(iii) LH is a finite set of labels

(iv) EH = EC  EQ – a set of hyperedges finite, in which EC, EQ is sets of

hyperedges representing classes of objects and elements of the query

(v) sH: VH  EH is a mapping initiating hyperedges from the set of nodes

(vi) lbH: EH  LH is a function labeling hyperedges, so that  e  EH lbH(e)  LH

Example 2.1. We consider an object connection hypergraphs represented as below:

 select A

 from c1, c2, c3

 where c1.A = c2.F and (c1.A + c1.B > c3.D) and (c3.E  c2.G)

BA C

D

E

e1

HG

e2

e3

f1

f2

head

Figure 2.1. Objects Connection Hypergraphsof Example 2.1

in which we have:

CH = {c1, c2, c3}, c1 = (A, B, C), c2 = (G, H) and c3 = (D, E, F) are object classes.

VH = {A, B, C, D, E, F, G, H}: set of nodes, LH = {e1, e2, e3, f1, f2, “head”}:

labels, EH = EC  EQ, with EC is the set of labelled hyperedges {e1, e2,

e3}representing classes c1, c2, c3. And EQ has hyperedges that represent results of the

queries consequently; the conditional expression of the correspondent query is labelled as {f1,

f2, “head”}. With “c1.A = c2.F” condition, we do “merging” of two nodes labelled

“A”.

From definition, object connection hypergraphs are hereafter called as hypergraphs,

we use hypergraphs notation to represent OQL queries as follows:

- A set of hypergraphs nodes is the set of properties that belongs to classes involved

in the query. Each property of class ci is represented by a node. If two classes ci and cj

have inherited properties from a hyperclass, or they both inherit all properties of a

hyperclass, we still create separate nodes for these properties.

- Hyperedges) of the hypergraph are created from conditional expressions and

classes ci:

We consider the conditional expressions in a where clause, they are divided into

following forms:

 A = a (2.1)

 A = B (2.2)

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

Copyright ⓒ 2016 SERSC 159

 A  B,   { < ,  ,  , > , } (2.3)

 A  B,   { ,  ,  ,  , } (2.4)

where, A and B are properties of classes and a is a constant.

 Hyperedges) are sets of finite nodes representing classes, called object

hyperedges; an object hyperedge is drawn as a close line around nodes of the

hyperedge. The hyperedge is labelled with the class name.

 For each conditonal expression in forms of (2.3) or (2.4) (1.4), we will create

a hyperedge containing properties in the expression. These hyperedge are

called conditional hyperedge and they are represented by close dashed lines.

 The conditon of form (2.1) will become the label “A = a” of the node

representing the correspondent property.

 The conditional expression of form A = B (2.2), with A, B are properties in

two classes (they are probaly properties inherited from a certain hyperclass,

then we choose a representative property and label it by name of one property.

- If there are two conditions of only one set of properties, we must label hyperedges

separately in order to distinguish them.

- Properties in a select clause are bordered in a close line and labelled as “head”, the

so-called top hyperedges. The top hyperedges is correspondent to a class – the result of the

query.

- Association hyperedges contain properties in expressions having {IS, IN, UNION,

FORALL, EXIST,...} operators of nested sub-queries. The edges are drawn by a closed

dashed line. Association hyperedges are lebelled with the correspondent operator names.

A single query only have a select...from...where (SFW) pattern; Nested queries in OQL

have more than one SFW pattern. The nested query represented by a hypergraph is built from

hypergraphs of single SFW patterns and connected together with association hyper-edges.

We formally represent the object schema S = (s1, …, sn), in which si are classes in S

and the object query QE = (s1, …, sm, R, p1, …, pk) in which si (i = 1,…, m) are classes in

the query, R is result class/type of the query; and pj (j = 1, …, k) are conditional

expressions in where clause.

Algorithm 2.1: Object Query‟s Hypergraph Initialization (not containing nested query).

Input: Object schema S = (s1, …, sn)

 Object query QE = (s1, …, sm, R, p1, …, pk)

Output: Hypergraph H

Method:

(1) SC :=  //set of object hyperedges of Hypergraph H

(2) V := (s1, …, sm)

(3) for si  V do

(4) if (si is initial hyperclass) then //not inherited from other hyperclasses

(5) Initialize object hyperedges e = sH({si}) and label lbH(e)

(6) else if (si is single or multiple inherited class) then

(7) Process the problem of name conflicts with inherited properties.

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

160 Copyright ⓒ 2016 SERSC

(8) Initialize class si’ containing class properties and inherited properties

(9) Initialize object hyperedges e = sH({si’}) and label lbH(e)

(10) SC := SC  e

(11) Initialize top hyperedges h = sH({R}) and lbH(h) = “head”

(12) SC := SC  h

(13) SD :=  //set of condition hyperedges of hypergraphs H

(14) for pi  (p1, …, pk) do

(15) if (pi is in forms of (2.3) and (2.4) then

(16) Initialize conditional hyperedges f = sH({pi})

(17) SD := SD  f

(18) else Label the node lbH(e) = “= a”

(19) H := SC  SD

 From the definition we confirm that algorithm 2.1 is correct and its computational

complex is O(n
2
), with n is the number of classes in the query.

 Now we build an algorithm of initializing a hypergraph that represents nested queries.

From the steps of forming a single hypergraph, we create the result hypergraph from

connections of single hypergraphs with association hyperedges.

Algorithm 2.2: Nested OQL Query‟s Hypergraph Initialization.

Input: Object schema S = (s1, …, sn)

Query QE = (s1, …, sm, R, p1, …, pk), TT  {is, in, union, diff, forall, exists} is

a set of operators in where clause of query QE.

Output: HypergraphH.

Method:

(1) H := 

(2) for (each sub-query QEi  QE) do

(3) Initialize Hypergraph Hi with QEi (Algorithm 2.1)

(4) H := H  Hi

(5) for (each operator ti  TT) do

(6) Initialize association Hyperedges g with label ti containing the top hyperedges

of the hypergraph in the right side of ti and properties in the left side of ti

(7) H := H  g

Example 2.2. Find the names of all students living in the same city with lecturers having

name as “Hue”.

define Student as p1

select (p1.name)

from p1, p2 Employee

where p1.city = p2.city AND p2.name = “Hue”

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

Copyright ⓒ 2016 SERSC 161

The query in Example 2.2 contains a value-based join (p1.city = p2.city) and is

labelled as “city”, we merge two nodes labelled “city”.

 name city

Employee

Student

........

........

name

„ “Hue” = „

head

Figure 2.2. Hypergraph Representation of Example 2.2

Example 2.3. We consider a query: finding names of employees in departments granted

the budget of more than 250 (unit: milion VND) and having salary level equal or greater

than 2.4.

 select e.name

 from Employee as e

 where e.salary >= 2.4 AND e.dept IN (select s.dept

 from Department as s

 where s.budget > 250)

The hypergraph in example 2.3 is initialize as follows: The object hyperedges express

classes Employee and Department. For top hyperedges, we have two top hyperedges:

e.name – top hyperedge query result, s.dept – hyperedge of nested SFW patterns. Two

conditional hyperedge e.salary >= 2.4, s.budget > 250 and association hyperedge e.dept

are labelled IN.

name dept salary

dept

deptname

budget > 250

> = 2.4

head

IN

Employee

Department

Figure 2.3. Hypergraph Representation of Example 2.3

3. Hypergraph Estimation Method

3.1. Hyperedge Estimation

We formally express the hypergraph of object-oriented query as series of events: H

= (E1, E2 , ..., En), in which events Ei is probably an object hyperedge, a conditional

hyperedge or an association hyperedge [4].

The derived class obtained after the effect of an event Ej is noted as

DerivedClass(E1, ..., Ej), in which E1 must be an object hyperedge (in case the hypergraph)

has only one hyperedge, that edge must be an object hyperedge.

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

162 Copyright ⓒ 2016 SERSC

The HyperedgeEstimation procedure receives the derived class obtained after the

effect of events Ej-1 and Ej, the procedure result is the derived class of event Ej in H.

Procedure HyperedgeEstimation (DerivedClass(E1, ..., Ej-1), Ej)

Input: DerivedClass (E1, ..., Ej-1) and the event Ej

Output: DerivedClass(E1, ..., Ej)

Method:

(1) Initialize, HyperedgeEstimation(E1) give out the result: class DerivedClass (E1) = c1,

in which, c1 is the correspondent class of the object hyperedge E1.

(2) if (Ej is a condition or a conditional hyperedge) then

DerivedClass (E1, ..., Ej) = F(DerivedClass (E1, ..., Ej-1))

in which F is the correspondent conditional expression of Ej

(3) if (Ej is a object hyperedge) of class Cj intersecting the hypergraph) then

DerivedClass (E1, ..., Ej) = DerivedClass (E1, ..., Ej-1)) Cj

(4) if (Ej is a object hyperedge not intersecting the hypergraph) then

DerivedClass (E1, ..., Ej) = DerivedClass (E1, ..., Ej-1))  Cj

In example 2.1, S = (Employee, Student), we have:

DerivedClass (Employee, Student) = DerivedClass (Employee) Student.

When all hyperedges of hypergraph H are estimated by affecting events in turn to

obtain the derived classes. The result derived class will be projected over the set of
properties in the top hyperedge – This is the answer of the query.

Algorithm 3.1: Estimating hyperedge of a hypergraph.

Input: The hypergraph H = (E1, E2, ..., En), R is a top hyperedge.

Output: Result class of the query.

Method:

(1) Expressing the hypergraph H = (E1, E2, ..., En), with a series of events Ei

(2) for j = 1 to n do

(3) Call HyperedgeEstimation(DerivedClass(E1, ..., Ej-1), Ej)

(4) Append DerivedClass(E1, ..., Ej) into H

(5) H = R(DerivedClass(E1, ..., En))

Clause 3.1. Algorithm 3.1 completes after finite steps and gives the correct answer.

Demonstration

 Certainly, the number of events in H is finite, so that algorithm 3.1 will complete after

n hypergraph H.

 In order to prove that algorithm 3.1 returns a correct answer of given query, we prove

inductively as follows:

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

Copyright ⓒ 2016 SERSC 163

 In the base case: n = 1, then H = (E1), E1 is an object hyperedge, we have:

 H = R(E1) = R(C1) – is the query‟s answer.

 Assuming that k
th
 derived class obtained after the effect of event Ek is the estimation of k

hyperedges in the hypergraph (DerivedClass (E1, ..., Ek)). In another hand, the derived

class obtained in the k
th
 step is the input of the (k+1)

th
 estimation step, therefore if k = n

then after n hyperedge estimation steps, we obtain the derived class:

 HyperedgeEstimation (DerivedClass (E1, ..., En-1), En) = DerivedClass (E1, ..., En)

 Next, we project over top hyperedge and consequently have the query result:

 H = R(DerivedClass(E1, ..., En)) – the query result. 

Example 2.4. Considering the query in example 2.2, we have a series of events in

hypergraph H = (Employee, name = “Hue”, Student).

 Applying algorithm 3.1, we have estimation steps as follow: (1) Initialize the

correspondent derived class to object hyperedge Employee, (2) Apply the selection

condition “name = “Hue”” on the object hyperedge Employee, (3) Esitmate the object

hyperedge Student, that is the traditional value-based join, (4) Project the derived class

obtained after connection to top hyperedge (name).

 We can recognize from example 2.4 thatthe order of hyperedges in H will give

different series of estimation steps according to the order of sorting executed operators.

This is one of the parameters that determines searching space of query execution methods.

 In the algorithm 3.1, we have not processed the case of association hyperedge yet, i.e.

considering hypergraphs expressing nested object queries. The nested queries have sub-

queries execution order from “inside to outside”, i.e. the queries in the deepest level will

be executed first. Assuming that hypergraphs expressing nested object queries are

described formally as a series of events, we build an algorithm to reduce the hypergraph

H = (E1, E2, …Ei, EAj, Ei+1, …, Ek, …), where Ei are objects or conditonal hyperedges,

EAj are association hyperedge.

 We extend algorithm 3.1 by processing association hyperedges as follows: Firstly,

we estimate all hyperedges El (l = i + 1, …, k) after the association hyperedge EAj,

and without loosing the generality, we assume that Ek is the last hyperedge estimated

(before estmating the association hyperedge EAj). Secondly, we affect the event EAk

over the derived classe obtained after affecting event Ek (EAj
‟
). Therefore, H is

rewriten as H = (E1, E2, …Ei, EAj
‟
, Ei+1, …, Ek, EAj, …), EAj is derived from the result

class after estimating the association hyperedge.

Algorithm 3.2: Hypergraph Reduction

Input: Hypergraph H = (E1, E2, …Ei, EAj, Ei+1, …, Ek, …), R is a hyperedge.

Output: Result class of the query.

Method:

(1) Express hypergraph H = (E1, E2, …Ei, EAj, Ei+1, …, Ek, …)

(2) i := 1

(3) repeat

(4) if (EAj is a association hyperedge) then

(5) for l = i + 1 to k – 1 do

(6) Call HyperedgeEstimation(DerivedClass(Ej), Ej+1)

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

164 Copyright ⓒ 2016 SERSC

(7) Append DerivedClass (El, ..., Ek) vào H trước EAj

(8) else Call HyperedgeEstimation(DerivedClass(E1, ..., Ei-1), Ei)

(9) Append DerivedClass(E1, ..., Ei) vào H

(10) inc(i)

(11) until (estimated all hyper-edges in H)

(12) H = R(DerivedClass(E1, ..., Ek, …))

 From Clause 3.1, we can say algorithm 3.2 will complete and give a correct result as

an answer. The computational complex of algorithm 3.2 is expressional.

3.2. Query Searching Space

Methods of the query execution in the searching space are considered upon selection

possibilities, the estimation of classes and hyperedge of the hypegraph. From then, with

algorithms of the estimation and reduction of hypergraph (3.1 and 3.2 algorithms), we will

create the searching space of query execution methods as follows (algorithm 3.3): We use

a set of lists having with elements containing items of the hypergraph, then we traverse

correspondent lists to determine solutions.

Algorithm 3.3. Query searching space.

Input: Hypergraph H

Output: Searching space with all query execution methods

Method:

(1) Sorting classes, object hyperedges, conditions and association hyperedges into a set

of lists {L1}

// Step 1: Estimate condition hyperedges and association hyperedges.

(2) for each list L1 do

(3) for each hyper-edge E do

(4) if E is an association hyperedge then

(5) Add EAj into L1 after the last hyperedge Ek //algorithm 3.2

(6) else if E is condition hyperedge then

(7) Estimate condition hyperedges//algorithm 3.1

(8) Obtained result is the list {L1
’
}

// Step 2: Estimate object hyperedges

(9) for each list L1
’
 do

(10) for each object hyperedge do

(11) Estimate correspondent conditional hyperedge

(12) The result stored in the list {L2}

// Step 3: Estimate joins

(13) for each list L2 do

(14) for each hyperedge do

(15) Estimate joins over on classes

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

Copyright ⓒ 2016 SERSC 165

(16) The result is the list {L3};

The set of {L3} lists is the search space of query execution methods.

We note KGTK is the total of methods of object query execution in the search space.

Theorem 3.2. The searching space in algorithm 3.3 has the total of query execution

methods as follows:

(p + q!+ 2
q – 1

)  KGTK  (q! + p2
q – 1

)

in which q is the number of hyperedges of the hypergraph, p is the cost of algebraic

operations.

Demonstration

 The searching space in algorithm 3.3 is determined by following parameters: (i) The

sorting order of hyperedges in the list, (ii) The cost of operation execution, and (iii) The

cost of joins in the query. For (i), if q is the number of hyperedges then the number of

alternatives of the hyperedge order in the list L1 is q!. Parameters in (ii) depend on the

design of the system and the cost of joins on q hyperedges is 2
q – 1

 (iii). So that, total of

query execution methods are:

(p + q! + 2
q – 1

)  KGTK  q! + p2
q – 1

 In the worst case, if the methods in estimation steps are independent and this result list

is the input of the next step then KGTK = q! + p2
q – 1

, otherwise KGTK = q! + p + 2
q – 1

.

4. Conclusion

Object-oriented query optimization has attracted many researchers with results based

on different approaches such as the optimization method using the query processing cost,

the path expression optimization in object-oriented queries, methods of object horizontal

and vertical partitioning. In this article, we propose an object-oriented query optimization

developed from hypergraph approaches of Ullman J.D [7] and Han [3] to solve the problem

of nested object queries by the algorithm of estimation on object hyperedge with a query

processing cost which is more effective than the methods of object algebraic expression

transformation and the path expression optimization. Moreover, by using object

hypergraph notation we can express and optimize complex object queries. The result of

this article is also implemented in ObjectStore, an object-oriented database management

system. The issue of building a general algorithm to reduce object hypergraph and

combining the querying space with the query processing cost model will be the research

issue and presented in incoming articles.

References

[1] Doan Van Ban, Le Manh Thanh and Hoang Bao Hung, The Equivalent Expression between the OODB

Query Language oql and the Object Algebra, Journal of Computer Science and Cybernetics, Vietnamese

Academy of Science and Technology, Vol. 20 (3) (2004), pp. 257–269.

[2] Cho Wan-Sup, Han Wook-Shin, Hong Ki-Hyung and Whang Kyu-Young, Estimating Nested

Selectivity in Object-Oriented Databases, ACM (2000), pp. 94–101.

[3] Han, Jia Liang, Optimizing Relational Queries in Connection Hypergraphs: Nested Queries, Views, and

Binding Propagations, The VLDB Journal, 7 (1998), pp.1–11.

[4] Le Manh Thanh, Doan Van Ban and Hoang Bao Hung, The Method for Estimating the Nested Queries

in Object - Oriented Databases by Connection Hypergraphs, Special Issue of Posts, Telecommunications

and Information Technology Journal, “Research and Development on Telecommunications and

Information Technology”, ISSN 0886 – 7039, Vol. 14 (2005), pp. 43–49.

[5] Trigoni A., Semantic Optimization of OQL Queries, Technical Report, Number 547, University of

Cambridge, Computer Laboratory, UCAM-CL-TR-547, ISSN 1476-2986 (2002).

[6] Cattel R.G.G., Barry D.K., The Object Database Standard: ODMG 3.0, Morgan Kaufmann Publishers,

(2000).

International Journal of Software Engineering and Its Applications

Vol. 10, No. 5 (2016)

166 Copyright ⓒ 2016 SERSC

[7] Ullman J.D., Principles of Database and Knowledge base Systems, Vol I, II, Computer Science Press,

Rockville, (1989).

[8] Cluet, Sophie and Moerkotte, Guido, Nested Queries In Object Bases, In Fifth International Workshop

on Database Programming Languages, Italy (1995).

[9] Trigoni A. and Bierman G.M., Inferring the Principal Type and the Schema Requirements of an OQL

Query, In 18th British National Conference on Databases (BNCOD) (2001), pp.185–201.

Authors

 Hung Hoang Bao, graduated from Hue University of Education,

Vietnam in 1993, majoring in Mathematics. In 2002, Master Degree

in IT, Hanoi Polytechnic University. In 2007, PhD thesis at the

Institute of IT, Vietnam Academy of Science and Technology.

Currently working at the Korea-Vietnam Friendship IT College under

the management of the Ministry of Information and Communications.

His research interests include object database, GIS, cloud computing.

 Phuong Ngo Viet, Bachelor of Science, majoring in Physics,

University of Hue in 1996. In 2005, Master Degree in IT at University

of Da Nang. Currently working at the Korea-Vietnam Friendship IT

College under the management of the Ministry of Information and

Communications. His research interests include semantic web;

Ontology engineering.

 Thanh Le Manh, Graduated from Technology University of Hanoi in

1977, majoring in engineering mathematics works. In 1993 PhD in

Hungary, majoring in Mathematics Guarantee for electronic

computers. We work at the University of Hue, Vietnam. His research

interests include database derived databases and object database.

