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We investigate Demailly’s Conjecture for a general set of sufficiently many points. 
Demailly’s Conjecture generalizes Chudnovsky’s Conjecture in providing a lower 
bound for the Waldschmidt constant of a set of points in projective space. We 
also study a containment between symbolic and ordinary powers conjectured by 
Harbourne and Huneke that in particular implies Demailly’s bound, and prove that 
a general version of this containment holds for generic determinantal ideals and 
defining ideals of star configurations.
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1. Introduction

Let k be a field, let N ∈ N be an integer, let R = k[PN
k ] be the homogeneous coordinate ring of PN

k , and 
let m be its maximal homogeneous ideal. For a homogeneous ideal I ⊆ R, let α(I) denote the least degree 
of a homogeneous polynomial in I, and let

I(n) :=
⋂

p∈Ass(R/I)

InRp ∩R

denote its n-th symbolic power. In studying the fundamental question of what the least degree of a homo-
geneous polynomial vanishing at a given set of points in PN

k with a prescribed order can be, Chudnovsky 
[13] made the following conjecture.
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Conjecture 1.1 (Chudnovsky). Suppose that k is an algebraically closed field of characteristic 0. Let I be 
the defining ideal of a set of points X ⊆ PN

k . Then, for all n � 1,

α(I(n))
n

� α(I) + N − 1
N

. (C)

Chudnovsky’s Conjecture has been investigated extensively, for example in [25,6,30,27,22,21,26,5]. In 
particular, the conjecture was proved for a very general set of points [26] ([21] also proved the conjecture 
in this case but for at least 2N points) and for a general set of sufficiently many points [5]. The conjecture 
was also generalized by Demailly [16] to the following statement.

Conjecture 1.2 (Demailly). Suppose that k is an algebraically closed field of characteristic 0. Let I be the 
defining ideal of a set of points X ⊆ PN

k and let m ∈ N be any integer. Then, for all n � 1,

α(I(n))
n

� α(I(m)) + N − 1
m + N − 1 . (D)

Demailly’s Conjecture for N = 2 was proved by Esnault and Viehweg [25]. Recent work of Malara, 
Szemberg and Szpond [39], extended by Chang and Jow [14], showed that for a fixed integer m, Demailly’s 
Conjecture holds for a very general set of sufficiently many points. Specifically, it was shown that, given 
N � 3, m ∈ N and s � (m + 1)N , for each n � 1 there exists an open dense subset Un of the Hilbert 
scheme of s points in PN

k such that Demailly’s bound (D) for α(I(n)) holds for X ∈ Un. As a consequence, 
Demailly’s Conjecture holds for all X ∈

⋂∞
n=1 Un. Chang and Jow [14] further proved that if s = kN , for 

some k ∈ N, then one can take Un to be the same for all n � 1, i.e., Demailly’s Conjecture holds for a 
general set of kN points.

In this paper, we establish Demailly’s Conjecture for a general set of sufficiently many points. More 
precisely, we show that given N � 3, m ∈ N and s � (2m + 3)N , there exists an open dense subset U of the 
Hilbert scheme of s points in PN

k such that Demailly’s bound (D) holds for X ∈ U and all n � 1.

Theorem 2.9. Suppose that k is algebraically closed (of arbitrary characteristic) and N � 3. For a fixed 
integer m � 1, let I be the defining ideal of a general set of s � (2m + 3)N points in PN

k . For all n � 1, we 
have

α(I(n))
n

� α(I(m)) + N − 1
m + N − 1 .

To prove Theorem 2.9, we use a similar method to the one we used in our previous work [5], where 
we proved Chudnovsky’s Conjecture for a general set of sufficiently many points. This is not, however, a 
routine generalization. In [5], Chudnovsky’s bound (C) was obtained via the (Stable) Harbourne–Huneke 
Containment, which states that for a homogeneous radical ideal I ⊆ R of big height h we have

I(hr) ⊆ mr(h−1)Ir for r � 0.

To achieve the Stable Harbourne–Huneke Containment, we showed that one particular containment 
I(hc−h) ⊆ mc(h−1)Ic, for some value c ∈ N, would lead to the stable containment I(hr−h) ⊆ mr(h−1)Ir

for r � 0. In a similar manner, Demailly’s bound (D) would follow as a consequence of the following more 
general version of the (Stable) Harbourne–Huneke Containment:

I(r(m+h−1)) ⊆ mr(h−1)(I(m))r for r � 0. (HH)
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Unfortunately, this is where the generalization of the arguments in [5] breaks down. We cannot prove 
that one such containment would lead to the stable containment. To overcome this obstacle, we show 
that the stronger containment I(c(m+h−1)−h+1) ⊆ mc(h−1)(I(m))c, for some value c ∈ N, would imply 
I(r(m+h−1)) ⊆ mr(h−1)(I(m))r for infinitely many values of r, and this turns out to be enough to obtain 
Demailly’s bound.

It is an open problem whether, for a homogeneous radical ideal I, the general version of the Stable 
Harbourne–Huneke Containment stated in (HH) holds; this problem is open even in the case where I
defines a set of points in PN

k . In the second half of the paper, we investigate the general containment 
problem. We show that the containment holds for generic determinantal ideals and the defining ideals of 
star configurations in PN

k . Our results are stated as follows.

Theorem 3.6 and Remark 3.9. Let k be a field.

(1) Let I be the defining ideal of a codimension h star configuration in PN
k , for h � N . For any m, r, c � 1, 

we have

I(r(m+h−1)−h+c) ⊆ m(r−1)(h−1)+c−1(I(m))r.

(2) Let I = It(X) be the ideal of t-minors of a matrix X of indeterminates, and let h denote its height in 
k[X]. For all m, r, c � 1, we have

I(r(m+h−1)−h+c) ⊆ m(r−1)(h−1)+c−1(I(m))r.

In particular, if I is the defining ideal of a star configuration or a generic determinantal ideal, then I satisfies 
a Demailly-like bound, i.e., for all n � 1 we have

α(I(n))
n

� α(I(m)) + h− 1
m + h− 1 .

Determinantal ideals are classical objects in both commutative algebra and algebraic geometry that have 
been studied extensively. The list of references is too large to be exhausted here; we refer the interested 
reader to [7] and references therein. In this paper, we are particularly interested in generic determinantal 
ideals. Specifically, for a fixed pair of integers p and q, let X be a p × q matrix of indeterminates and let 
R = k[X] be the corresponding polynomial ring. For t � min{p, q}, let It(X) be the ideal in R generated 
by the t-minors of X; that is, It(X) is generated by the determinants of all t × t submatrices of X. It is a 
well-known fact that It(X) is a prime and Cohen-Macaulay ideal of height h = (p − t + 1)(q − t + 1).

Star configurations have also been much studied in the literature with various applications [15,10,11,46,
42,47,1,4,9]. They often provide good examples and a starting point in investigating algebraic invariants and 
properties of points in projective spaces; for instance, the minimal free resolution (cf. [2,43]), weak Lefschetz 
property (cf. [44,2,37]), and symbolic powers and containment of powers (cf. [27,31,45,38]).

We shall use the most general definition of a star configuration given in [38]. Let F = {F1, . . . , Fn} be a 
collection of homogeneous polynomials in R and let h < min{n, N} be an integer. Suppose that any (h +1)
elements in F form a complete intersection. The defining ideal of the codimension h star configuration given 
by F is defined to be

Ih,F =
⋂

1�i1<···<ih�n

(Fi1 , . . . , Fih).

To prove Theorems 3.6 and 3.8, we use arguments similar to those in [8], where the containment has 
been proved for squarefree monomial ideals. Note that, by a recent result of Mantero [38], it is known 
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that symbolic powers of the defining ideal of a star configuration Ih,F are generated by “monomials” in 
the elements of F . A similar description for symbolic powers of determinantal ideals It(X) was given by 
DeConcini, Eisenbud, and Procesi [17].
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2. Demailly’s Conjecture for general points

In this section, we establish Demailly’s Conjecture for a general set of sufficiently many points. Recall 
first that for a homogeneous ideal I ⊆ R, the Waldschmidt constant of I is defined to be

α̂(I) = lim
n→∞

α(I(n))
n

.

It is known (cf. [6, Lemma 2.3.1]) that the Waldschmidt constant of an ideal exists and

α̂(I) = inf
n∈N

α(I(n))
n

.

Thus, Demailly’s Conjecture can be equivalently stated as follows.

Conjecture 2.1 (Demailly). Let k be an algebraically closed field of characteristic 0. Let I ⊆ k[PN
k ] be the 

defining ideal of a set of points in PN
k and let m ∈ N be any integer. Then,

α̂(I) � α(I(m)) + N − 1
m + N − 1 . (D’)

Demailly’s Conjecture for N = 2 follows from [25, Théorème I and Remarque (1.1)]. Thus, for the 
remaining of the paper, we shall make the assumption that N � 3. We start by showing that Demailly’s 
bound (D’) follows from one appropriate containment between symbolic and ordinary powers of the given 
ideal. This result generalizes [5, Proposition 5.3].

Lemma 2.2. Let I ⊆ R be an ideal of big height h and let m ∈ N. Suppose that for some constant c ∈ N, we 
have I(c(h+m−1)−h+1) ⊆ mc(h−1) (I(m))c. Then,

α̂(I) �
α
(
I(m)) + h− 1
m + h− 1 .

Proof. We will make use of a result of Ein–Lazarsfeld–Smith [23, Theorem 2.2] and Hochster–Huneke [29, 
Theorem 1.1 (a)], which says that I(ht+kt) ⊆

(
I(k+1))t for all t � 1 and all k � 0. We obtain that for all 

t ∈ N,

I(ct(m+h−1)) = I(ht+t[c(m+h−1)−h])

⊆
(
I(c(m+h−1)−h+1)

)t

⊆
[
mc(h−1)(I(m))c

]t
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= mct(h−1)
(
I(m)

)ct

.

In particular, it follows that

α
(
I(ct(m+h−1)))

ct(m + h− 1) �
ct(h− 1) + ctα

(
I(m))

ct(m + h− 1) = α(I(m)) + h− 1
m + h− 1 .

By taking the limit as t → ∞, it follows that

α̂(I) � α(I(m)) + h− 1
m + h− 1 .

The assertion is proved. �
In light of Lemma 2.2, to prove Demailly’s Conjecture for the defining ideal I of a set of points in PN

k , 
the task at hand is to exhibit the containment I(c(h+m−1)−h+1) ⊆ mc(h−1) (I(m))c for a specific constant c. 
Our method is to use specialization techniques, in a similar manner to what we have done in [5], to reduce 
the problem to the generic set of points in PN

k(z).
We shall now recall the definition of specialization in the sense of Krull [36]. Let z = (zij)1�i�s,0�j�N

be the collection of s(N + 1) new indeterminates. Let

Pi(z) = [zi0 : · · · : ziN ] ∈ PN
k(z) and X(z) = {P1(z), . . . , Ps(z)}.

The set X(z) is the set of s generic points in PN
k(z). Given a = (aij)1�i�s,0�j�N ∈ As(N+1)

k , let Pi(a) and 
X(a) be obtained from Pi(z) and X(z) by setting zij = aij for all i, j. It is easy to see that there exists an 
open dense subset W0 ⊆ As(N+1)

k such that X(a) is a set of distinct points in PN
k for all a ∈ W0 (and all 

subsets of s points in PN
k arise in this way).

The following result allows us to focus on open dense subsets of As(N+1)
k when discussing general sets of 

points in PN
k .

Lemma 2.3 ([26, Lemma 2.3]). Let W ⊆ As(N+1)
k be an open dense subset such that a property P holds for 

X(a) whenever a ∈ W . Then, the property P holds for a general set of s points in PN
k .

To get the desired containment for the generic set of points in PN
k(z) we shall need the following combi-

natorial lemma, which is a generalization of [5, Lemma 4.6] and [39, Lemma 3.1].

Lemma 2.4. Suppose that N � 3 and k � 2m + 2. We have
(

(k − 1)(m + N − 1) + N − 1
N

)
� (k + 1)N

(
m + N − 1

N

)
.

Proof. We shall use induction on N . For N = 3, we need to show that
(

(k − 1)(m + 2) + 2
3

)
� (k + 1)3

(
m + 2

3

)
,

which is equivalent to

(k − 1)[(k − 1)(m + 2) + 2][(k − 1)(m + 2) + 1] � (k + 1)3(m + 1)m.

Set k′ = k − 1. It follows that k′ � 2m + 1, and we need to prove the inequality
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k′[k′(m + 2) + 2][k′(m + 2) + 1] � (k′ + 2)3(m + 1)m, i.e.,

(3m + 4)k′ 3 − 3(2m2 + m− 2)k′ 2 − (12m2 + 12m− 2)k′ − 8(m2 + m) � 0.

By setting f(k′) to be the left hand side of this inequality, as a function in k′, it suffices to show that f(k′)
is an increasing function for k′ � 2m + 1 and f(2m + 1) � 0.

It is easy to see that f(2m + 1) = 4(m + 1)2(2m + 3) > 0. On the other hand, we have

f ′(k′) = 3(3m + 4)k′ 2 − 6(2m2 + m− 2)k′ − (12m2 + 12m− 1).

We will show that 2m + 1 is greater than both roots of f ′(k′). Indeed, the bigger root of f ′(k′) is

k′1 = 3(2m2 + m− 2) +
√

3
√

12m4 + 48m3 + 63m2 + 33m + 8
3(3m + 4) .

Since

[(2m + 1)3(3m + 4) − 6m2 − 3m + 6]2 − 3(12m4 + 48m3 + 63m2 + 33m + 8)

= 3(36m4 + 192m3 + 381m2 + 327m + 100) > 0,

we have 2m + 1 > k1. This establishes the desired inequality for N = 3.
Suppose now that the desired inequality holds for N � 3, i.e.,

(
(k − 1)(m + N − 1) + N − 1

N

)
� (k + 1)N

(
m + N − 1

N

)
.

We shall prove that the inequality holds for N + 1 as well. That is,
(

(k − 1)(m + N) + N

N + 1

)
� (k + 1)N+1

(
m + N

N + 1

)
.

Set x = (k − 1)(m +N − 1) +N − 1. Then x + k = (k − 1)(m +N) +N , and we need to prove that, for 
k � 2m + 2,

(
x + k

N + 1

)
� (k + 1)N+1

(
m + N

N + 1

)
. (2.1)

Indeed, by the induction hypothesis, we have
(
x + k

N + 1

)
=

(
x

N

)
(x + k) . . . (x + 1)

(N + 1)(x−N + 1) . . . (x−N + k − 1)

� (k + 1)N+1
(
m + N

N + 1

)
(N + 1)

(k + 1)(m + N) · (x + k) . . . (x + 1)
(N + 1)(x−N + 1) . . . (x−N + k − 1) .

Hence, it is enough to show that if k � 2m + 2 then

(x + k)(x + k − 1) . . . (x + 1) � (k + 1)(m + N)(x−N + 1) . . . (x−N + k − 1). (2.2)

Observe that x + i � x −N + i + 1. Thus, to prove (2.2), it suffices to show that (x + k)(x + k − 1) �
(k + 1)(m + N)(x −N + 1). That is,

[(k − 1)(m + N) + N ][(k − 1)(m + N) + N − 1] � (k + 1)(m + N)[(k − 1)(m + N) − (k − 1)].
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This inequality, by setting k′ = k − 1, is equivalent to

(m + N)[k′ 2 − (2m− 1)k′] + N(N − 1) � 0.

The last inequality clearly holds for k′ � 2m +1. Hence, (2.1) and (2.2) hold for k � 2m +2. This completes 
the proof. �
Remark 2.5. For N � 4, we can slightly improve the bound for k in Lemma 2.4 to be k � 2m +1 or k � 2m
if, in addition, m � 3. For N � 5 and m � 2, the bound is also k � 2m.

We shall also make use of the following result of Trung and Valla [48, Theorem 2.4], which we restate 
the special case when m1 = · · · = ms = m for our purpose.

Lemma 2.6 (See [48, Theorem 2.4]). Assume that k is algebraically closed. Let X be a general set of s points 
in PN

k and let I be its defining ideal. Let m ∈ N and let w denote the least integer such that

(s− 1)
(
m + N − 1

N

)
<

(
N + w

N

)
.

Then, we have reg(I(m)) � m + w.

Note that the regularity specializes, following for instance [41, Theorem 4.2]. Thus, Lemma 2.6 holds for 
X = X(z), the set of s generic points in PN

k(z).
In the next few lemmas, we establish a general version of the Stable Harbourne–Huneke Containment for 

the defining ideal of sufficiently many generic points in PN
k(z).

Lemma 2.7 (Compare with [5, Lemma 4.7]). Let k be an algebraically closed field. Suppose that s � (2m +2)N
and N � 3. Let I(z) be the defining ideal of s generic points in PN

k(z). For r � 0, we have

I(z)(r(m+N−1)−N+1) ⊆ (I(z)(m))r.

Proof. For simplicity of notation, we shall write I for I(z) in this lemma. Let k � 2m + 2 be the integer 
such that kN � s < (k + 1)N . It follows from [21, Theorem 2] that α̂(I) � 	 N

√
s
 = k. As in [5, Lemma 

4.7], we remark here that even though [21, Theorem 2] assumed char k = 0, its proof carries through for 
any infinite field k. In particular, we have

α(I(r(m+N−1)−N+1)) � k[r(m + N − 1) −N + 1].

By Lemmas 2.4 and 2.6, for r � 0, we have

reg(I(m)) � m + [(k − 1)(m + N − 1) − 1]

� m + (k − 1)(m + N − 1) − k

r
(N − 1)

� k(m + N − 1) − k

r
(N − 1).

This implies that r reg(I(m)) � α(I(r(m+N−1)−N+1)). Thus, we obtain the following inequality for the 
saturation degree of (I(m))r:

sat((I(m))r) � r reg(I(m)) � α(I(r(m+N−1)−N+1)).
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As a consequence, it follows that for t � α(I(r(m+N−1)−N+1)),
[
(I(m))(r)

]
t
= [(I(m))r]t.

Since r(m +N−1) −N +1 � mr, we have I(r(m+N−1)−N+1) ⊆ I(mr) =
(
I(m))(r), where the equality follows 

from the definition of symbolic powers. Hence, we conclude that I(r(m+N−1)−N+1) ⊆ (I(m))r. �
Lemma 2.8. Suppose that k is algebraically closed, s � (2m + 2)N and N � 3. Let I(z) be the defining ideal 
of s generic points in PN

k(z). Let mz denote the maximal homogeneous ideal in k
[
PN
k(z)

]
. For r � 0, we have

I(z)(r(m+N−1)−N+1) ⊆ mr(N−1)
z (I(z)(m))r.

Proof. For simplicity of notation, we shall write I for I(z) and m for mz in this lemma. Let k � 2m + 2 be 
the integer such that kN � s < (k + 1)N . By Lemma 2.7, we have I(r(m+N−1)−N+1) ⊆ (I(m))r for r � 0. 
Thus, it suffices to show that, for r � 0,

α(I(r(m+N−1)−N+1)) � r reg(Im) + r(N − 1). (2.3)

As before, it follows from [48, Theorem 2.4] and Lemma 2.4 that, for r � 0,

reg(I(m)) � m + [(k − 1)(m + N − 1) − 1] − 1 + 1

� m + (k − 1)(m + N − 1) − k

r
(N − 1).

That is,

reg(I(m)) + N − 1 � k(m + N − 1) − k

r
(N − 1).

Thus, for r � 0, we have

r(reg(I(m)) + N − 1) � rk(m + N − 1) − k(N − 1).

Furthermore, again by [21, Theorem 2], we have α̂(I) � 	 N
√
s
 = k. In particular, it follows that

α(I(r(m+N−1)−N+1)) � k[r(m + N − 1) −N + 1] = rk(m + N − 1) − k(N − 1).

Hence, (2.3) holds for r � 0, and the lemma is proved. �
We are now ready to state our first main result, which establishes Demailly’s Conjecture for a general 

set of sufficiently many points in PN
k for any algebraically closed field k of arbitrary characteristic.

Theorem 2.9. Suppose that k is algebraically closed and N � 3. For a fixed integer m � 1, let I be the 
defining ideal of a general set of s � (2m + 2)N points in PN

k . Then,

α̂(I) � α(I(m)) + N − 1
m + N − 1 .

Proof. Let I(z) be the defining ideal of s generic points in PN
k(z) and let mz denote the maximal homogeneous 

ideal of k
[
PN

]
. It follows from Lemma 2.8 that there exists a constant c ∈ N such that
k(z)



S. Bisui et al. / Journal of Pure and Applied Algebra 226 (2022) 106863 9
I(z)(c(m+N−1)−N+1) ⊆ mc(N−1)
z (I(z)(m))c.

This, together with [36, Satz 2 and 3] (see also [5, Remark 2.10]), implies that there exists an open dense 
subset U ⊆ As(N+1) such that for all a ∈ U , we have

I(a)(c(m+N−1)−N+1) ⊆ mc(N−1)(I(a)(m))c.

The theorem now follows from Lemmas 2.2 and 2.3. �
Remark 2.10. By Remark 2.5, the bound for s in Theorem 2.9 can be improved slightly when N � 4 to 
require only that s � (2m + 1)N or s � (2m)N if, in addition, m � 3. For N � 5 and m � 2 it also requires 
only s � (2m)N .

Remark 2.11. When m = 1, Demailly’s Inequality (D’) coincides with Chudnovky’s Conjecture, which we 
previously showed to hold for sufficiently many general points in PN in [5]. Theorem 2.9 is a generalization 
of [5, Theorem 5.1], extending Chudnovsky’s Conjecture for sufficiently many general points to Demailly’s 
Conjecture. In particular, [5, Theorem 5.1] states that Chudnovsky’s Conjecture holds for s � 4N general 
points in PN

k , which is the result in Theorem 2.9 when m = 1. On the other hand, for N � 4, Remark 2.10
shows our bound for s � (2m + 1)N in Demailly’s Conjecture, when m = 1, agrees with the bound s � 3N
given in [5, Remark 5.2] for Chudnovsky’s Conjecture.

Another crucial difference is that in [5] we also showed that the containment I(rN) ⊆ mr(N−1)Ir holds 
for r � 0. Here the corresponding generalization would be I(r(N+m−1)) ⊆ mr(N−1) (I(m))r for all r � 0
and all m � 1. Unfortunately, we have not been able to prove this stable containment for all r sufficiently 
large; we only show it for infinitely many values of r.

3. Harbourne–Huneke Containment beyond points

In this section, we investigate a general containment between symbolic and ordinary powers of radical 
ideals, and show that this containment holds for generic determinantal ideals and the defining ideals of 
star configurations. Specifically, we are interested in the following general version of the Harbourne–Huneke 
Containment for radical ideals.

Question 3.1. Let I be either a radical ideal of big height h in a regular local ring (R, m), or a homogeneous 
radical ideal of big height h in a polynomial ring R with maximal homogeneous ideal m. Does the containment

I(r(h+m−1)) ⊆ mr(h−1)
(
I(m)

)r

hold for all m, r � 1?

A positive answer to Question 3.1 would in particular imply a Demailly-like bound for homogeneous 
radical ideals in k[PN ], i.e., an affirmative answer to the following question.

Question 3.2 (Demailly-like bound). Let R be a polynomial ring over k and let I be a homogeneous radical 
ideal of big height h in R. Does the inequality

α(I(n))
n

� α(I(m)) + h− 1
m + h− 1

hold for all n, m � 1?
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Question 3.1 was first asked for ideals of points by Harbourne and Huneke in [30, Question 4.2.3], and the 
more general version for radical ideals of big height h appeared in [8, Conjecture 2.9]. The answer to both 
questions is yes for squarefree monomial ideals by [8, Corollary 4.3], where in fact a stronger containment 
was established [8, Theorem 4.2]. Similar containment for the defining ideal of a general set of points in 
P 2
k were investigated in [3]. Furthermore, by the same reasoning as in the previous section, the left hand 

side of the inequality in Question 3.2 can be replaced by the Waldschmidt constant α̂(I) of I. We refer the 
interested reader to [12] for more information about the Waldschmidt constant, containment and equality 
between symbolic and ordinary powers of ideals.

Our goal in this section is show that Question 3.1 has a positive answer for special classes of ideals. In 
a natural approach to Question 3.1, one might hope to make use of the following general containment of 
[23,29]:

I(r(h+m−1)) ⊆
(
I(m)

)r

.

Given this containment, to derive an affirmative answer to Question 3.1, one could aim to simply show that

α
(
I(r(h+m−1))

)
� r(h− 1) + r ω

(
I(m)

)
,

where, for a homogeneous ideal J , ω(J) denotes the maximal generating degree of J . This inequality, 
however, is often false, as illustrated in the following examples.

Example 3.3. Consider n � 3, a field k with char k �= 2 containing n distinct roots of unity, and R =
k[x, y, z]. The symbolic powers of the ideal

I = (x(yn − zn), y(zn − xn), z(xn − yn))

have an interesting behavior; in particular, I(3) � I2 [20,33], and in fact the case k = C and n = 3 was the 
first example ever found of an ideal of big height 2 with such behavior [20].

By the proof of [18, Theorem 2.1], α(I(3k)) = 3nk; moreover, by [40, Theorem 3.6], ω(I(kn)) = k(n + 1)
for all k � 1. Therefore, we immediately see that

α
(
I(3(kn+1))

)
= 3(kn + 1)n �� 3 + 3kn(n + 1) = 3 + 3ω(I(kn)).

In fact, Macaulay2 [28] computations with n = 3 suggest that

α
(
I(r(m+1))

)
� r + r ω

(
I(m)

)
may never hold. However, this does not prevent the containment in Question 3.1,

I(r(m+1)) ⊆ mr
(
I(m)

)r

,

to hold — indeed Macaulay2 [28] computations support this containment for small values of r and m when 
n = 3. If, in addition, char k = 0, then this containment holds for infinitely many values of m. Indeed, we 
have

I(r(mn+1)) = I(rmn+r) ⊆ mrI(rmn) = mr
(
I(n)

)mr

= mr
(
I(mn)

)r

.

Note that Demailly’s bound can be checked in this case, at least for multiples of 3. Indeed, by the proof 
of [18, Theorem 2.1], α̂(I) = n and α(I(3m)) = 3nm, so I satisfies Demailly’s bound for all multiples of 3:
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α̂(I) � α(I(3m)) + 1
3m + 1 .

Furthermore, if char k = 0, then Demailly’s bound can also be verified by taking powers of the form 
3m + 2. In particular, since I(3m+3) ⊆ mI(3m+2), we have α(I(3m+3)) � α(I(3m+2)) + 1. Equivalently, we 
get (3m + 3)n � α(I(3m+2)) + 1, or

α̂(I) � α(I(3m+2)) + 1
3m + 3 .

Example 3.4 (Generic determinantal ideals). Fix some t � q � p, let X be an p ×q matrix of indeterminates, 
and let R = k[X] be the corresponding polynomial ring over a field k. Consider the ideal I = It(X) of 
t-minors of X, which is a prime in R of height h = (p − t + 1)(q − t + 1). By [23,29],

I(r(h+m−1)) ⊆
(
I(m)

)r

for all m, r � 1. To show that I satisfies the containment proposed in Question 3.1, one might attempt to 
check that for all m, r � 1,

α
(
I(r(h+m−1))

)
� ω

(
mr(h−1)

(
I(m)

)r)
= r(h− 1) + rω(I(m)).

However, this inequality does not always hold; for example, if I is the ideal of 2 ×2 minors of a generic 3 ×3
matrix (meaning p = q = 3 and t = 2, so h = 4) and we take r = 1, m = 5, it turns out that

α
(
I(r(h+m−1))

)
= α

(
I(8)

)
= 12 < 13 = 3 + ω(I(5)) = r(h− 1) + rω(I(m)).

Nevertheless, as we will show in Theorem 3.8 that the containment in Question 3.1 holds for I, and as a 
consequence so does the inequality in Question 3.2.

Examples 3.3 and 3.4 demonstrate that the obvious approach to establish the containment in Question 3.1
may not work. However, in the remaining of the paper, we shall see that this containment indeed holds for 
generic determinantal ideals and defining ideals of star configurations.

3.1. Star configurations

We start by recalling the construction of a star configuration of hypersurfaces in PN
k , following [38] (see 

also [27]).

Definition 3.5. Let H = {H1, . . . , Hn} be a collection of s � 1 hypersurfaces in PN
k . Assume that these 

hypersurfaces meet properly; that is, the intersection of any k of these hypersurfaces either is empty or has 
codimension k. For 1 � h � min{n, N}, let Vh,H be the union of the codimension h subvarieties of PN

k

defined by all the intersections of h of these hypersurfaces. That is,

Vh,H =
⋃

1�i1<···<ih�n

Hi1 ∩ · · · ∩Hih .

We call Vh,H a codimension h star configuration.

Suppose that for i = 1, . . . , n, the hypersurface Hi is defined by the homogeneous polynomial Fi. Set 
F = {F1, . . . , Fn}. Then, the defining ideal of Vh,H is given by
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Ih,F =
⋂

1�i1<···<ih�n

(Fi1 , . . . , Fih).

We refer to Ih,F as the defining ideal of a codimension h star configuration in PN
k . Note that, since h � N , 

it further follows from the definition that any (h + 1) elements in F form a complete intersection. A recent 
result of Mantero [38, Theorem 4.9] shows that if, in addition, h < n, then Ih,F is minimally generated by 
appropriate monomials in the homogeneous forms of F .

Theorem 3.6. Let k be a field. Let I be the defining ideal of a codimension h star configuration in PN
k , for 

some h � N . For any m, r, c � 1, we have

I(r(m+h−1)−h+c) ⊆ m(r−1)(h−1)+c−1(I(m))r.

Proof. For a complete intersection, symbolic and ordinary powers are equal. Thus, the statement is trivial 
if h = n. Assume that h < n. Let F = {F1, . . . , Fn} be the collection of homogeneous forms which defines 
the given star configuration. By definition, we have

I =
⋂

1�i1<i2<···<ih�n

(Fi1 , . . . , Fih). (3.1)

We shall proceed following a similar argument to the one in [8, Theorem 4.2], where the containment was 
proved for squarefree monomial ideals.

Denote the ideals of the form (Fi1 , . . . , Fih) in (3.1), in some order, by Q1, ..., Qs, where s =
(
n
h

)
and each 

Qi is of the form Qi = (Fi1 , . . . , Fih). Let Ei denote the set of indices of the elements from F appearing in 
Qi, namely Ei = {i1, ..., ih}. It follows from [38, Proposition 2.4] (see also [27]) that

I(r(m+h−1)−h+c) =
s⋂

i=1
Q

r(m+h−1)−h+c
i . (3.2)

By [38, Theorem 4.9], I(r(m+h−1)−h+1) is generated by monomials in the forms of F . Consider an arbitrary 
such monomial M = F a1

1 . . . F as
s in I(r(m+h−1)−h+c).

Observe that if j /∈ Ei = {i1, . . . , ih} then {Fj , Fi1 , . . . , Fih} form a complete intersection. This implies 
that Fj is not a zero-divisor of Qk

i for all k � 1. Thus, it follows from (3.2) that, for each i = 1, . . . , s, we 
have

∑
j∈Ei

aj � r(m + h− 1) − h + c.

Let dj ∈ Z�0 be such that djr � aj < (dj + 1)r and set a′j = aj − djr � r − 1 (in particular, 
∑

j∈Ei
a′j �

(r − 1)h). It can be seen that

∑
j∈Ei

djr =
∑
j∈Ei

(aj − a′j) � r(m + h− 1) − h + c− (r − 1)h = r(m− 1) + c.

The left hand side of this inequality is divisible by r, so we deduce that 
∑

j∈Ei
djr � rm. In particular, we 

have 
∑

j∈Ei
dj � m.

Consider the system of inequalities 
{∑

j∈Ei
dj � m

∣∣ i = 1, . . . , s
}

. By successively reducing the values 
of dj ’s we can choose 0 � d′j � dj such that the system of inequalities
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⎧⎨
⎩

∑
j∈Ei

d′j � m
∣∣∣ i = 1, . . . , s

⎫⎬
⎭

is still satisfied, but for at least one value of 1 � � � s we obtain the equality 
∑

j∈E�
d′j = m.

Set f =
∏n

j=1 F
d′
jr

j and g =
∏n

j=1 F
aj−d′

jr

j . Then, M = fg. Also, it follows from (3.2) that 
∏n

j=1 F
d′
j

j ∈
I(m). Thus, f ∈ (I(m))r.

On the other hand, it is easy to see that

deg g �
∑
j∈E�

(aj − d′jr)

=
∑
j∈E�

aj − (
∑
j∈E�

d′j)r

� r(m + h− 1) − h + c− rm

= (r − 1)(h− 1) + c− 1.

Therefore, g ∈ m(r−1)(h−1)+c−1. Hence, M ∈ m(r−1)(h−1)+c−1(I(m))r, and the result follows. �
As a corollary of Theorem 3.6, we can show that Demailly’s bound holds for a star configuration in PN

k .

Corollary 3.7. Let I be the defining ideal of a codimension h star configuration in PN
k , for some h � N . For 

any m, r ∈ N, we have

I(r(m+h−1)) ⊆ mr(h−1)(I(m))r.

In particular, Demailly-like bound holds for defining ideals of star configurations in PN
k .

Proof. The first statement is a consequence of Theorem 3.6 by setting c = h. The second statement follows 
immediately from the containment I(r(m+h−1)) ⊆ mr(h−1)(I(m))r, which implies that

α(I(r(m+h−1)))
r(m + h− 1) � r(h− 1) + rα(I(m))

r(m + h− 1) = α(I(m)) + h− 1
m + h− 1 ,

and by taking the limit as r → ∞. �
3.2. Generic determinantal ideals

We now show that the Harbourne–Huneke Containment in Question 3.1 holds for generic determinantal 
ideals. We first prove in Theorem 3.8 the precise containment stated in Question 3.1 to better illustrate our 
techniques. A more general containment, as in Theorem 3.6, will then be shown to hold in Remark 3.9.

Theorem 3.8 (Generic determinantal ideals). Let k be a filed. For fixed positive integers t � min{p, q}, let 
X be a p × q matrix of indeterminates, let R = k[X], and let I = It(X) denote the ideal of t-minors of X. 
Let h = (p − t + 1)(q − t + 1) be the height of I in R. For all m, r, c � 1, we have For any m, r, c � 1, we 
have

I(r(h+m−1)) ⊆ mr(h−1)
(
I(m)

)r

.

In particular, Demailly-like bound holds for generic determinantal ideals.
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Proof. After possibly replacing X with its transpose, we may assume that p � q. We will use the explicit 
description of the symbolic powers of the ideals of minors of generic determinantal matrices by Eisenbud, 
DeConcini, and Procesi [17]. We point the reader to [7, 10.4] for more details on the subject.

Given a product δ = δ1 · · · δu, where δi is an si-minor of X, δ ∈ I(k) if and only if

u∑
i=1

max{0, si − t + 1} � k,

and I(k) is generated by such products. Fix such a product δ = δ1 · · · δu ∈ I(r(h+m−1)), and set s :=
s1 + · · · + su. Note that by the rule above, whether or not δ is in a particular symbolic power of I is 
unchanged if some si < t, so we can assume without loss of generality that all si � t. We thus have

u∑
i=1

(si − t + 1) � r(h + m− 1).

We will explicitly write δ as an element in (I(m))r. First, note that to write δ as an element in I(m), it is 
enough to find a subset of {δ1, . . . , δu}, say δ1, . . . , δv, such that

v∑
i=1

(si − t + 1) � m.

If we chose δ1, . . . , δv the best way possible, meaning such that no δi can be deleted, then

v−1∑
i=1

(si − t + 1) � m− 1,

and since δi is a minor of X, we must have si � q. Thus

v∑
i=1

(si − t + 1) � (m− 1) + (q − t + 1) = m + q − t.

Suppose that

v∑
i=1

(si − t + 1) = m + k.

Then sv − t + 1 � (m + k) − (m − 1) = k + 1, so sv � t + k. By using a Laplace expansion, we can rewrite 
δv as a linear combination of minors of size sv − k with coefficients in mk. On the other hand, the product 
of δ1 · · · δv−1 by a minor of size sv − k � t is still in I(m), so δ1 · · · δv ∈ mkI(m) for some k � q − t.

By repeating this process r times, we claim that we can extract δ1, . . . , δw (perhaps after reordering) such 
that

δ1 · · · δw ∈ mk1+···+kr

(
I(m)

)r

and
w∑
i=1

(si − t + 1) = rm +
r∑

j=1
kj � r(m + q − t).

This is always possible as long as

w∑
(si − t + 1) �

u∑
(si − t + 1),
i=1 i=1
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which follows from

q − t + 1 � h =⇒ rm +
r∑

j=1
kj � r(m + q − t) � r(h + m− 1).

As a consequence, the remaining factors in δ satisfy

u∑
i=w+1

(si − t + 1) =
u∑

i=w+1
(si − t + 1) − rm−

r∑
j=1

kj � r(h + m− 1) − rm−
r∑

j=1
kj .

Since each si-minor δi has degree si, and

u∑
i=w+1

si �
u∑

i=w+1
(si − t + 1) � r(h− 1) −

r∑
j=1

kj ,

we conclude that δw+1 · · · δu ∈ mN , where N � r(h − 1) − (k1 + · · · + kr). Therefore,

δ = δ1 · · · δwδw+1 · · · δu ∈ mk1+···+km+N
(
I(m)

)r

⊆ mr(h−1)
(
I(m)

)r

. �
Remark 3.9. Since we showed that star configurations satisfy the stronger containment

I(r(m+h−1)−h+c) ⊆ m(r−1)(h−1)+c−1(I(m))r,

it is natural to ask if so do generic determinantal ideals. We shall prove that this stronger inclusion also 
holds.

We will use the same notation as in the proof of Theorem 3.8 and assume that p � q. When t = q or, 
equivalently, when I is the ideal of maximal minors of X, it is well-known that I(n) = In for all n � 1 — 
see [32, (2.2)] for the case when q = p +1, while the general case follows immediately from [17] — and there 
is nothing to show. So we will assume that q > t, and in particular, we have p − t + 1 � q − t + 1 � 2.

When r = 1, the asserted statement is that

I(m+c−1) ⊆ mc−1I(m)

for all c, m � 1, which follows immediately once one shows that I(m+1) ⊆ mI(m) for all m � 1. In charac-
teristic 0, this is given in [24, Proposition 13]; we claim that I(m+1) ⊆ mI(m) holds in any characteristic. 
Consider a product of si-minors δ = δ1 · · · δu ∈ I(m+1) such that si � t. If si = t for all i, then u � m + 1, 
and so we have δ1 · · · δu−1 ∈ Im ⊆ I(m), which implies that δ ∈ mI(m). If, otherwise, there exists i such 
that si � t + 1 then using Laplace expansion, δi can be rewritten as a linear combination of minors of size 
si − 1 � t with coefficients in m, so that δ = δ1 . . . , δu ∈ mI(m).

When r � 2, we claim that we can adapt the proof of Theorem 3.8 to show

I(r(m+h−1)−h+c) ⊆ m(r−1)(h−1)+c−1(I(m))r,

but we need a bit more work. First, let us try to follow the same steps: we fix a product δ = δ1 · · · δu ∈
I(r(h+m−1)−h+c), and start by writing it as a multiple of a product of minors in mk1+···+kr(I(m))r for some 
kj � q − t. We started off with

u∑
(si − t + 1) � r(h + m− 1) − h + c
i=1
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and we need to collect r subsets of v many δi such that

v∑
i=1

(si − t + 1) � m,

but all we can guarantee is that

w∑
i=1

(si − t + 1) = rm +
r∑

j=1
kj � r(m + q − t).

This is only possible if

r(h + m− 1) − h + c− r(m + q − t) � 0.

We claim this inequality does hold given our assumptions that r � 2 and p � q > t. Indeed, writing 
Q := q − t + 1 � 2 and P := p − t + 1 � 2, we get

r(h + m− 1) − h + c− r(m + q − t) = r(h− (q − t + 1)) − h + c

= r(PQ−Q) − PQ + c

= PQ(r − 1) − rQ + c

� 2Q(r − 1) − rQ + c

= (r − 2)Q + c

� 0.

As in the proof of Theorem 3.8, write δ = δ1 · · · δwδw+1 · · · δu where δ1 · · · δw ∈ mk1+···+kr
(
I(m))r; the 

remaining factors in δ satisfy

u∑
i=w+1

(si − t + 1) =
u∑

i=w+1
(si − t + 1) − rm−

r∑
j=1

kj � r(h + m− 1) − rm− h + c−
r∑

j=1
kj .

Since each si minor δi has degree si, and

u∑
i=w+1

si �
u∑

i=w+1
(si − t + 1) � r(h− 1) − h + c−

r∑
j=1

kj = (r − 1)(h− 1) + c− 1 −
r∑

j=1
kj ,

we conclude that

δ = δ1 · · · δwδw+1 · · · δu ∈ m(r−1)(h−1)+c−1I(m). �
Remark 3.10. Theorem 3.8 also holds for determinantal ideals of symmetric matrices. Let t � p be integers, 
let Y be a p × p symmetric matrix of indeterminates, meaning Yij = Yji for all 1 � i, j � p, and let 
I = It(Y ) be the ideal of t-minors of Y in R = k[Y ]. By [34, Proposition 4.3], given si-minors δi of Y , 
the product δ = δ1 · · · δu is in I(k) if and only if 

∑u
i=1 max{0, si − t + 1} � k, and I(k) is generated by 

such elements. The element δ = δ1 · · · δu has once again degree s1 + · · · + su, and I is a prime of height 
h =

(
p−t+2

2
)

= (p−t+1)(p−t+2)
2 .

Fix r, m � 1. As we did in the case of generic matrices, we start with a product of si-minors δi, say 
δ = δ1 · · · δu ∈ I(r(h+m−1)). We again pick aside some of those terms, say δ1, . . . , δw, in such a way that we 
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can guarantee δ1 · · · δw ∈ mk1+···+kr
(
I(m))r, where each kj � p − t. For this to be possible, we again need 

to check

w∑
i=1

(si − t + 1) �
u∑

i=1
(si − t + 1),

which reduces to the same inequality as in Theorem 3.8, now with p = q:

p− t � h =⇒ rm +
r∑

j=1
kj � r(m + p− t) � r(h + m− 1).

The rest of the proof is exactly the same.
Furthermore, by adapting the same argument as in Remark 3.9, we can show that the containment

I(r(m+h−1)−h+c) ⊆ m(r−1)(h−1)+c−1(I(m))r

also holds. When r = 1, the proof is exactly the same as in Remark 3.9. When r � 2, we start with 
δ = δ1 · · · δu ∈ I(r(h+m−1)−h+c), and need to guarantee that it is possible to pick δ1, . . . , δw such that 
δ1 · · · δw ∈ mk1+···+km

(
I(m))r, where each kj � p − t. As before, we need to check that

w∑
i=1

(si − t + 1) �
u∑

i=1
(si − t + 1),

which reduces to checking that

r(m + p− t) � r(h + m− 1) − h + c.

Writting P := p − t + 1, we have

r(h + m− 1) − h + c− r(m + p− t) = r

(
P (P + 1)

2 − P

)
− P (P + 1)

2 + c.

If t = p, I is a principal ideal and the containment holds trivially. When P � 2, we have

r

(
P (P + 1)

2 − P

)
− P (P + 1)

2 = P

2 (r(P − 1) − (P + 1)) = P

2 ((r − 1)(P − 1) − 2) � 0,

unless r = 2 and P = 2. The rest of the argument follows analogously to Remark 3.9.
It remains to check the claim in the case r = 2 and P = 2. Note that we now have h = 2. Given 

δ = δ1 · · · δu ∈ I(2m+c), we want to show that δ ∈ mc
(
I(m))2. As in the case of generic matrices, we can 

assume that each si � t, and since p = t + 1, each δi is either a t-minor or a (t + 1)-minor. Let a be the 
number of (t + 1)-minors and b is the number of t-minors (so a + b = u). Since 

∑u
i=1(si − t + 1) � 2m + c, 

we have 2a + b � 2m + c.
If m is even or b � 2, we can choose a1 + a2 � a and b1 + b2 � b such that 2a1 + b1 = m = 2a2 + b2, so 

that δ can be written as a product of an element in 
(
I(m))2 and an element of degree

(t + 1)(a− a1 − a2) + t(b− b1 − b2) � 2(a− a1 − a2) + (b− b1 − b2) � c.

Therefore, δ ∈ mc
(
I(m))2. When b � 1, we can reduce to the case b � 2 by viewing either one or two of our 

(t + 1) minors as a linear combination of t-minors with coefficients in m.



18 S. Bisui et al. / Journal of Pure and Applied Algebra 226 (2022) 106863
Remark 3.11. Theorem 3.8 furthermore holds for pfaffian ideals of skew symmetric matrices. Let t � p
2 be 

integers, let Z be a p × p skew symmetric matrix of indeterminates, meaning Zij = −Zji for 1 � i < j � p

and Zii = 0 for all i, and let I = P2t(Z) be the 2t-pfaffian ideal of Z. That is, I is generated by the square 
roots of the 2t principal minors of Z. In this case, the symbolic powers of I are generated by products of 
pfaffians; given 2si-pfaffians δi, [19, Theorem 2.1] and [34, Proposition 4.5] tell us that δ1 · · · δu ∈ I(k) if and 
only if 

∑u
i=1 max{0, si − t + 1} � k and si �

⌊
p
2
⌋
. Note also that a 2si-pfaffian δi has degree si, and by [35, 

Corollary 2.5] the height of I is now h =
(
p−2t+2

2
)

= (p−2t+1)(p−2t+2)
2 .

In the previous cases, we repeatedly used the fact that any (t + k)-minor is a linear combination of 
t-minors with coefficients in mk, which is a direct consequence of Laplace expansion. In the case of pfaffians, 
[35, Lemma 1.1] says any skew symmetric matrix M has a cofactor expansion of the form

pf M =
∑
j�2

(−1)jm1jpf M1j

where pf A denotes the pfaffian of A, meaning the square root of det(A), and M1j denotes the submatrix 
of M obtained by deleting the first and jth rows and columns. As a consequence, any 2(t + k)-pfaffian of 
our skew symmetric matrix Z can be written as a linear combination of 2t-pfaffians with coefficients in mk.

Fix r, m � 1. This time, we start with a product δ = δ1 · · · δu ∈ I(r(h+m−1)) of 2si-pfaffians δi, which 
must then satisfy

u∑
i=1

(si − t + 1) � r(h + m− 1).

As before, we start by collecting some of our pfaffians, say δ1, . . . , δv, in such a way that

m + k1 :=
v∑

i=1
(si − t + 1) � m.

We can assume

v−1∑
i=1

(si − t + 1) � m− 1 =⇒ sv − t + 1 � k1 + 1 =⇒ k1 � sv − t � p− 2t
2 .

Using the trick we described above, we can rewrite sv as a linear combination of 2t-pfaffians with co-
efficients in mk1 . Therefore, δ1 · · · δv ∈ mk1I(m). Repeating this idea r many times, we can show that 
δ = δ1 · · · δw · · · δu, where δ1 · · · δw ∈ mk1+···+kr

(
I(m))r, as long as

rm +
r∑

j=1
kj � r(h + m− 1).

Each kj � p−2t
2 and h = (p−2t+1)(p−2t+2)

2 , so we need to check that

rm + r(p− 2t)
2 � r(p− 2t + 1)(p− 2t + 2)

2 + r(m− 1),

or equivalently,

p− 2t + 2 = 1 + p− 2t � (p− 2t + 1)(p− 2t + 2)
.
2 2 2
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And indeed, this holds, since p − 2t + 1 � 1. So we have shown that δ1 · · · δw ∈ mk1+···+kr
(
I(m))r, and the 

remaining factors δw+1 · · · δu satisfy

u∑
i=w+1

(si − t + 1) � r(h + m− 1) − rm−
r∑

j=1
kj .

Just as in the proof of Theorem 3.8, the degree of δw+1 · · · δu is

u∑
i=w+1

si �
u∑

i=w+1
(si − t + 1) � r(h− 1) −

r∑
j=1

kj ,

so that δ ∈ mk1+···kr+N
(
I(m))r for N � r(h − 1) − (k1 + · · · + kr). Therefore, δ ∈ mr(h−1) (I(m)).

Finally, we can once more show the stronger containment

I(r(m+h−1)−h+c) ⊆ m(r−1)(h−1)+c−1(I(m))r.

As in the previous cases, the case r = 1 follows from the Laplace expansion trick. When r � 2, we start 
with a product δ = δ1 · · · δu of 2si-pfaffians δi satisfying

u∑
i=1

(si − t + 1) � r(m + h− 1) − h + c

and collect a subset δ1 · · · δw ∈ mk1+···+kr
(
I(m))r with each kj � p−2t

2 . We can only do this if

r(m + h− 1) − h + c � rm +
r∑

j=1
kj ,

so it is sufficient to show

(r − 1)h + rm− r + c = r(m + h− 1) − h + c � rm + r(p− 2t)
2 .

Setting P := p − 2t so that 2h = (P + 1)(P + 2), we want to show that

(r − 1)(P + 1)(P + 2) − 2r + 2c− rP � 0,

or equivalently,

rP (P + 2) + 2c � (P + 1)(P + 2).

Whenever r � 2, we also have rP � P + 1, and our desired inequality holds. So we have shown δ1 · · · δw ∈
mk1+···+kr

(
I(m))r, and δw+1 · · · δu has degree

N =
u∑

i=w+1
si �

u∑
i=w+1

(si − t + 1) � r(m + h− 1) − h + c− rm−
r∑

j=1
kj ,

so δ ∈ mk1+···+kr+N
(
I(m))r, where

k1 + · · · + kr + N � r(m + h− 1) − h + c− rm = r(h− 1) − h + c = (r − 1)(h− 1) + c− 1,

as desired.
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