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INITIAL DEGREE OF SYMBOLIC POWERS OF IDEALS OF
FERMAT CONFIGURATIONS OF POINTS

THÁI THÀNH NGUYỄN

Let n ≥ 2 be an integer and consider the defining ideal of the Fermat configuration of points in P2:
In =

(
x(yn

− zn), y(zn
− xn), z(xn

− yn)
)
⊂ R = C[x, y, z]. We explicitly compute the least degree of

generators (the initial degree) of its symbolic powers in all unknown cases. As direct applications, we
verify Chudnovsky’s conjecture, Demailly’s conjecture and the Harbourne–Huneke containment problem,
as well as calculate the Waldschmidt constant and (asymptotic) resurgence number.

1. Introduction

Let n ≥ 2 be an integer and consider the Fermat ideal

In =
(
x(yn

− zn), y(zn
− xn), z(xn

− yn)
)
⊂ R = C[x, y, z].

This ideal corresponds to a Fermat arrangement of lines (or a Ceva arrangement in some literature) in P2.
More precisely, the variety of In is a reduced set of n2

+3 points in P2 [25], where n2 of these points form
the intersection locus of the pencil of curves spanned by xn

− yn and xn
− zn , while the other 3 are the

coordinate points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. This set of points is said to be the Fermat configuration
of points, justifying the terminology Fermat ideal. Fermat ideals have attracted a lot of attention recently
in commutative algebra research since they appeared as the first example of the noncontainment between
the third symbolic power and the second ordinary power of a defining ideal of a set of points in P2 in the
work of Dumnicki, Szemberg and Tutaj-Gasińska [14] (when n = 3) and were generalized by Harbourne
and Seceleanu [25]. It is worth emphasizing that this is a quite surprising relation between ordinary and
symbolic powers of an ideal of points in P2, since I 2 always contains I (3), where I is the ideal of a
general set of points [5].

Since then, much has become known about Fermat ideals for n ≥ 3. Fermat ideals can also be thought
of as the ideals determining the singular loci of the arrangements of lines given by the monomial groups
G(n, n, 3), see [11] or [35]. The Waldschmidt constant and (asymptotic) resurgence number of Fermat
ideals have been computed in [15] for n ≥ 3. Nagel and Seceleanu [32] studied Rees algebras and symbolic
Rees algebras of Fermat ideals and their minimal generators, as well as the minimal free resolutions of
all their ordinary powers and many symbolic powers. Specifically, it was shown that the symbolic Rees
algebra of In is Noetherian; the Castelnuovo–Mumford regularity of powers of In and their reduction
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ideals were provided. In term of minimal generators, when n ≥ 3, they provided the minimal generators
for all ordinary powers, as well all multiple of n symbolic powers. All known results are:

• For all k ≥ 1, α(I (3k)
n )= 3nk by [15, Theorem 2.1].

• For all k ≥ 1, α(I (nk)
n )= n2k by [32, Theorem 3.6].

• For all m ≥ 0, α(I (3m+2)
3 )= 9m + 8 by [30, Example 4.4].

In this paper, we will compute explicitly the least degree of generators (the initial degree) of symbolic
powers of In for all remaining cases to provide a more complete picture of Fermat ideals. We summarize
our results and results known in the literature in the following theorem:

Theorem 1.1. Let n ≥ 2 be an integer and In =
(
x(yn

− zn), y(zn
− xn), z(xn

− yn)
)

in C[x, y, z] be a
Fermat ideal. Then:

(1) For all n ≥ 2, α(I (2)n )= α(I 2
n )= 2(n + 1); see Theorem 3.4 and Theorem 4.1.

(2) For all k ≥ 2, α(I (2k)
2 )= 5k; see Theorem 4.1.

(3) For all k ≥ 0, α(I (2k+1)
2 )= 5k + 3; see Theorem 4.1.

(4) For all k ≥ 1, α(I (3k)
3 )= 9k; see [15, Theorem 2.1].

(5) For all k ≥ 1, α(I (3k+1)
3 )= 9k + 4; see Theorem 3.5.

(6) For all k ≥ 1, α(I (3k+2)
3 )= 9k + 8; see [30, Example 4.4].

(7) For all m ≥ 3 and m ̸= 5, α(I (m)4 )= 4m, and α(I (5)4 )= 21; see Theorem 3.2.

(8) For all n ≥ 5 and m ≥ 3, α(I (m)n )= mn; see Theorem 3.1.

Theorem 1.1 give a complete answer to the question of the least generating degree for all symbolic pow-
ers of In , see Table 1. This includes the calculation for the ideal I2, which is less considered in the aforemen-
tioned works. Note that the ideal I2 is the ideal determining the singular locus of the arrangement of lines
given by the pseudoreflection group D3, see [11]. It is worth pointing out the irregular value of α(I (5)4 )=21.

The containment problem for an ideal I is the problem of determining the set of pairs (m, r) for
which I (m) ⊆ I r . The deep results in [16; 26; 27] show that I (m) ⊆ I r whenever m ≥ Nr . In order to
characterize the pairs (r,m) numerically, the resurgence ρ(I ) was introduced [5], and then the asymptotic
resurgence ρ̂(I ) was introduced [23]. It is known that for n ≥ 3, ρ(In) =

3
2 , ρ̂(In) = (n + 1)/n and

α̂(In) = n by [15, Theorem 2.1], where α̂(I ) is the Waldschmidt constant of I . We will compute the
Waldschmidt constant and (asymptotic) resurgence number of I2.

n 2 3 4 n ≥ 5

m 2 2k 2k + 1 2 3k 3k + 1 3k + 2 2 5 ≥ 3, ̸= 5 2 ≥ 3
α(I (m)n ) 6 5k 5k + 3 8 9k 9k + 4 9k + 8 10 21 4m 2(n + 1) nm
α̂(In)

5
2 3 4 n

ρ̂(In)
6
5 (n + 1)/n

ρ(In)
6
5

3
2

Table 1. The initial degrees and other invariants related to symbolic powers of In
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Theorem 1.2. For the ideal I2, the Waldschmidt constant is α̂(I2)=
5
2 , and the resurgence number and

asymptotic resurgence number are ρ(I2)= ρ̂(I2)=
6
5 .

In an effort to improve the containment I (m) ⊆ I r for m ≥ Nr , as well as to deduce Chudnovsky’s
conjecture, Harbourne and Huneke [24] conjectured that the defining ideal I for any set of points in PN

satisfies some stronger containment, namely, I (Nm)
⊆ mm(N−1)I m and I (Nm−N+1)

⊆ m(m−1)(N−1)I m , for
all m ⩾ 1. An interesting fact about the Fermat ideals is the verification and failure of the containment can
be checked purely from their numerical invariants including the least degree of generators of symbolic
powers, the regularity, or the resurgence number and the maximal degree of generators. As a consequence
of the above computations, we will easily deduce that all Fermat ideals verify the Harbourne–Huneke
containment, the stable Harbourne containment and some stronger containments. In [3, Example 3.5], we
showed a stronger containment (which implies both containments given in Corollary 1.3) I (2r−2)

n ⊆ mr I r
n

for n ≥ 3 and for all r ≫ 0. Here, we show the containment for all possible cases.

Corollary 1.3. For every n ≥ 2, Fermat configuration ideals verify the following containments:

(1) Harbourne–Huneke containment, see [24, Conjecture 2.1],

I (2r)
n ⊆ mr I r

n , ∀r ≥ 1.

(2) Harbourne–Huneke containment, see [24, Conjecture 2.1],

I (2r−1)
n ⊆ mr−1 I r

n ,

for all r ≥ 3 if n ≥ 3 and for all r ≥ 1 if n = 2.

(3) A stronger containment I (2r−2)
n ⊆ mr I r

n , for all r ≥ 5.

This work can also be thought of as a modest contribution to the theory of Hermite interpolation. Specif-
ically, given a set of points Z = {P1, . . . , Ps} in a projective space Pn and positive integers m1, . . . ,ms ,
a fundamental problem in the theory of Hermite interpolation is to determine the least degree of a
homogeneous polynomial that vanishes to order mi at the point Pi for every i = 1, . . . , s. This is a
very hard problem even when m1 = · · · = ms . In this case when all mi are the same, thanks to the
Zariski–Nagata theorem, the above interpolation problem is the same as asking for the least degree
of a nonzero homogeneous polynomial in the k-th symbolic power of the defining ideal of Z , where
k = m1 = · · · = ms . Hence, this work, combined with many previous works, provides a complete answer
to the above question for Z to be a Fermat configuration of points in P2.

In order to understand the generating degrees of symbolic powers of In , we discuss the maximal degree
of a set of minimal generators of symbolic powers of In , denoted by ω(I (m)n ). From the description
of generating sets in [32], it can be seen that for n ≥ 3, we have ω(I (m)n ) = m(n + 1) for m = kn or
m = n − 1. By relating this with another invariant β(I (m)n ) that is defined in [24, Definition 2.2], we
show that β(J )≤ ω(J ) for an ideal of points J , in general, and use this to show that for n ≥ 3, we have
ω(I (m)n )= m(n + 1) for m ≥ n2

− 3n + 2.
It is worth remarking that Malara and Szpond [28; 29] also studied the generalization of Fermat

configurations in higher dimensions to provide more counterexamples to the containment I (3) ⊆ I 2. It
turns out that these ideals share some similar properties to Fermat ideals. We will investigate these ideals
in 3-dimensional space with the same questions in the continuation paper [34] in order to keep this paper
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more concise and focused. We work over the field of complex numbers, but our results hold over any
algebraically closed field of characteristic 0.

2. Preliminaries

Let R = C[x0, . . . , xN ] be the homogeneous coordinate ring of PN , and let m be its maximal homogeneous
ideal. For a homogeneous ideal I ⊆ R, let α(I ) denote the least degree of a nonzero homogeneous
polynomial in I , and let

I (m) :=
⋂

p∈Ass(R/I )
I m Rp ∩ R

denote its m-th symbolic power.
Geometrically, given a set of distinct points X ⊆ PN and an integer m ⩾ 1, by the Zariski–Nagata

theorem [17; 31; 36] (see [9, Proposition 2.14]), the least degree of a nonzero homogeneous polynomial
in the homogeneous coordinate ring C[x0, . . . , xN ] that vanishes at each point in X of order at least m is
α(I (m)X ), where IX ⊆ C[x0, . . . , xN ] is the defining ideal of X.

The Waldschmidt constant of I is defined to be the limit and turned out to be the infimum

α̂(I ) := lim
m→∞

α(I (m))
m

= inf
m→∞

α(I (m))
m

.

There is a tight connection between the Waldschmidt constant and an algebraic manifestation of the
Seshadri constant, especially for a set of very general points, see [1, Section 8].

In studying the lower bound for the least degree of a homogeneous polynomial vanishing at a given set
of points in PN with a prescribed order, Chudnovsky [8] made the following conjecture:

Conjecture 2.1 (Chudnovsky). Let I be the defining ideal of a set of points X ⊆ PN
C

. Then, for all n ⩾ 1,

α(I (n))
n

⩾
α(I )+ N − 1

N
.

This conjecture has been investigated extensively, for example, in [3; 5; 12; 13; 18; 20; 21; 24].
Recently, the conjecture was proved for a very general set of points [13; 20], for a general set of
sufficiently many points [3] and recently, for any number of general points [2]. The conjecture was also
generalized by Demailly [10].

Conjecture 2.2 (Demailly). Let I be the defining ideal of a set of points X ⊆ PN
C

, and let m ∈ N be any
integer. Then, for all n ⩾ 1,

α(I (n))
n

⩾
α(I (m))+ N − 1

m + N − 1
.

Demailly’s conjecture for N = 2 was proved by Esnault and Viehweg [18]. Recent work of Malara,
Szemberg and Szpond [30], and of Chang and Jow [7], showed that for a fixed integer m, Demailly’s
conjecture holds for a very general set of sufficiently many points and for a general set of k N points.
In [4], the results were extended to a general set of sufficiently many points.

The containment problem for an ideal I is to determine the set SI of pairs (r,m) for which I (m) ⊆ I r .
The deep results in [16; 26; 27] show that I (m) ⊆ I r whenever m ≥ Nr ; hence, {(m, r) : m ≥ Nr} ⊆ SI .
In order to characterize SI numerically, the resurgence number ρ(I ) is introduced in [5] as

ρ(I ) := sup
{m

r
: I (m) ̸⊆ I r

}
,
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and the asymptotic resurgence number ρ̂(I ) is introduced in [23] as

ρ̂(I ) := sup
{m

r
: I (mt)

̸⊆ I r t for t ≫ 0
}
.

There are only a few cases for which SI is known completely or the resurgence number has been
determined. In general, ρ(I ) and ρ̂(I ) are different.

In an effort to improve the containment I (m) ⊆ I r for m ≥ Nr , Harbourne and Huneke [24] conjectured
that the defining ideal I for any set of points in PN satisfies some stronger containment, namely that
I (Nm)

⊆ mm(N−1) I m and I (Nm−N+1)
⊆ m(m−1)(N−1) I m , for all m ⩾ 1. Knowing these containment

clearly helps us to know the set SI and the numbers ρ(I ) and ρ̂(I ). Conversely, knowledge about SI ,
ρ(I ) and ρ̂(I ) can be helpful to prove the containment. One result that we will use is the following:
If m/r > ρ(I ), then by definition I (m) ⊆ I r ; and suppose in addition, α(I (m)) ≥ a + ω(I r ) for some
integer a, where ω(I ) is the maximum degree of generators in a set of minimal generators of I , then
I (m) ⊆ma I r . We refer interested readers to [6] for more information about the Waldschmidt constant, the
resurgence number and the containment between symbolic and ordinary powers of ideals.

3. Fermat ideals for n ≥ 3

In this section, we focus on the Fermat ideals In =
(
x(yn

− zn), y(zn
− xn), z(xn

− yn)
)

for n ≥ 3. Let us
first recall some known results about the degrees of generators, Waldschmidt constants and (asymptotic)
resurgence numbers of In:

• For all k ≥ 1, α(I (3k)
n )= 3nk [15, Theorem 2.1].

• For all k ≥ 1, α(I (nk)
n )= n2k [32, Theorem 3.6].

• For all m ≥ 0, α(I (3m+2)
3 )= 9m + 8 [30, Example 4.4].

• ρ(In)=
3
2 and ρ̂(In)= (n + 1)/n [15, Theorem 2.1].

Let fn = yn
− zn , gn = zn

− xn and hn = xn
− yn . Then

In = (x fn, ygn, zhn)= ( fn, gn)∩ (x, y)∩ (y, z)∩ (z, x).

It is well known that, since fn and gn form a regular sequence, for any m ≥ 1, we have

I (m)n = ( fn, gn)
m

∩ (x, y)m ∩ (y, z)m ∩ (z, x)m .

Geometrically, recall that the Fermat configuration consists of n2
+ 3 points which are all points having

each coordinate equal to an n-th root of 1 and the points [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0]. Furthermore,
these points are intersections of 3n lines L j which have equations:

x − ϵk y = 0, y − ϵkz = 0, z − ϵk x = 0

for k = 0, 1, . . . , n − 1. Each of these lines contains exactly n + 1 points Pi (one coordinate point and n
other points), and each of the points [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0] is on exactly n lines, while each of
the other n2 points is on exactly 3 lines.

We will use these descriptions to explicitly compute the least degree of generators of I (m)n in all
remaining unknown cases, provided the knowledge about the Waldschmidt constant of In . Our main
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strategy in this paper and the continuation paper [34] is to study a subsequence of α(I (m)), which gives
us information about α̂(I ), and then use this to calculate other α(I (m)).

The following four theorems provide us with all remaining unknown initial degrees of symbolic powers
of In:

Theorem 3.1. For n ≥ 5, we have

α(I (m)n )= nm

for all m ≥ 3.

Proof. First, for 3 ≤ m ≤ n, we observe that

fngnhn( fn, gn)
m−3

⊆ I (m)n = ( fn, gn)
m

∩ (x, y)m ∩ (y, z)m ∩ (z, x)m .

In fact, since hn = −( fn + gn), we have that fngnhn( fn, gn)
m−3

⊆ ( fn, gn)
m . Also, it is clear that the

sum of degrees with respect to x and degrees with respect to y of any monomials of fngnhn is at least
n ≥ m so fngnhn ∈ (x, y)m . Similarly, fngnhn ∈ (y, z)m ∩ (z, x)m .

Thus, for 3 ≤ m ≤ n, we have α(I (m)n ) ≤ nm. Since α̂(In) = n, we have α(I (m)n ) ≥ nm. Therefore,
α(I (m)n )= nm.

Now for any k ≥ 2, we claim that for 0 ≤ a ≤ n − 1,

( fngnhn)
k( fn, gn)

k(n−3)−a
⊆ I (kn−a).

The argument is identical to that of the above, the only thing to note here is that for n ≥ 5,

k(n − 3)≥ 2(n − 3)≥ n − 1 ≥ a.

Thus, for all k ≥ 2 and 0 ≤ a ≤ n − 1,

α(I (kn−a)
n )≤ (kn − a)n.

Hence, α(I (kn−a)
n ) = (kn − a)n. Since for m > n, there are unique k ≥ 2 and 0 ≤ a ≤ n − 1 such that

m = kn − a, we have that α(I (m)n )= mn for all m > n. □

Theorem 3.2. When n = 4, we have α(I (5)4 )= 21, and for all m ≥ 3 except m ̸= 5,

α(I (m)4 )= 4m.

Proof. With the same argument we have that:

Case 1: For 3 ≤ m ≤ 4, we have f4g4h4( f4, g4)
m−3

⊆ I (m)4 . The statement is true for m = 3, 4.

For k = 2 and 0 ≤ a ≤ 2,

( f4g4h4)
k( f4, g4)

k(n−3)−a
⊆ I (kn−a)

4 ,

i.e,

( f4g4h4)
2( f4, g4)

2−a
⊆ I (8−a)

4

for 0 ≤ a ≤ 2. Thus, the statement is true for m = 6, 7, 8.
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Case 2: For k ≥ 3, we have k(4 − 3)≥ 3; so for 0 ≤ a ≤ 3,

( f4g4h4)
k( f4, g4)

k(n−3)−a
⊆ I (kn−a)

4 .

Therefore, the statement is true for all m ≥ 9.

In Case 2, the argument does not work for m = 5 (since a would be 3). However, by the same argument,
we can check that z f 2

4 g4h2
4 ∈ I (5)4 . Now suppose that α(I (5)4 )≤ 20. Then there is a divisor D of degree 20

vanishing to order at least 5 at every Pi in the Fermat configuration. Since the intersection of D and any
line L j in the Fermat line arrangement consists of five points to order at least 5, by Bézout’s theorem, each
L j is a component of D because deg(D) · deg(L j )= 20< 5 · 5. Moreover, in the Fermat configuration,
each of the coordinate points is on exactly four lines and each of the other points is on exactly three lines.
Hence, the divisor D′

= D −
∑12

j=1L j of degree 8 vanishes to order at least 1 at each coordinate point
and to order at least 2 along the other 16 points. Now intersecting D′ with any of the lines L j , again,
since each of the lines L j contains exactly one coordinate point and four other points, and 8< 1 · 1 + 4 · 2,
we conclude by Bézout’s theorem that each L j is a component of D′. This is a contradiction, since the
number of lines is 12. Therefore, α(I (5)4 )= 21. □

Remark 3.3. From Theorems 3.1 and 3.2, when n ≥ 4, we have α(I (m)n )= nm for all m ≥ 3, except for
n = 4 and m = 5. This can be predicted by means of Bézout’s theorem. More precisely, suppose that D
is a divisor of degree nm that vanishes to order at least m along n2

+ 3 points of the Fermat configuration.
By a similar argument using Bézout’s theorem, since nm < m(n + 1), each line L j is a component of D.
Hence, the divisor D1 = D−

∑3n
j=1L j is of degree n(m−3) and vanishes to order at least m−n (assuming

m > n) at each coordinate point and to order at least m − 3 along the others n2 points. If the number
of lines is at most the degree of D′, that is 3n ≤ (m − 3)n, then Bézout’s theorem would not yield a
contradiction. Note that in this case, by Bézout’s theorem again, since n(m −3) < 1 · (m −n)+n(m −3),
each L j is again a component of D1. Repeating this argument k times whenever possible, the divisor
Dk = D −k

∑3n
j=1L j is of degree n(m −3k) and vanishes to order at least m −kn at each coordinate point

and to order at least m − 3k along the others n2 points. Bézout’s theorem would yield a contradiction if
n(m − 3k) < 1 · (m − kn)+ n(m − 3k) (hence, each L j is a component of Dk) and n(m − 3k) < 3n (the
degree of Dk is less than the number of L j ). These two inequalities are equivalent to m − kn ≥ 1 and
m − 3k ≤ 2. By combining them, we have k(n − 3)≤ 1, which only happens when n = 4 and k = 1 (thus,
m = 5), as we saw earlier.

Theorem 3.4. For all n ≥ 3, we have α(I (2)n )= 2(n + 1).

Proof. We know that α(I (2)n ) ≤ α(I 2
n ) = 2(n + 1). Now suppose that α(I (2)n ) ≤ 2n + 1. Then there is a

divisor D of degree 2n + 1 vanishing to order at least 2 at every Pi in the Fermat configuration. Since
the intersection of D and any line L j in the Fermat line arrangement consists of n + 1 points to order at
least 2, by Bézout’s theorem, each L j is a component of D because

deg(D) · deg(L j )= 2n + 1< 2(n + 1).

This is a contradiction since there are 3n lines and 3n > 2n + 1 = deg(D) when n ≥ 3. Therefore,
α(I (2)n )= 2(n + 1) for all n ≥ 3. □

It is known that α(I (3m+2)
3 ) = 9m + 8 for all m ≥ 0 from [30, Example 4.4] and α(I (3m)

3 ) = 9m
for all m ≥ 1 from [15, Theorem 2.1] when n = 3. Now we compute the remaining case α(I (3m+1)

3 ).
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Theorem 3.5. For all m ≥ 0, we have α(I (3m+1)
3 )= 9m + 4.

Proof. Proceed by the argument in [30, Example 4.4], suppose there is m ≥1 such that α(I (3m+1)
3 )≤9m+3.

Then there is a divisor D of degree 9m +3 vanishing to order at least 3m +1 at every point of 12 points Pi

in the Fermat configuration. Intersecting D with any of the nine lines L j , since each of the lines L j

contains exactly four points and 9m + 3< 4(3m + 1), we conclude by Bézout’s theorem that each L j is a
component of D. Hence, there exists a divisor D′

= D −
∑9

j=1L j of degree 9(m − 1)+ 3 vanishing to
order at least 3(m − 1)+ 1 at every point of Pi . Repeating this argument m times, we get a contradiction
with α(I3)= 4. Thus, α(I (3m+1)

3 )≥ 9m + 4 for all m.
On the other hand, by a degree argument,

f m
3 gm

3 hm+1
3 z ∈ ( f3, g3)

m
∩ (x, y)m ∩ (y, z)m ∩ (z, x)m = I (3m+1)

3 ,

so we have α(I (3m+1)
3 )≤ 9m + 4 for all m. Therefore, for all m, α(I (3m+1)

3 )= 9m + 4. □

Example 3.6. It is worth pointing out that the first immediate application of the above calculations
combined with the already known cases is the verification of Chudnovsky’s conjecture and Demailly’s
conjecture, although the general case is already known from [18]. For any n ≥ 3, Fermat ideals verify:

(1) Chudnovsky’s conjecture:

α̂(In)≥
α(In)+ 1

2
.

(2) Demailly’s conjecture:

α̂(In)≥
α(I (m)n )+ 1

m + 1
, ∀m ≥ 1.

Proof. Directly from the formulae of α̂(In) and α(I (m)n ). □

The following containments are also direct consequences of the above calculations about α(I (m)n ). Note
that these containments (and in fact, the stable version of them, i.e, the containment for r ≫ 0) imply
Chudnovsky’s conjecture. First, in [3, Example 3.5], we showed the stronger containment (which implies
both containments given in Corollary 1.3),

I (2r−2)
n ⊆ mr I r

n

for r = 6, and thus for all r ≫ 0. In particular, from the proof of [3, Theorem 3.1], the containments hold
for r ≥ 122

= 144. Here we show that the containment hold for all r ≥ 5. Notice that for r ≤ 4, since the
resurgence number ρ(In)=

3
2 , we know that I (2r−2)

n ̸⊆ I r
n .

Corollary 3.7. For every n ≥ 3, the Fermat configuration ideal verifies the following containment:

I (2r−2)
n ⊆ mr I r

n , ∀r ≥ 5.

Proof. As before, since for all r ≥ 5, we have I (2r−2)
n ⊆ I r

n , it suffices to check the inequalities

α(I (2r−2)
n )≥ r +ω(I r

n )

case-by-case:
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Case 1: For n = 3, we have

r +ω(I r
n )= 5r and α(I (2r−2)

n )=


9m, if 2r − 2 = 3m,
9m + 4, if 2r − 2 = 3m + 1,
9m + 8, if 2r − 2 = 3m + 2.

(a) If 2r − 2 = 3m, the inequality becomes 9m ≥
5
2(3m + 2), which is equivalent to 3m ≥ 10. Since

r ≥ 5, we have 3m ≥ 8. Moreover, 3m = 2r − 2 can’t be 8 or 9.

(b) If 2r − 2 = 3m + 1, the inequality becomes 9m + 4 ≥
5
2(3m + 3), which is equivalent to 3m ≥ 7

(which is true because 3m = 2r − 3 ≥ 7).

(c) If 2r − 2 = 3m + 2, the inequality becomes 9m + 8 ≥
5
2(3m + 4), which is equivalent to 3m ≥ 4.

Case 2: For n ≥ 4, since r ≥ 5, it follows that 2r −2 ≥ 8. Thus, α(I (2r−2)
n )= (2r −2)n. Furthermore, we

have (2r − 2)n ≥ r(n + 1)+ r ⇐⇒ (r − 2)n ≥ 2r , which is true since we have (r − 2)n ≥ 4(r − 2)≥ 2r
for all r ≥ 5. □

Although the above containment implies the Harbourne–Huneke containment for r ≥ 5, we can check
easily that the Harbourne–Huneke containment holds for all possible r by our computations.

Corollary 3.8. For every n ≥ 3, the Fermat configuration ideal verifies the Harbourne–Huneke contain-
ment (see [24, Conjecture 2.1]):

I (2r)
n ⊆ mr I r

n , ∀r ≥ 1.

Proof. Since I (2r)
n ⊆ I r

n , for all r ≥ 1 the above containment comes from the fact that

α(I (2r)
n )≥ r +ω(I r

n )

for all n ≥ 3 and r ≥ 1 (the case r = 0 is trivial). Indeed, we check case-by-case:

Case 1: For n ≥ 3 and r = 1, we have 2(n + 1)≥ n + 1 + 1.

Case 2: For n = 3, we have

r +ω(I r
n )= 5r and α(I (2r)

n )=


9m, if 2r = 3m,
9m + 4, if 2r = 3m + 1,
9m + 8, if 2r = 3m + 2.

Case 3: For n ≥ 4 and r ≥ 2, we have r +ω(I r
n )= r(n + 2) and α(I (2r)

n )= 2rn. □

Corollary 3.9. For every n ≥ 3, the Fermat configuration ideal verifies the Harbourne–Huneke contain-
ment (see [24, Conjecture 4.1.5]):

I (2r−1)
n ⊆ mr−1 I r

n , ∀r ≥ 3.

Proof. Since ρ(In)=
3
2 , for all r ≥3, we have I (2r−1)

n ⊆ I r
n . The above containment comes from the fact that

α(I (2r−1)
n )≥ r − 1 +ω(I r

n )

for all n ≥3 and r ≥3. Notice that when r =1, 2, the containment I (2r−1)
n ⊆ I r

n fails. We check case-by-case:
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Case 1: For n = 3, we have

r − 1 +ω(I r
n )= 5r − 1 and α(I (2r−1)

n )=


9m, if 2r − 1 = 3m,
9m + 4, if 2r − 1 = 3m + 1,
9m + 8, if 2r − 1 = 3m + 2.

Case 2: For n = 4 and r = 3, we have α(I (5)n )= 21> 3 + 5 · 3 = r +ω(I 3
n ).

Case 3: For n ≥ 4 and r ̸= 3, we have α(I (2r−1)
n )= (2r − 1)n. Furthermore, we have that the inequalities

(2r − 1)n ≥ r(n + 1)+ r − 1 ⇐⇒ (r − 1)n ≥ 2r − 1, which is true since (r − 1)n ≥ 4(r − 1) ≥ 2r − 1
for all r ≥ 3. □

We end this section by calculating another invariant related to generating degrees of symbolic powers
of In . As introduced in [24, Definition 2.2], for a homogeneous ideal J ⊂ C[PN

], define β(J ) to be
the smallest integer t such that [J ]t contains a regular sequence of length two where [J ]t is the graded
component of degree t of J . It turns out that when N = 2 and J is a defining ideal of a finite set of
(fat) points, β(J ) is in fact the least degree t such that the zero locus of [J ]t is 0-dimensional, since
the condition that [J ]t contains a regular sequence of length two is equivalent to the condition that all
elements of [J ]t does not have a nonconstant common factor, see [25]. This invariant is related to the
maximum degree of generators in a set of minimal generators of J .

Proposition 3.10. Let J ⊂ C[x, y, z] be a defining ideal of a set of finite (fat) points. Then β(J )≤ ω(J ).

Proof. Suppose that J =⟨g1, . . . , gk⟩ and ω(J )<β(J ), then the zero locus of [J ]ω(J ) is not 0-dimensional,
by the definition of β(J ). For j = 1, . . . , k, consider the set A consisting of all forms g j xd j , g j yd j

and g j zd j , where d j =ω(J )−deg(g j ). Then A ⊂ [J ]ω(J ), hence the zero locus of A is not 0-dimensional.
This is a contradiction, since the zero locus of A is also the zero locus of J . □

In the following result, we calculate β(I (m)n ) and get an immediate bound for ω(I (m)n ):

Proposition 3.11. For n ≥ 3 and m ≥ 1, we have β(I (m)n )= m(n + 1).

Proof. First, for any n ≥ 3, note that I m
n is generated by all generators of the same degree m(n+1). Hence,

β(I m
n )= m(n + 1), as [I m

n ]m(n+1) contains a regular sequence of length two. Since I m
n ⊆ I (m)n , we have

β(I (m)n )≤ m(n +1) for all m ≥ 1. On the other hand, for any m ≥ 1, let f ∈ [I (m)n ]t be any element where
t < m(n + 1). Recall that each line L j in the Fermat configuration contains exactly n + 1 points of the
configuration. Intersecting any line L j with the variety defined by f , since f vanishes at every point
in the configuration to order at least m, by Bézout’s theorem, since deg( f ) deg(L j ) < m(n + 1), L j is a
component of the variety of f . Therefore, for any t < m(n + 1), L j is a component of the zero locus of
[I (m)n ]t , i.e, β(I (m)n )≥ m(n + 1). □

Corollary 3.12. For n ≥ 3 and m ≥ 1, we have ω(I (m)n ) ≥ m(n + 1). Moreover, for each n ≥ 3,
ω(I (m)n )= m(n + 1) for all m ≥ n2

− 3n + 2.

Proof. For all m, we have that ω(I (m)n )≥m(n+1). On the other hand, by [32, Theorem 3.10, Remark 3.11],
reg(I (m)n ) = m(n + 1) for all n ≥ 3 and m ≥ n2

− 3n + 2. Thus, ω(I (m)n ) ≤ reg(I (m)n ) = m(n + 1) for
all n ≥ 3 and m ≥ n2

− 3n + 2. □
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Remark 3.13. It is known that for any k and n ≥ 3, ω(I (kn)
n )= β(I (kn)

n )= kn(n +1), since any generators
of I (kn)

n with degree less than kn(n + 1) must be divisible by f gh and hence, no two elements in degree
less than kn(n +1) of it form a regular sequence (because they always share the common factor f gh), see
[32, Theorem 3.7]. In the same paper, it is also known that ω(I (n−1)

n )= β(I (n−1)
n )= (n − 1)(n + 1), with

the same reasoning. As in the above corollary, ω(I (m)n )= β(I (m)n )= m(n +1) for m ≫ 0. It is reasonable
to ask if this is the case for all m. It is suggested by Macaulay2 [22] that, in fact, ω(I (m)n )= m(n + 1) for
all m ≥ 1.

4. Fermat ideal I2

In this section, we will deal with the ideal I2 =
(
x(y2

− z2), y(z2
− x2), z(x2

− y2)
)
. Unlike the ideals In

for n ≥ 3, this ideal satisfies the Harbourne containment I (3)2 ⊆ I 2
2 . This is probably one reason why

it is less considered in the literature. We will see later that this ideal is very different to Fermat ideals
when n ≥ 3 in terms of the generating degree of symbolic powers and hence, in terms of the Waldschmidt
constant and the (asymptotic) resurgence number.

In the following, we will compute the least degree of the generators of symbolic powers of I2, as well
as its Waldschmidt constant, and the (asymptotic) resurgence number in order to complete the picture of
Fermat ideals. This ideal I2 is also known to be the ideal determining the singular locus of the arrangement
of lines given by the pseudoreflection group D3. In general, suppose that G ⊆ GLn+1(C) is a finite
group generated by pseudoreflections, where a pseudoreflection is a nonidentity linear transformation that
fixes a hyperplane pointwise and has finite order. Geometrically, we can view the generators of G as a
hyperplane arrangement where the hyperplanes are pointwise fixed by the pseudoreflections of G. It is
shown in [11, Proposition 3.9] that the singular locus (the Jacobian ideal) of the arrangement of lines
correspond to G(2, 2, 3)= D3 is given by I2.

First, recall that, geometrically, I2 is the defining ideal of the singular locus of the line arrangement
in P2 that consists of six lines L j whose equations are

x = ±y, y = ±z, z = ±x

These six lines intersect at seven points Pi , which are [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : −1], [1 : −1 : 1],
[1 : −1 : −1] and [1 : 1 : 1] such that the first three points lie on two lines each and the rest lie on three
lines each; and each line contains exactly three points.

Similar to In for n ≥ 3, we can write

I2 = (x2
− y2, y2

− z2)∩ (x, y)∩ (y, z)∩ (z, x),
so that

I (m)2 = (x2
− y2, y2

− z2)m ∩ (x, y)m ∩ (y, z)m ∩ (z, x)m, ∀m ≥ 1.

Theorem 4.1. For the ideal I2, we have:

(1) α̂(I2)=
5
2 .

(2) For all k ≥ 2, we have α(I (2k)
2 )= 5k.

(3) For all k ≥ 0, we have α(I (2k+1)
2 )= 5k + 3.

(4) α(I (2)2 )= 6.
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Proof. By [19, Theorem 2.3], we can check that α̂(I2)≥
5
2 .

In particular, we have that α(I (2k)
2 )≥ 5k and α(I (2k+1)

2 )≥ 5k + 3, for all k ≥ 1. We will show the reverse
by showing there exists some element with the desired degree in the symbolic powers.

Indeed, we proceed case-by-case. Setting K = (x2
− y2, y2

− z2), we have

Case 1: Assume m = 4k. Consider F = (x2
− y2)2k(y2

− z2)k(z2
− x2)kz2k that has degree 10k. Since

(x2
− y2)2k(y2

− z2)k(z2
− x2)k ∈ K 4k , we have (x2

− y2)2k
∈ (x, y)4k , z2k(y2

− z2)k ∈ (y, z)4k and
z2k(z2

− x2)k ∈ (z, x)4k . It follows that

F ∈ K 4k
∩ (x, y)4k

∩ (y, z)4k
∩ (z, x)4k

= I (4k)
2 , ∀k ≥ 1.

By similar arguments, we handle the remaining cases.

Case 2: Assume m =4k+2. Then F = (x2
−y2)2k(y2

−z2)k+1(z2
−x2)k+1xyz2k−1 has degree 10k+5 and

F ∈ K 4k+2
∩ (x, y)4k+2

∩ (y, z)4k+2
∩ (z, x)4k+2

= I (4k+2)
2 , ∀k ≥ 1.

Case 3: Assume m = 4k + 1. Then F = (x2
− y2)2k+1(y2

− z2)k(z2
− x2)kz2k+1 has degree 10k + 3 and

F ∈ K 4k+1
∩ (x, y)4k+1

∩ (y, z)4k+1
∩ (z, x)4k+1

= I (4k+1)
2 , ∀k ≥ 0.

Case 4: Assume m =4k+3. Then F = (x2
−y2)2k+1(y2

−z2)k+1(z2
−x2)k+1xyz2k has degree 10k+8 and

F ∈ K 4k+3
∩ (x, y)4k+3

∩ (y, z)4k+3
∩ (z, x)4k+3

= I (4k+3)
2 , ∀k ≥ 0.

Thus, α(I (2k)
2 ) ≤ 5k, for all k ≥ 2 and α(I (2k+1)

2 ) ≤ 5k + 3, for all k ≥ 0. It follows that state-
ments (2) and (3) are true, and since the Waldschmidt constant is the infimum of the initial degrees,
α̂(I2) ≤ α(I (2k)

2 )/(2k) =
5
2 . Hence, (1) follows as well. Statement (4) can be checked directly by

Macaulay2 or by Bézout’s theorem argument as follows: We know that α(I (2)2 ) ≤ α(I 2
2 ) = 6. Now

suppose that α(I (2)2 ) ≤ 5. Then there is a divisor D of degree 5 vanishing to order at least 2 at every
point Pi . Since the intersection of D and any line L j consists of 3 points to order at least 2, we get a
contradiction to Bézout’s theorem because deg(D) · deg(L j )= 5< 2 · 3. □

For I2, the asymptotic resurgence number and the resurgence number turn out to be the same.

Theorem 4.2. The resurgence number and asymptotic resurgence number of I2 are

ρ(I2)= ρ̂(I2)=
6
5 .

Proof. The asymptotic resurgence number ρ̂(I2)=
6
5 follows from [23, Theorem 1.2] that

6
5

=
α(I2)

α̂(I2)
≤ ρ̂(I2)≤

ω(I2)

α̂(I2)
=

6
5
.
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By [32, Theorem 2.5], since I2 is a strict almost complete intersection ideal with minimal generators
of degree 3 and its module syzygy is generated in degrees 1 and 2, the minimal free resolution of I r

2 is

0 → R(−3(r + 1))(
r
2)

ψ
−→

R(−3r − 1)(
r+1

2 )

⊕

R(−3r − 2)(
r+1

2 )

ϕ
−→ R(−3r)(

r+2
2 ) → I r

2 → 0

for any r ≥ 2. In particular, reg(I r
2 )= 3r +1 for all r ≥ 2, where reg(I ) denotes the Castelnuovo–Mumford

regularity of I . We also have reg(I2)= 4. By [23, Theorem 1.2] again, we have ρ(I2)≥ α(I2)/α̂(I2)=
6
5 .

Conversely, for any m
r >

6
5 , we have:

• If m = 2k, then 10k > 6r implies that 10k ≥ 6r + 2 or 5k ≥ 3r + 1 since both numbers are even. It
follows that α(I (2k)

2 )≥ 5k ≥ 3r + 1 = reg(I r
2 ) and hence, I (2k)

2 ⊆ I r
2 .

• If m = 2k + 1, then 10k + 2> 6r implies that 10k + 6 ≥ 6r + 2 or 5k + 3 ≥ 3r + 1. It follows that
α(I (2k+1)

2 )= 5k + 3 ≥ 3r + 1 = reg(I r
2 ) and hence, I (2k+1)

2 ⊆ I r
2 .

Thus, for any m
r >

6
5 , we have I (m)2 ⊆ I r

2 , i.e, ρ(I2)=
6
5 . □

Example 4.3. It is worth pointing out that the first direct consequence of the above calculation is the
verification of I2 to Chudnovsky’s conjecture and Demailly’s conjecture, although the general case is
already known from [18]. Ideal I2 verifies

(1) Chudnovsky’s conjecture:

α̂(I2)≥
α(I2)+ 1

2
.

(2) Demailly’s conjecture:

α̂(I2)≥
α(I (m)2 )+ 1

m + 1
, ∀m ≥ 1.

Proof. Follows directly from the formulae of α̂(I2) and α(I (m)2 ). □

Example 4.4. Another difference between I2 and In when n ≥ 3 is that while I (nk)
n = (I (n)n )k for all k

and n ≥ 3 by [32], we have I (4)2 ̸= (I (2)2 )2. In fact, as in the proof of Theorem 4.1,

F = (x2
− y2)2(y2

− z2)(z2
− x2)z2

∈ I (4)2 ,

whereas, we can check that F ̸∈ (I (2)2 )2. Moreover, we can also check that I (6)2 ̸= (I (3)2 )2, since

G = (x2
− y2)2(y2

− z2)2(z2
− x2)2xyz ∈ I (6)2 \ (I (3)2 )2.

It is suggested by Macaulay2 [22] that I (8)2 = (I (4)2 )2. It would be interesting to know if I (4k)
2 = (I (4)2 )k

for all k.

As with all other Fermat ideals, I2 also satisfies the following containment. In [3, Example 3.7], we
showed the stronger containment (which implies both Harbourne–Huneke) containment

I (2r−2)
2 ⊆ mr I r

2 ,

for r = 5 (by Macaulay2), and thus for all r ≫ 0 by our method. In particular, from the proof of [3, Theo-
rem 3.1], the containment holds for r ≥ 102

= 100. Here, we show that the containment holds for all r ≥ 5.
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Corollary 4.5. For every n ≥ 3, the ideal I2 verifies the following stronger containment:

I (2r−2)
2 ⊆ mr I r

2 , ∀r ≥ 5.

Proof. As before, since ρ(I2)=
6
5 , we know that I (2r−2)

2 ⊆ I r
2 for r ≥ 3. Hence, the containment follows

from the inequality
α(I (2r−2)

2 )= 5r − 5 ≥ r + 3r = r +ω(I r
2 ), ∀r ≥ 5. □

We can also detect the failure of the containment in the remaining cases by only using formulae for
α(I (m)2 ).

Remark 4.6. For r ≤ 4, the above containment fails. In fact, notice that for r ≤ 2, since ρ(I2) =
6
5 ,

we know that I (2r−2)
2 ̸⊆ I r

2 . When r = 3, since α(I (4)2 ) = 10 < 3 + 9 = 3 + α(I 3
2 ), we see that the

containment I (4)2 ⊆ m3 I 3
2 fails. Similarly, for r = 4, since α(I (6)2 )= 15< 4 + 12 = 4 +α(I 4

2 ), we see that
the containment I (6)2 ⊆ m4 I 4

2 also fails.

Although the above containment implies the Harbourne–Huneke containment for r ≥ 5, we can check
easily that the Harbourne–Huneke containment holds for all possible r by our computations.

Corollary 4.7 (see [24, Conjecture 2.1]). Ideal I2 verifies the Harbourne–Huneke containment

I (2r)
2 ⊆ mr I r

2 , ∀r ≥ 1.

Proof. Since for all r , we have I (2r)
2 ⊆ I r

2 , the containment follows from the fact that

α(I (2r)
2 )≥ 5r ≥ r + 3r = r +ω(I r

2 ), ∀r. □

Corollary 4.8 (see [24, Conjecture 4.1.5]). Ideal I2 verifies the Harbourne–Huneke containment

I (2r−1)
2 ⊆ mr−1 I r

2 , ∀r ≥ 1.

Proof. Since ρ(I2)=
6
5 , for all r ≥2, we have I (2r−1)

2 ⊆ I r
2 . The above containment comes from the fact that

α(I (2r−1)
2 )= 5r − 2 ≥ r − 1 + 3r = r − 1 +ω(I r

2 ), ∀r ≥ 2.

The case r = 1 is obvious. □

Remark 4.9. The above corollary gives a proof for the case D3 in [11, Proposition 6.3].

We end this section by calculating β(I (m)2 ).

Proposition 4.10. For all m ≥ 1, we have β(I (m)2 )= 3m and ω(I (m)2 )≥ 3m.

Proof. The proof is the same as that of the case where n ≥ 3. First, since I m
2 ⊆ I (m)2 , we have that

β(I (m)2 ) ≤ 3m for all m ≥ 1. On the other hand, recall that each line L j in the configuration contains
exactly three points of the configuration. Thus, for any m ≥ 1 and for any f ∈ [I (m)n ]t where t < 3m,
intersecting any line L j with the variety defined by f , by Bézout’s theorem, since deg( f ) deg(L j ) < 3m,
L j is a component of the variety of f . Therefore, for any t < 3m, it follows that L j is a component of the
zero locus of [I (m)2 ]t , i.e, β(I (m)2 )≥ 3m. □
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Remark 4.11. As in the case where n ≥ 3, Macaulay2 [22] suggests that ω(I (m)2 ) = 3m. It would be
interesting to know if ω(J (m))= β(J (m)) holds for any radical ideal of points J in general. As suggested
by the referee, the answer is no, in general. Consider eight general points in P2 with defining ideal I .
Then there are two cubics among the generators of I , which form a regular sequence, i.e., intersect in
nine points. By the Cayley–Bacharach theorem, since any cubic containing eight points also contains the
ninth point, one must use a form of degree at least 4 (and, in fact, exactly 4) to exclude the ninth point
from the defining ideal of eight points. Thus, β(I )= 3 but ω(I )≥ 4.
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